Journal articles on the topic 'Double-Stranded DNA Breaks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Double-Stranded DNA Breaks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Goodsell, David S. "The Molecular Perspective: Double-Stranded DNA Breaks." Stem Cells 23, no. 7 (August 2005): 1021–22. http://dx.doi.org/10.1634/stemcells.fcm4.
Full textGoodsell, David S. "The Molecular Perspective: Double‐Stranded DNA Breaks." Oncologist 10, no. 5 (May 2005): 361–62. http://dx.doi.org/10.1634/theoncologist.10-5-361.
Full textZee, Yeng Peng, Carmen López-Fernández, F. Arroyo, Stephen D. Johnston, William V. Holt, and Jaime Gosalvez. "Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage." REPRODUCTION 138, no. 2 (August 2009): 267–78. http://dx.doi.org/10.1530/rep-09-0021.
Full textKomor, Alexis C., Ahmed H. Badran, and David R. Liu. "Editing the Genome Without Double-Stranded DNA Breaks." ACS Chemical Biology 13, no. 2 (October 9, 2017): 383–88. http://dx.doi.org/10.1021/acschembio.7b00710.
Full textHanada, Katsuhiro, Teruhito Yamashita, Yuko Shobuike, and Hideo Ikeda. "Role of DnaB Helicase in UV-Induced Illegitimate Recombination in Escherichia coli." Journal of Bacteriology 183, no. 17 (September 1, 2001): 4964–69. http://dx.doi.org/10.1128/jb.183.17.4964-4969.2001.
Full textCowan, Richard, David Culpin, and David Gates. "Asymptotic results for a problem of DNA breakage." Journal of Applied Probability 27, no. 2 (June 1990): 433–39. http://dx.doi.org/10.2307/3214663.
Full textCowan, Richard, David Culpin, and David Gates. "Asymptotic results for a problem of DNA breakage." Journal of Applied Probability 27, no. 02 (June 1990): 433–39. http://dx.doi.org/10.1017/s0021900200038894.
Full textDillingham, Mark S., and Stephen C. Kowalczykowski. "RecBCD Enzyme and the Repair of Double-Stranded DNA Breaks." Microbiology and Molecular Biology Reviews 72, no. 4 (December 2008): 642–71. http://dx.doi.org/10.1128/mmbr.00020-08.
Full textEid, Ayman, Sahar Alshareef, and Magdy M. Mahfouz. "CRISPR base editors: genome editing without double-stranded breaks." Biochemical Journal 475, no. 11 (June 11, 2018): 1955–64. http://dx.doi.org/10.1042/bcj20170793.
Full textBhandoola, Avinash, Benjamin Dolnick, Nihal Fayad, Andre Nussenzweig, and Alfred Singer. "Immature Thymocytes Undergoing Receptor Rearrangements Are Resistant to an Atm-Dependent Death Pathway Activated in Mature T Cells by Double-Stranded DNA Breaks." Journal of Experimental Medicine 192, no. 6 (September 18, 2000): 891–98. http://dx.doi.org/10.1084/jem.192.6.891.
Full textEaton, Jonah, and Alexandra Zidovska. "Interphase Chromatin Dynamics in Response to Double Stranded DNA Breaks." Biophysical Journal 114, no. 3 (February 2018): 563a—564a. http://dx.doi.org/10.1016/j.bpj.2017.11.3082.
Full textRackovsky, S., and W. A. Bernhard. "Electron trapping in double-stranded DNA: implications for formation of double-strand breaks." Journal of Physical Chemistry 93, no. 12 (June 1989): 5006–8. http://dx.doi.org/10.1021/j100349a066.
Full textWinters, M. K., D. W. Fairbairn, M. D. Standing, and K. L. O’Neill. "Determining DNA strand breaks using the laser scanning microscope." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 272–73. http://dx.doi.org/10.1017/s042482010014720x.
Full textSzlachta, Karol, Arkadi Manukyan, Heather M. Raimer, Sandeep Singh, Anita Salamon, Wenying Guo, Kirill S. Lobachev, and Yuh-Hwa Wang. "Topoisomerase II contributes to DNA secondary structure-mediated double-stranded breaks." Nucleic Acids Research 48, no. 12 (June 5, 2020): 6654–71. http://dx.doi.org/10.1093/nar/gkaa483.
Full textTorres-Machorro, Ana Lilia, John P. Aris, and Lorraine Pillus. "A moonlighting metabolic protein influences repair at DNA double-stranded breaks." Nucleic Acids Research 43, no. 3 (January 27, 2015): 1646–58. http://dx.doi.org/10.1093/nar/gku1405.
Full textRogakou, Emmy P., Duane R. Pilch, Ann H. Orr, Vessela S. Ivanova, and William M. Bonner. "DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139." Journal of Biological Chemistry 273, no. 10 (March 6, 1998): 5858–68. http://dx.doi.org/10.1074/jbc.273.10.5858.
Full textLi, Wuxing, and Hong Ma. "Double-stranded DNA breaks and gene functions in recombination and meiosis." Cell Research 16, no. 5 (May 2006): 402–12. http://dx.doi.org/10.1038/sj.cr.7310052.
Full textKeating, Derek, Alessandra Parrella, Zev Rosenwaks, and Gianpiero D. Palermo. "THE IMPACT OF DOUBLE-STRANDED SPERM DNA BREAKS ON ICSI OUTCOME." Fertility and Sterility 114, no. 3 (September 2020): e309-e310. http://dx.doi.org/10.1016/j.fertnstert.2020.08.843.
Full textMorimoto, Tsuda, Bunch, Sasanuma, Austin, and Takeda. "Type II DNA Topoisomerases Cause Spontaneous Double-Strand Breaks in Genomic DNA." Genes 10, no. 11 (October 30, 2019): 868. http://dx.doi.org/10.3390/genes10110868.
Full textLal, Ashutosh, Amrita Bhagat, Wafa Atamna, Tal Offer, Elliott P. Vichinsky, Frans A. Kuypers, and Bruce N. Ames. "Increased Chromosomal Breaks in Sickle Cell Disease as Evidenced by the Presence of Micronuclei in Erythrocytes." Blood 106, no. 11 (November 16, 2005): 3807. http://dx.doi.org/10.1182/blood.v106.11.3807.3807.
Full textMerrill, Bradley J., and Connie Holm. "A Requirement for Recombinational Repair in Saccharomyces cerevisiae Is Caused by DNA Replication Defects of mec1 Mutants." Genetics 153, no. 2 (October 1, 1999): 595–605. http://dx.doi.org/10.1093/genetics/153.2.595.
Full textBilang, R., A. Peterhans, A. Bogucki, and J. Paszkowski. "Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays." Molecular and Cellular Biology 12, no. 1 (January 1992): 329–36. http://dx.doi.org/10.1128/mcb.12.1.329.
Full textBilang, R., A. Peterhans, A. Bogucki, and J. Paszkowski. "Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays." Molecular and Cellular Biology 12, no. 1 (January 1992): 329–36. http://dx.doi.org/10.1128/mcb.12.1.329-336.1992.
Full textDo, To Uyen, Bay Ho, Shyh-Jen Shih, and Andrew Vaughan. "Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 740, no. 1-2 (December 2012): 34–42. http://dx.doi.org/10.1016/j.mrfmmm.2012.12.006.
Full textFrock, Richard L., Jiazhi Hu, Robin M. Meyers, Yu-Jui Ho, Erina Kii, and Frederick W. Alt. "Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases." Nature Biotechnology 33, no. 2 (December 15, 2014): 179–86. http://dx.doi.org/10.1038/nbt.3101.
Full textPuc, Janusz, and Ramon Parsons. "PTEN Loss Inhibits CHK1 to Cause Double Stranded-DNA Breaks in Cells." Cell Cycle 4, no. 7 (May 2, 2005): 927–29. http://dx.doi.org/10.4161/cc.4.7.1795.
Full textJayaram, M. "Mating type-like conversion promoted by the 2 micrograms circle site-specific recombinase: implications for the double-strand-gap repair model." Molecular and Cellular Biology 6, no. 11 (November 1986): 3831–37. http://dx.doi.org/10.1128/mcb.6.11.3831.
Full textJayaram, M. "Mating type-like conversion promoted by the 2 micrograms circle site-specific recombinase: implications for the double-strand-gap repair model." Molecular and Cellular Biology 6, no. 11 (November 1986): 3831–37. http://dx.doi.org/10.1128/mcb.6.11.3831-3837.1986.
Full textSauvageau, Synthia, Alicja Z. Stasiak, Isabelle Banville, Mickaël Ploquin, Andrzej Stasiak, and Jean-Yves Masson. "Fission Yeast Rad51 and Dmc1, Two Efficient DNA Recombinases Forming Helical Nucleoprotein Filaments." Molecular and Cellular Biology 25, no. 11 (June 1, 2005): 4377–87. http://dx.doi.org/10.1128/mcb.25.11.4377-4387.2005.
Full textPaix, Alexandre, Andrew Folkmann, Daniel H. Goldman, Heather Kulaga, Michael J. Grzelak, Dominique Rasoloson, Supriya Paidemarry, Rachel Green, Randall R. Reed, and Geraldine Seydoux. "Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks." Proceedings of the National Academy of Sciences 114, no. 50 (November 28, 2017): E10745—E10754. http://dx.doi.org/10.1073/pnas.1711979114.
Full textVidal-Eychenié, Sophie, Chantal Décaillet, Jihane Basbous, and Angelos Constantinou. "DNA structure-specific priming of ATR activation by DNA-PKcs." Journal of Cell Biology 202, no. 3 (July 29, 2013): 421–29. http://dx.doi.org/10.1083/jcb.201304139.
Full textS'yakste, N. I., T. G. S'yakste, and N. D. Zaleskaya. "Reversible accumulation of double- and single-stranded DNA breaks in DNA in growth-arrested cells." Bulletin of Experimental Biology and Medicine 102, no. 2 (August 1986): 1059–61. http://dx.doi.org/10.1007/bf00836195.
Full textWang, Jianlei, and Douglas A. Julin. "DNA Helicase Activity of the RecD Protein fromDeinococcus radiodurans." Journal of Biological Chemistry 279, no. 50 (October 4, 2004): 52024–32. http://dx.doi.org/10.1074/jbc.m408645200.
Full textRathmell, W. K., and G. Chu. "A DNA end-binding factor involved in double-strand break repair and V(D)J recombination." Molecular and Cellular Biology 14, no. 7 (July 1994): 4741–48. http://dx.doi.org/10.1128/mcb.14.7.4741.
Full textRathmell, W. K., and G. Chu. "A DNA end-binding factor involved in double-strand break repair and V(D)J recombination." Molecular and Cellular Biology 14, no. 7 (July 1994): 4741–48. http://dx.doi.org/10.1128/mcb.14.7.4741-4748.1994.
Full textXu, Yixi, and Dongyi Xu. "Repair pathway choice for double-strand breaks." Essays in Biochemistry 64, no. 5 (July 10, 2020): 765–77. http://dx.doi.org/10.1042/ebc20200007.
Full textTraver, B. E., M. A. E. Anderson, and Z. N. Adelman. "Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision inAedes aegypti." Insect Molecular Biology 18, no. 5 (October 2009): 623–33. http://dx.doi.org/10.1111/j.1365-2583.2009.00905.x.
Full textGarcía-Medel, Paola L., Noe Baruch-Torres, Antolín Peralta-Castro, Carlos H. Trasviña-Arenas, Alfredo Torres-Larios, and Luis G. Brieba. "Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining." Nucleic Acids Research 47, no. 6 (January 30, 2019): 3028–44. http://dx.doi.org/10.1093/nar/gkz039.
Full textKloosterman, Wigard P., Masoumeh Tavakoli-Yaraki, Markus J. van Roosmalen, Ellen van Binsbergen, Ivo Renkens, Karen Duran, Lucia Ballarati, et al. "Constitutional Chromothripsis Rearrangements Involve Clustered Double-Stranded DNA Breaks and Nonhomologous Repair Mechanisms." Cell Reports 1, no. 6 (June 2012): 648–55. http://dx.doi.org/10.1016/j.celrep.2012.05.009.
Full textGuikema, Jeroen E. J., Erin K. Linehan, Daisuke Tsuchimoto, Yusaku Nakabeppu, Phyllis R. Strauss, Janet Stavnezer, and Carol E. Schrader. "APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination." Journal of Experimental Medicine 204, no. 12 (November 19, 2007): 3017–26. http://dx.doi.org/10.1084/jem.20071289.
Full textMeek, Katheryn. "Activation of DNA-PK by hairpinned DNA ends reveals a stepwise mechanism of kinase activation." Nucleic Acids Research 48, no. 16 (July 27, 2020): 9098–108. http://dx.doi.org/10.1093/nar/gkaa614.
Full textWilliamson, Adele, Ulli Rothweiler, and Hanna-Kirsti Schrøder Leiros. "Enzyme–adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface." Acta Crystallographica Section D Biological Crystallography 70, no. 11 (October 29, 2014): 3043–56. http://dx.doi.org/10.1107/s1399004714021099.
Full textBlackwood, John K., Neil J. Rzechorzek, Sian M. Bray, Joseph D. Maman, Luca Pellegrini, and Nicholas P. Robinson. "End-resection at DNA double-strand breaks in the three domains of life." Biochemical Society Transactions 41, no. 1 (January 29, 2013): 314–20. http://dx.doi.org/10.1042/bst20120307.
Full textLin, F. L., K. Sperle, and N. Sternberg. "Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells." Molecular and Cellular Biology 10, no. 1 (January 1990): 113–19. http://dx.doi.org/10.1128/mcb.10.1.113.
Full textLin, F. L., K. Sperle, and N. Sternberg. "Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells." Molecular and Cellular Biology 10, no. 1 (January 1990): 113–19. http://dx.doi.org/10.1128/mcb.10.1.113-119.1990.
Full textKara, Neesha, Felix Krueger, Peter Rugg-Gunn, and Jonathan Houseley. "Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq." PLOS Biology 19, no. 3 (March 24, 2021): e3000886. http://dx.doi.org/10.1371/journal.pbio.3000886.
Full textWang, Hailong, Zhengping Shao, Linda Z. Shi, Patty Yi-Hwa Hwang, Lan N. Truong, Michael W. Berns, David J. Chen, and Xiaohua Wu. "CtIP Protein Dimerization Is Critical for Its Recruitment to Chromosomal DNA Double-stranded Breaks." Journal of Biological Chemistry 287, no. 25 (April 27, 2012): 21471–80. http://dx.doi.org/10.1074/jbc.m112.355354.
Full textYeeles, Joseph T. P., and Mark S. Dillingham. "The processing of double-stranded DNA breaks for recombinational repair by helicase–nuclease complexes." DNA Repair 9, no. 3 (March 2010): 276–85. http://dx.doi.org/10.1016/j.dnarep.2009.12.016.
Full textBurger, Kaspar, Margarita Schlackow, Martin Potts, Svenja Hester, Shabaz Mohammed, and Monika Gullerova. "Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage." Journal of Cell Biology 216, no. 8 (June 22, 2017): 2373–89. http://dx.doi.org/10.1083/jcb.201612131.
Full textRaymond, Amy C., Bart L. Staker, and Alex B. Burgin. "Substrate Specificity of Tyrosyl-DNA Phosphodiesterase I (Tdp1)." Journal of Biological Chemistry 280, no. 23 (April 4, 2005): 22029–35. http://dx.doi.org/10.1074/jbc.m502148200.
Full text