Journal articles on the topic 'DprE1 inhibitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'DprE1 inhibitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Foo, Caroline Shi-Yan, Benoit Lechartier, Gaëlle S. Kolly, et al. "Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis." Antimicrobial Agents and Chemotherapy 60, no. 11 (2016): 6451–59. http://dx.doi.org/10.1128/aac.01523-16.
Full textMakarov, Vadim, João Neres, Ruben C. Hartkoorn, et al. "The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis." Antimicrobial Agents and Chemotherapy 59, no. 8 (2015): 4446–52. http://dx.doi.org/10.1128/aac.00778-15.
Full textWarrier, Thulasi, Kanishk Kapilashrami, Argyrides Argyrou, et al. "N-methylation of a bactericidal compound as a resistance mechanism inMycobacterium tuberculosis." Proceedings of the National Academy of Sciences 113, no. 31 (2016): E4523—E4530. http://dx.doi.org/10.1073/pnas.1606590113.
Full textKumar, Avinash, Revathi Rajappan, Suvarna G. Kini, Ekta Rathi, Sriram Dharmarajan, and K. Sreedhara Ranganath Pai. "e-Pharmacophore model-guided design of potential DprE1 inhibitors: synthesis, in vitro antitubercular assay and molecular modelling studies." Chemical Papers 75, no. 10 (2021): 5571–85. http://dx.doi.org/10.1007/s11696-021-01743-3.
Full textZhang, Gang, Song Guo, Huaqing Cui, and Jianguo Qi. "Virtual Screening of Small Molecular Inhibitors against DprE1." Molecules 23, no. 3 (2018): 524. http://dx.doi.org/10.3390/molecules23030524.
Full textImran, Mohd, Alshrari A.S., Hamdy Kh Thabet, Abida, and Md Afroz Bakht. "Synthetic molecules as DprE1 inhibitors: A patent review." Expert Opinion on Therapeutic Patents 31, no. 8 (2021): 759–72. http://dx.doi.org/10.1080/13543776.2021.1902990.
Full textR, Manjunatha M., Radha Shandil, Manoranjan Panda, et al. "Scaffold Morphing To Identify Novel DprE1 Inhibitors with Antimycobacterial Activity." ACS Medicinal Chemistry Letters 10, no. 10 (2019): 1480–85. http://dx.doi.org/10.1021/acsmedchemlett.9b00343.
Full textPiton, Jérémie, Caroline S. Y. Foo, and Stewart T. Cole. "Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors." Drug Discovery Today 22, no. 3 (2017): 526–33. http://dx.doi.org/10.1016/j.drudis.2016.09.014.
Full textBatt, S. M., T. Jabeen, V. Bhowruth, et al. "Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors." Proceedings of the National Academy of Sciences 109, no. 28 (2012): 11354–59. http://dx.doi.org/10.1073/pnas.1205735109.
Full textChhabra, Sonali, Sunil Kumar, and Raman Parkesh. "Chemical Space Exploration of DprE1 Inhibitors Using Chemoinformatics and Artificial Intelligence." ACS Omega 6, no. 22 (2021): 14430–41. http://dx.doi.org/10.1021/acsomega.1c01314.
Full textYalcin, Gozde, Serdar Burmaoglu, Ilkay Yildiz, and Oztekin Algul. "Molecular docking studies on fluoro-substituted chalcones as potential DprE1 enzyme inhibitors." Journal of Molecular Structure 1164 (July 2018): 50–56. http://dx.doi.org/10.1016/j.molstruc.2018.02.087.
Full textLiu, Lingfeng, Chengcheng Kong, Marco Fumagalli, et al. "Design, synthesis and evaluation of covalent inhibitors of DprE1 as antitubercular agents." European Journal of Medicinal Chemistry 208 (December 2020): 112773. http://dx.doi.org/10.1016/j.ejmech.2020.112773.
Full textDegiacomi, Giulia, Juan Manuel Belardinelli, Maria Rosalia Pasca, Edda De Rossi, Giovanna Riccardi, and Laurent Roberto Chiarelli. "Promiscuous Targets for Antitubercular Drug Discovery: The Paradigm of DprE1 and MmpL3." Applied Sciences 10, no. 2 (2020): 623. http://dx.doi.org/10.3390/app10020623.
Full textBalabon, Olga, Eleni Pitta, Maciej K. Rogacki та ін. "Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) Inhibitors". Journal of Medicinal Chemistry 63, № 10 (2020): 5367–86. http://dx.doi.org/10.1021/acs.jmedchem.0c00107.
Full textChikhale, Rupesh V., Mahesh A. Barmade, Prashant R. Murumkar, and Mange Ram Yadav. "Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis." Journal of Medicinal Chemistry 61, no. 19 (2018): 8563–93. http://dx.doi.org/10.1021/acs.jmedchem.8b00281.
Full textNiranjan Kumar, Rakesh Srivastava, Amresh Prakash, and Andrew M. Lynn. "Virtual screening and free energy estimation for identifying Mycobacterium tuberculosis flavoenzyme DprE1 inhibitors." Journal of Molecular Graphics and Modelling 102 (January 2021): 107770. http://dx.doi.org/10.1016/j.jmgm.2020.107770.
Full textRogacki, Maciej K., Eleni Pitta, Olga Balabon, et al. "Identification and Profiling of Hydantoins—A Novel Class of Potent Antimycobacterial DprE1 Inhibitors." Journal of Medicinal Chemistry 61, no. 24 (2018): 11221–49. http://dx.doi.org/10.1021/acs.jmedchem.8b01356.
Full textTrefzer, Claudia, Henrieta Škovierová, Silvia Buroni та ін. "Benzothiazinones Are Suicide Inhibitors of Mycobacterial Decaprenylphosphoryl-β-d-ribofuranose 2′-Oxidase DprE1". Journal of the American Chemical Society 134, № 2 (2011): 912–15. http://dx.doi.org/10.1021/ja211042r.
Full textWang, Pengxu, Sarah M. Batt, Bin Wang, et al. "Discovery of Novel Thiophene-arylamide Derivatives as DprE1 Inhibitors with Potent Antimycobacterial Activities." Journal of Medicinal Chemistry 64, no. 9 (2021): 6241–61. http://dx.doi.org/10.1021/acs.jmedchem.1c00263.
Full textVerma, H., S. Choudhary, M. Kumar, and O. Silakari. "In silico guided design of non-covalent inhibitors of DprE1: synthesis and biological evaluation." SAR and QSAR in Environmental Research 32, no. 4 (2021): 333–52. http://dx.doi.org/10.1080/1062936x.2021.1900390.
Full textShirude, Pravin S., Radha Shandil, Claire Sadler, et al. "Azaindoles: Noncovalent DprE1 Inhibitors from Scaffold Morphing Efforts, Kill Mycobacterium tuberculosis and Are Efficaciousin Vivo." Journal of Medicinal Chemistry 56, no. 23 (2013): 9701–8. http://dx.doi.org/10.1021/jm401382v.
Full textSaxena, Anil Kumar, and Anamika Singh. "Mycobacterial tuberculosis Enzyme Targets and their Inhibitors." Current Topics in Medicinal Chemistry 19, no. 5 (2019): 337–55. http://dx.doi.org/10.2174/1568026619666190219105722.
Full textKB, Suma, Ankita Kumari, Diya Shetty, et al. "Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis." Journal of Molecular Graphics and Modelling 101 (December 2020): 107718. http://dx.doi.org/10.1016/j.jmgm.2020.107718.
Full textNaik, Maruti, Vaishali Humnabadkar, Subramanyam J. Tantry, et al. "4-Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity." Journal of Medicinal Chemistry 57, no. 12 (2014): 5419–34. http://dx.doi.org/10.1021/jm5005978.
Full textChikhale, Rupesh, Sunil Menghani, Ramavath Babu, et al. "Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides." European Journal of Medicinal Chemistry 96 (May 2015): 30–46. http://dx.doi.org/10.1016/j.ejmech.2015.04.011.
Full textRavi, Bentham Science Publisher, and S. K. Mahmood. "Pharmacophore Modeling, 3DQSAR and Structural Analysis of new Class of Potent Antimycobacterial Agents1, 3-Benzothiazin-4-Onescompounds as DprE1 Inhibitors." Letters in Drug Design & Discovery 12, no. 999 (2014): 1. http://dx.doi.org/10.2174/1570180812666141201222756.
Full textKumar, Avinash, Revathi Rajappan, Suvarna G. Kini, Ekta Rathi, Sriram Dharmarajan, and K. Sreedhara Ranganath Pai. "Correction to: e-Pharmacophore model-guided design of potential DprE1 inhibitors: synthesis, in vitro antitubercular assay and molecular modelling studies." Chemical Papers 75, no. 11 (2021): 6145. http://dx.doi.org/10.1007/s11696-021-01762-0.
Full textMariandyshev, A. O., A. L. Khokhlov, S. V. Smerdin, et al. "The main results of clinical trials of the efficacy, safety and pharmacokinetics of the perspective anti-tuberculosis drug makozinone (PBTZ169)." Terapevticheskii arkhiv 92, no. 3 (2020): 61–72. http://dx.doi.org/10.26442/00403660.2020.03.000621.
Full textGoldman, Robert C. "Target Discovery for New Antitubercular Drugs Using a Large Dataset of Growth Inhibitors from PubChem." Infectious Disorders - Drug Targets 20, no. 3 (2020): 352–66. http://dx.doi.org/10.2174/1871526519666181205163810.
Full textMaharaj, Yushir, Soumendranath Bhakat, and Mahmoud Soliman. "Computer-aided Identification of Novel DprE1 Inhibitors as Potential Anti-TB Lead Compounds: A Hybrid Virtual-screening and Molecular Dynamics Approach." Letters in Drug Design & Discovery 12, no. 4 (2015): 302–13. http://dx.doi.org/10.2174/1570180811666141001005536.
Full textWhitehurst, Benjamin C., Robert J. Young, Glenn A. Burley, Monica Cacho, Pedro Torres, and Laura Vela-Gonzalez del Peral. "Identification of 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors." Bioorganic & Medicinal Chemistry Letters 30, no. 12 (2020): 127192. http://dx.doi.org/10.1016/j.bmcl.2020.127192.
Full textGawad, Jineetkumar, and Chandrakant Bonde. "Design, synthesis and biological evaluation of novel 6-(trifluoromethyl)-N-(4-oxothiazolidin-3-yl)quinazoline-2-carboxamide derivatives as a potential DprE1 inhibitors." Journal of Molecular Structure 1217 (October 2020): 128394. http://dx.doi.org/10.1016/j.molstruc.2020.128394.
Full textDey, Rishita, Sisir Nandi, Asmita Samadder, Aaruni Saxena, and Anil Kumar Saxena. "Exploring the Potential Inhibition of Candidate Drug Molecules for Clinical Investigation Based on their Docking or Crystallographic Analyses against M. tuberculosis Enzyme Targets." Current Topics in Medicinal Chemistry 20, no. 29 (2020): 2662–80. http://dx.doi.org/10.2174/1568026620666200903163921.
Full textVerma, Himanshu, Shalki Choudhary, Pankaj Kumar Singh, Aanchal Kashyap, and Om Silakari. "Decoding the signature of molecular mechanism involved in mutation associated resistance to 1, 3-benzothiazin-4-ones (Btzs) based DprE1 inhibitors using BTZ043 as a reference drug." Molecular Simulation 45, no. 18 (2019): 1515–23. http://dx.doi.org/10.1080/08927022.2019.1659507.
Full textGawad, Jineetkumar, and Chandrakant Bonde. "Design, synthesis and biological evaluation of some 2-(6-nitrobenzo[d]thiazol-2-ylthio)-N-benzyl-N-(6-nitrobenzo[d]thiazol-2-yl)acetamide derivatives as selective DprE1 inhibitors." Synthetic Communications 49, no. 20 (2019): 2696–708. http://dx.doi.org/10.1080/00397911.2019.1639756.
Full text., Santosh L. Kumbhare, Sampatrao B. Suryawanshi ., Vijay H. Masand ., and Suryakant B. Borul . "Consensus Pharmacophore identification for antimycobacterial DprE1 inhibitory activity of substituted hydantoins." Journal of Current Pharma Research 9, no. 2 (2019): 2721–26. http://dx.doi.org/10.33786/jcpr.2019.v09i02.002.
Full textLechartier, Benoit, Ruben C. Hartkoorn, and Stewart T. Cole. "In VitroCombination Studies of Benzothiazinone Lead Compound BTZ043 against Mycobacterium tuberculosis." Antimicrobial Agents and Chemotherapy 56, no. 11 (2012): 5790–93. http://dx.doi.org/10.1128/aac.01476-12.
Full textBaptista, Rafael, Sumana Bhowmick, Jianying Shen, and Luis A. J. Mur. "Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products." Molecules 26, no. 2 (2021): 475. http://dx.doi.org/10.3390/molecules26020475.
Full textPanda, Manoranjan, Sreekanth Ramachandran, Vasanthi Ramachandran, et al. "Discovery of Pyrazolopyridones as a Novel Class of Noncovalent DprE1 Inhibitor with Potent Anti-Mycobacterial Activity." Journal of Medicinal Chemistry 57, no. 11 (2014): 4761–71. http://dx.doi.org/10.1021/jm5002937.
Full textGao, Ya, Jinshan Xie, Ruotian Tang, et al. "Identification of a pyrimidinetrione derivative as the potent DprE1 inhibitor by structure-based virtual ligand screening." Bioorganic Chemistry 85 (April 2019): 168–78. http://dx.doi.org/10.1016/j.bioorg.2018.12.018.
Full textBolger, G., T. Michaeli, T. Martins, et al. "A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs." Molecular and Cellular Biology 13, no. 10 (1993): 6558–71. http://dx.doi.org/10.1128/mcb.13.10.6558.
Full textBolger, G., T. Michaeli, T. Martins, et al. "A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs." Molecular and Cellular Biology 13, no. 10 (1993): 6558–71. http://dx.doi.org/10.1128/mcb.13.10.6558-6571.1993.
Full textXu, Mengmeng, Yanbei Zhang, Muyun Wang, et al. "TRPV1 and TRPA1 in Lung Inflammation and Airway Hyperresponsiveness Induced by Fine Particulate Matter (PM2.5)." Oxidative Medicine and Cellular Longevity 2019 (June 2, 2019): 1–15. http://dx.doi.org/10.1155/2019/7450151.
Full textGanesh, Neenu, Arun Kumar S, Manisha Singh, Venkaraddi Mangannavar Chandrashekar, and Gurubasavaraj Veeranna Pujar. "Antitubercular Potential of Novel Isoxazole Encompassed 1, 2, 4-Triazoles: Design, Synthesis, Molecular Docking Study and Evaluation of Antitubercular Activity." Anti-Infective Agents 18 (July 11, 2020). http://dx.doi.org/10.2174/2211352518999200711163714.
Full textRobertson, Gregory T., Michelle E. Ramey, Lisa M. Massoudi, et al. "Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 inhibitors TBA-7371, PBTZ169 and OPC-167832." Antimicrobial Agents and Chemotherapy, August 9, 2021. http://dx.doi.org/10.1128/aac.00583-21.
Full textPiton, Jérémie, Anthony Vocat, Andréanne Lupien, et al. "Structure-Based Drug Design and Characterization of Sulfonyl-Piperazine Benzothiazinone Inhibitors of DprE1 from Mycobacterium tuberculosis." Antimicrobial Agents and Chemotherapy 62, no. 10 (2018). http://dx.doi.org/10.1128/aac.00681-18.
Full textXiong, Lu, Chao Gao, Yao-Jie Shi, et al. "Metabolism of SKLB-TB1001, a Potent Antituberculosis Agent, in Animals." Antimicrobial Agents and Chemotherapy 62, no. 7 (2018). http://dx.doi.org/10.1128/aac.02375-17.
Full textChikhale, Rupesh V., Amit M. Pant, Sunil S. Menghani, and Pramod B. Khedekar. "Development of dual inhibitors targeting DprE1 and AHAS for treatment of Mycobacterium tuberculosis infection." BMC Infectious Diseases 14, S3 (2014). http://dx.doi.org/10.1186/1471-2334-14-s3-e24.
Full textBonde, Chandrakant, Jineetkumar Gawad та Smita Bonde. "Insights into development of Decaprenyl-phosphoryl-β-D-ribose 2′-epimerase (DprE1) inhibitors as antitubercular agents: A state of the art review". Indian Journal of Tuberculosis, вересень 2021. http://dx.doi.org/10.1016/j.ijtb.2021.09.003.
Full textGawad, Jineetkumar, and Chandrakant Bonde. "Synthesis, biological evaluation and molecular docking studies of 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives as novel antitubercular agents: future DprE1 inhibitors." Chemistry Central Journal 12, no. 1 (2018). http://dx.doi.org/10.1186/s13065-018-0515-1.
Full text