Academic literature on the topic 'Drawbar strength'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drawbar strength.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Drawbar strength"
Schreiber, M., and H. D. Kutzbach. "Influence of soil and tire parameters on traction." Research in Agricultural Engineering 54, No. 2 (June 24, 2008): 43–49. http://dx.doi.org/10.17221/3105-rae.
Full textWang, Bin Jie, Qiang Li, and Zhi Ming Liu. "Research on the Stress Fatigue Assessment about the Hot Spot Stress on the Bogie Frame." Advanced Materials Research 328-330 (September 2011): 1281–86. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.1281.
Full textCostantini, A., M. Podberscek, and MR Nester. "Site preparation for Pinus establishment in south-eastern Queensland. 2. Effect of cultivation and cultivation width on growth." Australian Journal of Experimental Agriculture 35, no. 8 (1995): 1159. http://dx.doi.org/10.1071/ea9951159.
Full textGil, Imanol, Joseba Mendiguren, Lander Galdos, Endika Mugarra, and Eneko Saenz de Argandoña. "New drawbead tester and numerical analysis of drawbead closure force." International Journal of Advanced Manufacturing Technology 116, no. 5-6 (July 5, 2021): 1855–69. http://dx.doi.org/10.1007/s00170-021-07472-x.
Full textFUKIHARU, Hiroshi, Kazuki ISHIKAWA, and Motoyuki YOSHIDA. "Approximate Calculation of Drawbead Force for High-Strength Steeland Verification Experiment." Journal of the Japan Society for Technology of Plasticity 52, no. 610 (2011): 1203–7. http://dx.doi.org/10.9773/sosei.52.1203.
Full textYAMAMOTO, Noritaka, and Masahiro NEGISHI. "Relationship between the Anterior Drawer Displacement of Tibia and Muscle Strength." Proceedings of the JSME annual meeting 2002.1 (2002): 139–40. http://dx.doi.org/10.1299/jsmemecjo.2002.1.0_139.
Full textSirivedin, K., K. Krueger, V. Thoms, Dietmar Suesse, Roland Mueller, and M. Schatz. "Investigation of the Strain Hardening and Bauschinger Effect of Low and High Strength Steel Application in Drawbead-Tester by Experiment and Numerical Simulation." Advanced Materials Research 55-57 (August 2008): 761–64. http://dx.doi.org/10.4028/www.scientific.net/amr.55-57.761.
Full textYAMAMOTO, Noritaka, and Koji YAMAMOTO. "Effects of Training on the Anterior Drawer Displacement of Tibia and Muscle Strength." Proceedings of Conference of Tokai Branch 2003.52 (2003): 161–62. http://dx.doi.org/10.1299/jsmetokai.2003.52.161.
Full textBernhardt, Ida Stange, Helene Nissen-Lie, Christian Moltu, John McLeod, and Marit Råbu. "“It’s both a strength and a drawback.” How therapists’ personal qualities are experienced in their professional work." Psychotherapy Research 29, no. 7 (June 27, 2018): 959–70. http://dx.doi.org/10.1080/10503307.2018.1490972.
Full textJiao, Zhi Jie, Jian Ping Li, and Jie Sun. "A Pilot Rolling Mill Designed for High Strength Steels." Materials Science Forum 654-656 (June 2010): 210–13. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.210.
Full textDissertations / Theses on the topic "Drawbar strength"
Kopečný, Aleš. "Vliv pneumatik na výstupní parametry traktorů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231708.
Full textHoward, Meredith E. "The Joy of CEX: Sharpening the (t,3He) probe at 345 MeV for the charge-exchange knife drawer." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1222168015.
Full textBarros, João Ricardo Pleno Rascão de. "Análise experimental do ensaio de atrito com freio." Master's thesis, 2017. http://hdl.handle.net/10316/83344.
Full textOs aços convencionais têm vindo a ser substituídos pelos de alta resistência na produção de componentes em chapa, em particular na indústria automóvel, devido à excelente relação entre resistência e peso. De facto, a elevada resistência específica permite garantir os requisitos de segurança e de redução de peso, i.e. redução de consumo. Contudo, os aços de alta resistência apresentam uma formabilidade imprevisível com base na curva limite de estampagem, retorno elástico elevado e suscetibilidade a danos de superfície como gripagem, uma vez que a deformação plástica envolve pressões de contacto mais elevadas do que as exigidas pelos aços convencionais.De modo a compreender os mecanismos de contacto que ocorrem durante a estampagem foram propostos diferentes ensaios tribológicos, dos quais se destaca o ensaio de atrito com freio, uma vez que permite a avaliação do coeficiente de atrito e a reprodução de condições com inversão da trajetória de deformação. O objetivo principal deste trabalho é explorar a potencialidade do ensaio de atrito com freio para estudar o comportamento mecânico e tribológico dos aços de alta resistência, incluindo a geração de calor por deformação plástica e/ou atrito. O equipamento utilizado foi projetado no âmbito do projeto PTDC/EME-TME/74152/2006, de modo a possibilitar a realização dos ensaios com recurso a uma máquina de ensaios de tração. O presente trabalho envolveu a elaboração de um guia para o procedimento experimental, de modo a garantir a reprodutibilidade dos ensaios, que inclui a definição dos métodos a utilizar na aquisição do campo de temperatura, bem como no tratamento e análise dos resultados. Os resultados analisados incluem a evolução com o tempo da força do punção e da amarra e da temperatura da chapa, o perfil após retorno elástico, a pressão de contacto e a análise dos perfis de rugosidade da superfície da chapa.Os resultados mostram que o ensaio de atrito com freio permite evidenciar as variações de temperatura associadas ao processo de conformação, em particular para velocidades de escorregamento e pressões contacto elevadas. No entanto, o efeito da velocidade de escorregamento está associado aos fenómenos de transmissão de calor, o que requer uma melhor compreensão acerca dos parâmetros que influenciam estes fenómenos. O facto de o ensaio reproduzir condições de flexão-deflexão, típicas dos processos de conformação, pode constituir uma ponte interessante para a melhoria dos modelos de comportamento mecânico e de contacto com atrito utilizados atualmente na simulação numérica do processo.
Conventional steels have been replaced by Advanced High Strength Steels (AHSS) in the production of sheet components, particularly in the automotive industry, due to their excellent weight to strength ratio. In fact, the high specific strength guarantees the safety and weight reduction requirements, leading to consumption reduction. However, AHSS show unpredictable formability based on the forming limit curve, high yield strength and are susceptibility to surface damage like adhesion, since their plastic deformation involves higher contact pressures than those required by conventional steels.In order to understand the contact mechanisms that occur during sheet metal forming, different tribological tests were proposed, of which the drawbead test stands out, since it allows the evaluation of the coefficient of friction and the reproduction of forming conditions with inversion of the strain path.The main objective of this work is to explore the potential of the drawbead friction test to evaluate the mechanical and tribological behavior of AHSS, including the heat generated by plastic deformation and/or friction. The equipment used was designed as part of the PTDC/EME-TME/74152/2006 project, in order to enable the tests to be performed in a tensile test machine. The present work involved the elaboration of a guide for the experimental procedure, in order to guarantee the test reproducibility, which includes the definition of the methods to be used for acquiring the temperature field, as well as for the treatment and analysis of the results. The analyzed results include the evolution with time of the punch and grip load and the specimen’s temperature. The specimen’s profile after springback as well as the sheet surface contact pressure and roughness profiles, were also studied.The results show that the drawbead test allows measuring the temperature variations associated with the forming process, in particular for high sliding speeds and contact pressures. However, the sliding velocity effect is associated with heat transfer phenomena, which requires a better understanding of the parameters which influence these phenomena. The fact that the test reproduces bending-unbending conditions, typical of stamping processes, can be an interesting bridge for the improvement of the mechanical behavior and friction contact models currently used in the numerical simulation of these processes.
Outro - P2020-PTDC/EMS-TEC/6400/2014
Book chapters on the topic "Drawbar strength"
Jayalakshmi, S., and R. Arvind Singh. "Processing Routes, Mechanical, and Tribological Properties of Light Metal Matrix Nanocomposites." In Materials Science and Engineering, 991–1037. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1798-6.ch040.
Full textJayalakshmi, S., and R. Arvind Singh. "Processing Routes, Mechanical, and Tribological Properties of Light Metal Matrix Nanocomposites." In Processing Techniques and Tribological Behavior of Composite Materials, 1–46. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7530-8.ch001.
Full textRahim, Ku Nurhanim Ku Abdul, I. Elamvazuthi, P. Vasant, and T. Ganesan. "Robotic Assistive System." In Handbook of Research on Human-Computer Interfaces, Developments, and Applications, 444–77. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0435-1.ch018.
Full textRahim, Ku Nurhanim Ku Abdul, I. Elamvazuthi, P. Vasant, and T. Ganesan. "Robotic Assistive System." In Robotic Systems, 1688–720. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1754-3.ch081.
Full textConference papers on the topic "Drawbar strength"
Gay, Jasmine, Carl Moore, Marquese Pollard, Tarik Dickens, and Hui Wang. "The Effect of Time Delay on 3D Printed Part Strength." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11790.
Full textReyes, Marta C. T., Peter Kaleff, Antonio C. Fernandes, and Marcos D. A. S. Ferreira. "Conversions vs. Newbuildings: General Arrangement and Strength Issues in FPSO Design." In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67364.
Full textChoi, Sung R., and John P. Gyekenyesi. "Power Law Versus Exponential Form of Slow Crack Growth of Advanced Structural Ceramics: Dynamic Fatigue." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30506.
Full textLiang, Fei, Jihua Gou, He Shen, Yunjun Xu, and Bob Mabbott. "Carbon Fiber Reinforced Shape Memory Nanocomposites Incorporated With Highly Conductive Carbon Nanopaper for Electro Actuation." In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3188.
Full textKornegay, John, Daniel Depperschmidt, and Ajay K. Agrawal. "Passive Control of Thermo-Acoustic Instability in Different Length Combustors Using a High-Strength Metallic Porous Insert." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43890.
Full textZheng, Zhuoyuan, Yanwen Xu, Bo Chen, and Pingfeng Wang. "Gaussian Process Based Crack Initiation Modeling for Design of Battery Anode Materials." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97547.
Full textVeljkovic, Ana, Valter Carvelli, Sandor Solyom, György L. Balázs, and Mohammadali Rezazadeh. "Modelling the temperature effects at the interface between GFRP bar and concrete." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1065.
Full textGribniak, Viktor, Aleksandr K. Arnautov, and Arvydas Rimkus. "Development of an anchorage prototype for CFRP stress-ribbon systems using 3D printing technique." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.138.
Full textHuang, Shujuan, Amit Gupta, and Diana-Andra Borca-Tasciuc. "Sources of Experimental Errors in Specific Absorption Rate Measurement of Magnetic Nanoparticles." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30796.
Full textHo, Y. K., G. J. Walker, and P. Stow. "Boundary Layer and Navier-Stokes Analysis of a NASA Controlled-Diffusion Compressor Blade." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-236.
Full text