Contents
Academic literature on the topic 'Dresdner Elbtal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dresdner Elbtal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dresdner Elbtal"
von Schorlemer, Sabine. "Das Dresdner Elbtal kein Welterbe: Blamage für Deutschland." Vereinte Nationen 57, no. 4 (2009): 163. http://dx.doi.org/10.5771/0042-384x-2009-4-163.
Full textOlbricht, Klaus. "Erwartungen an den Erdbeerzüchter im Wandel der Zeit." AHA! Miszellen zur Gartengeschichte und Gartendenkmalpflege, no. 5 (February 8, 2019): 56–63. http://dx.doi.org/10.25531/aha.vol5.p56-63.
Full textQuermann, Andreas. "Der Maler Robert Sterl und sein Garten in Naundorf." AHA! Miszellen zur Gartengeschichte und Gartendenkmalpflege, no. 1 (September 15, 2020): 28–37. http://dx.doi.org/10.25531/aha.vol1.p28-37.
Full textDissertations / Theses on the topic "Dresdner Elbtal"
Drude, Matthias. "wELten ERleBEn für Flöte, Violoncello und Klavier (2009)." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1237405411915-37535.
Full textGottschalk, Thomas. "Beitrag zur Grundwassermengen- und Wärmebewirtschaftung unter dem Aspekt sich verändernder anthropogener und natürlicher Randbedingungen am Beispiel des Dresdner Elbtals." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159788.
Full textClimate change, the rise of energetic groundwater use and the compact city structures cause an impact to the groundwater temperatures, groundwater quantity balance and the groundwater table. Today impacts of anthropogenic influences like deep basements of big buildings and the infiltration of heated or cooled water from groundwater using heat pumps were already detected. The target of this dissertation has been the investigation of these natural and anthropogenic effects in Dresden and planning steps for a groundwater temperature management. Basing on existing data of groundwater use and recharge in Dresden, a modelling of the recent and future system status scenarios with the three-dimensional model has been done. According to the latest results of the regional climate model WETTREG 2010 and a work by Tesch about the groundwater recharge until the end of the 21st Century, a significant reduction in resources are expected. Partly the balance deficit will be regulated by bank filtration. It is an important fact that the maximum discharge rate, which is larger than the permitted real use, has a bigger influence in the balance than the lower groundwater recharge. The water catchment to supply inhabitants and industrial units seems to be secure in the future. Heat impacts to the groundwater were detected by measurements in 2011 and 2012. With the results of these measurements anomalies of the temperature field and the emission points of heat inputs were distinctly located. Based on the investigation of three subareas, a higher level of groundwater temperatures in the city center (subarea Altstadt) compared to the other subareas (Übigau and Jogannstadt/Striesen) was detected. The reason of this fact is the multitude of big buildings which are reaching the aquifer. The investigation has also showed the relationship between the quantity of the measuring points and the quality of the results. In the subarea Altstadt an identification of heat inputs could be very well found. The results in the other subareas with a lower amount of sampling points have not the same level of validity. Information from time series over two years about soil and air column temperatures of a close-by groundwater measurement point were analyzed. The research documents the heat transport from the air to the groundwater with a retardation of the extreme values along about three months. With this analysis, the method of measurement air column temperatures in groundwater measurement points aiming to identify the vertical soil temperature distribution could be attested. The measured heat transport in the unsaturated soil was reproduced with the HYDRUS 1-D program. After this, future scenarios on the basic of WETTREG 2010 results were computed. The findings are higher soil temperature levels in the future with higher alteration signals in the minimum than in the maximum values. The modeling results have also showed a significant difference in the investigated time series (2021 - 2050 and 2071 - 2100). The higher temperatures in winter could be a chance to use this heat. In the summer it could partly affect parts of the water supply. Furthermore the findings implicate higher ground water temperatures in the future. To investigate heat impacts to the ground water concept, models of MIX (2013) were used for the heat transport in the aquifer which combines the heat impact of buildings and heat pumps with the natural air temperature rise. The WETTREG2010 result (air temperatures), heat inputs and possible new energetic groundwater use systems were implemented in the conceptual models. Results of the modeling has showed that the expected rise of the ground water temperature will be more significant for the less anthropogenic influenced parts of the urban aquifer than the parts with high initial level of heat pollution. In the model results, the temperatures do not reach mean values of 20°C (LAWA guideline). An important finding is also that these models could be used for a more efficient groundwater heat management and for the evaluation of energetic groundwater projects of its use. Because of the recent stand of research on the impacts of higher ground water temperatures to the ground water quality, a need for action can’t be indicated at the moment. At present there are no guideline values neither standard of law for the energetic use of groundwater. This facts and the question of heat recycling from the urban aquifer are fields for the groundwater management in the future
Gottschalk, Thomas [Verfasser], Rudolf [Akademischer Betreuer] Liedl, Peter [Akademischer Betreuer] Krebs, and Mario [Akademischer Betreuer] Schirmer. "Beitrag zur Grundwassermengen- und Wärmebewirtschaftung unter dem Aspekt sich verändernder anthropogener und natürlicher Randbedingungen am Beispiel des Dresdner Elbtals / Thomas Gottschalk. Gutachter: Rudolf Liedl ; Peter Krebs ; Mario Schirmer. Betreuer: Rudolf Liedl." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/1069092940/34.
Full textGottschalk, Thomas. "Beitrag zur Grundwassermengen- und Wärmebewirtschaftung unter dem Aspekt sich verändernder anthropogener und natürlicher Randbedingungen am Beispiel des Dresdner Elbtals." Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28501.
Full textClimate change, the rise of energetic groundwater use and the compact city structures cause an impact to the groundwater temperatures, groundwater quantity balance and the groundwater table. Today impacts of anthropogenic influences like deep basements of big buildings and the infiltration of heated or cooled water from groundwater using heat pumps were already detected. The target of this dissertation has been the investigation of these natural and anthropogenic effects in Dresden and planning steps for a groundwater temperature management. Basing on existing data of groundwater use and recharge in Dresden, a modelling of the recent and future system status scenarios with the three-dimensional model has been done. According to the latest results of the regional climate model WETTREG 2010 and a work by Tesch about the groundwater recharge until the end of the 21st Century, a significant reduction in resources are expected. Partly the balance deficit will be regulated by bank filtration. It is an important fact that the maximum discharge rate, which is larger than the permitted real use, has a bigger influence in the balance than the lower groundwater recharge. The water catchment to supply inhabitants and industrial units seems to be secure in the future. Heat impacts to the groundwater were detected by measurements in 2011 and 2012. With the results of these measurements anomalies of the temperature field and the emission points of heat inputs were distinctly located. Based on the investigation of three subareas, a higher level of groundwater temperatures in the city center (subarea Altstadt) compared to the other subareas (Übigau and Jogannstadt/Striesen) was detected. The reason of this fact is the multitude of big buildings which are reaching the aquifer. The investigation has also showed the relationship between the quantity of the measuring points and the quality of the results. In the subarea Altstadt an identification of heat inputs could be very well found. The results in the other subareas with a lower amount of sampling points have not the same level of validity. Information from time series over two years about soil and air column temperatures of a close-by groundwater measurement point were analyzed. The research documents the heat transport from the air to the groundwater with a retardation of the extreme values along about three months. With this analysis, the method of measurement air column temperatures in groundwater measurement points aiming to identify the vertical soil temperature distribution could be attested. The measured heat transport in the unsaturated soil was reproduced with the HYDRUS 1-D program. After this, future scenarios on the basic of WETTREG 2010 results were computed. The findings are higher soil temperature levels in the future with higher alteration signals in the minimum than in the maximum values. The modeling results have also showed a significant difference in the investigated time series (2021 - 2050 and 2071 - 2100). The higher temperatures in winter could be a chance to use this heat. In the summer it could partly affect parts of the water supply. Furthermore the findings implicate higher ground water temperatures in the future. To investigate heat impacts to the ground water concept, models of MIX (2013) were used for the heat transport in the aquifer which combines the heat impact of buildings and heat pumps with the natural air temperature rise. The WETTREG2010 result (air temperatures), heat inputs and possible new energetic groundwater use systems were implemented in the conceptual models. Results of the modeling has showed that the expected rise of the ground water temperature will be more significant for the less anthropogenic influenced parts of the urban aquifer than the parts with high initial level of heat pollution. In the model results, the temperatures do not reach mean values of 20°C (LAWA guideline). An important finding is also that these models could be used for a more efficient groundwater heat management and for the evaluation of energetic groundwater projects of its use. Because of the recent stand of research on the impacts of higher ground water temperatures to the ground water quality, a need for action can’t be indicated at the moment. At present there are no guideline values neither standard of law for the energetic use of groundwater. This facts and the question of heat recycling from the urban aquifer are fields for the groundwater management in the future.:1 EINLEITUNG 1 1.1 Rezente und erwartete künftige Grundwasserhaushaltssituation 1 1.2 Mögliche Auswirkungen natürlicher und anthropogener Wärmeeinträge auf die zukünftige Grundwassernutzung 2 2 ZIEL UND STRUKTUR DER ARBEIT 3 2.1 Zielstellung der Arbeit 3 2.2 Struktur der Arbeit 3 3 STAND DER FORSCHUNG 5 4 THEORETISCHE GRUNDLAGEN, RELEVANTE BEGRIFFE UND GLEICHUNGEN 9 4.1 Ungesättigte Bodenzone 9 4.2 Grundwasserleiter und Grundwasserhemmer 9 4.3 Grundwasser 9 4.4 Wasserbewegung in der ungesättigten Zone 10 4.5 Grundwasserströmung in Porengrundwasserleitern 10 4.6 Grundwasserbewirtschaftung 12 4.7 Grundwasservorsorge und Grundwasserschutz 13 4.8 Grundwassernutzungen 13 4.9 Modell 13 4.10 Quellen und Senken 15 4.11 Kalibrierung und Validierung 16 4.12 Epignose, Prognose und Projektion 18 4.13 Temperaturanomalie im Grundwasser 18 4.14 Grundlagen des Wärmetransports in porösen Medien 19 5 METHODIK DER BEARBEITUNG 23 5.1 Auswertung von rezenten Daten zur Grundwassertemperatur 23 5.2 Messtechnische Erfassung von Bodentemperaturen 23 5.2.1 Messstellenauswahl – Methodik der Standortanalyse 23 5.2.2 Konzept der Pilotmessstelle 25 5.3 Szenarioberechnungen mit dem Grundwassermodell Dresden 27 5.3.1 Grundwassermodell und Konzeption der modelltechnischen Arbeiten 27 5.3.1.1 Das Grundwassermodell Dresden 27 5.3.1.2 Ergänzung der Methodik zur Ausweisung zukünftiger Grundwasserüberschuss-, gleichgewichts und defizitgebiete 29 5.3.1.3 Bilanzierung der Grundwasservolumenströme 35 5.3.1.4 Berechnung maximaler Grundwasserflurabstände 36 5.3.2 Beschreibung der Szenarien 36 5.4 Modellierung des Wärmetransports in der Aerationszone 36 5.4.1 Modellvorstellung 36 5.4.2 Beschreibung der Szenarien 38 5.5 Konzeptmodelle zur Berechnung des Wärmetransports im Grundwasser 38 5.6 Untersuchungsgebiet 39 5.6.1 Geologische und hydrogeologische Einordnung 39 5.6.2 Überblick zur urbanen Grundwassernutzung 40 5.6.2.1 Trink- und Brauchwassernutzung 40 5.6.2.2 Energetische Grundwassernutzung 40 6 GRUNDWASSER- UND BODENTEMPERATUREN 43 6.1 Temperaturbezogene großräumige Grundwasserüberwachung 43 6.2 Grundwassertemperaturen und Temperaturanomalien 45 6.2.1 Grundwassertemperaturen 45 6.2.2 Ursachen von Temperaturunterschieden und -anomalien 46 6.2.2.1 Temperaturunterschiede in der Innenstadt und am Stadtrand 46 6.2.2.2 Natürliche Temperaturanomalien 47 6.2.2.3 Anthropogene Temperaturanomalien 47 6.2.3 Bewertung der Ergebnisse und Schlussfolgerungen 55 6.3 Messtechnische Erfassung der Wärmemigration in der Aerationszone 56 6.3.1 Zielstellung der Messungen 56 6.3.2 Auswahl des Messstellenstandortes 57 6.3.3 Durchführung der Messungen 58 6.3.4 Ergebnisse der Messungen 59 6.3.5 Vergleichbarkeit der Messergebnisse in Boden und Luftsäule 66 6.3.6 Weitere Messungen an Grundwassermessstellen 67 6.3.7 Bewertung der Ergebnisse und Schlussfolgerungen 70 7 MODELLIERUNG DER WASSERSTRÖMUNG UND DES WÄRMETRANSPORTS 71 7.1 Zielsetzung der modelltechnischen Arbeiten 71 7.2 Modellierung der Grundwasserströmung 71 7.2.1 Grundwassernutzung für den Epignose- und Projektionszeitraum 71 7.2.2 Aktualisierung der Eingangsgröße Grundwasserneubildung für den Epignose- und Projektionszeitraum 71 7.2.3 Ableitung der Größe rezenter und künftiger Randzuflüsse aus der Grundwasserneubildung 74 7.2.4 Rohrnetzverluste 74 7.2.5 Fließgewässer 75 7.2.6 Simulation der Grundwasserströmung mit dem Grundwassermodell 76 7.2.7 Güte der Modellanpassung 77 7.2.8 Ergebnisse der Szenarienberechnung 78 7.2.8.1 Abgrenzung von Grundwasserbilanzgebieten 78 7.2.8.2 Grundwasserbilanzen 79 7.2.8.3 Grundwasserflurabstände 82 7.2.9 Bewertung der Ergebnisse und Schlussfolgerungen 85 7.3 Modellierung des Wärmetransports 86 7.3.1 Teilmodellansatz 86 7.3.2 Berechnung des vertikalen Wärmetransports in der Aerationszone mit HYDRUS 1D 86 7.3.2.1 Epignose 86 7.3.3 Projektionen 91 7.3.3.1 Datenbasis der Modellierung 91 7.3.3.2 Ergebnisse 94 7.3.4 Bewertung der Ergebnisse und Schlussfolgerungen 96 7.4 Berechnung des Wärmetransports im Grundwasser 97 7.4.1 MODFLOW/SEAWAT – Konzeptmodelle 97 7.4.1.1 Szenarienberechnung 100 7.4.1.2 Konzeptmodell „Altstadt“ 100 7.4.1.3 Konzeptmodell „Elbbogen Übigau“ 102 7.4.1.4 Konzeptmodell „Johannstadt/Striesen“ 102 7.4.2 Ergebnisse der Modellierung 103 7.4.2.1 Konzeptmodell „Altstadt“ 103 7.4.2.2 Konzeptmodell „Elbbogen Übigau“ 106 7.4.2.3 Konzeptmodell „Johannstadt/Striesen“ 107 7.4.3 Bewertung der Ergebnisse 108 7.4.3.1 Einschätzung der Ergebnisse und Nutzung der Modelle 108 7.4.3.2 Beschränkungen der Modellaussagen und Schritte zum Detailmodell 109 8 MÖGLICHE MAßNAHMEN UND ANPASSUNGSOPTIONEN 110 8.1 Grundwassermenge 110 8.2 Grundwasserwärmehaushalt 110 8.3 Grundwasserwärmemanagement 111 9 ZUSAMMENFASSUNG 112 10 LITERATURVERZEICHNIS 114
Books on the topic "Dresdner Elbtal"
Grunert, Siegfried, and Jan-Michael Lange. Beiträge zur Geologie des Elbtales bei Dresden. Dresden: Staatliche Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, 2007.
Find full textVerkehrsverlag, Reise und. Euro-Grossraumstadtatlas 1:20 000: Dresden : das Elbtal von Meissen bis Bad Schandau. Berlin: RV Reise -und Verkehrsverlag, 1992.
Find full text