Journal articles on the topic 'Drift-diffusion model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Drift-diffusion model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fudenberg, Drew, Whitney Newey, Philipp Strack, and Tomasz Strzalecki. "Testing the drift-diffusion model." Proceedings of the National Academy of Sciences 117, no. 52 (2020): 33141–48. http://dx.doi.org/10.1073/pnas.2011446117.
Full textGoncharenko, M., and L. Khilkova. "Homogenized Model of Non-Stationary Diffusion in Porous Media with the Drift." Zurnal matematiceskoj fiziki, analiza, geometrii 13, no. 2 (2017): 154–72. http://dx.doi.org/10.15407/mag13.02.154.
Full textFisher, Geoffrey. "A multiattribute attentional drift diffusion model." Organizational Behavior and Human Decision Processes 165 (July 2021): 167–82. http://dx.doi.org/10.1016/j.obhdp.2021.04.004.
Full textChen, Xiu Qing, and Li Chen. "The bipolar quantum drift-diffusion model." Acta Mathematica Sinica, English Series 25, no. 4 (2009): 617–38. http://dx.doi.org/10.1007/s10114-009-7171-2.
Full textHosseini, Seyed Ebrahim, Rahim Faez, and Hadi Sadoghi Yazdi. "Quantum Corrections in the Drift-Diffusion Model." Japanese Journal of Applied Physics 46, no. 11 (2007): 7247–50. http://dx.doi.org/10.1143/jjap.46.7247.
Full textAcharyya, Aritra, Subhashri Chatterjee, Jayabrata Goswami, Suranjana Banerjee, and J. P. Banerjee. "Quantum drift-diffusion model for IMPATT devices." Journal of Computational Electronics 13, no. 3 (2014): 739–52. http://dx.doi.org/10.1007/s10825-014-0595-7.
Full textBen Abdallah, N., and A. Unterreiter. "On the stationary quantum drift-diffusion model." Zeitschrift für angewandte Mathematik und Physik 49, no. 2 (1998): 251. http://dx.doi.org/10.1007/s000330050218.
Full textStoiljković, V., M. J. Howes, and V. Postoyalko. "Nonisothermal drift‐diffusion model of avalanche diodes." Journal of Applied Physics 72, no. 11 (1992): 5493–95. http://dx.doi.org/10.1063/1.351943.
Full textLi, Xiusheng, Lin’an Yang, and Xiaohua Ma. "Comparison of drift–diffusion model and hydrodynamic carrier transport model for simulation of GaN-based IMPATT diodes." Modern Physics Letters B 33, no. 13 (2019): 1950156. http://dx.doi.org/10.1142/s0217984919501562.
Full textLiang, Jin. "On a Nonlinear Integrodifferential Drift-Diffusion Semiconductor Model." SIAM Journal on Mathematical Analysis 25, no. 5 (1994): 1375–92. http://dx.doi.org/10.1137/s0036141092238266.
Full textLillo, Fabrizio, and Rosario N. Mantegna. "Drift-controlled anomalous diffusion: A solvable Gaussian model." Physical Review E 61, no. 5 (2000): R4675—R4678. http://dx.doi.org/10.1103/physreve.61.r4675.
Full textGallego, Samy, and Florian Méhats. "Entropic Discretization of a Quantum Drift-Diffusion Model." SIAM Journal on Numerical Analysis 43, no. 5 (2005): 1828–49. http://dx.doi.org/10.1137/040610556.
Full textZhou, Likai. "Double-smoothed drift estimation of jump-diffusion model." Communications in Statistics - Theory and Methods 46, no. 8 (2016): 4137–49. http://dx.doi.org/10.1080/03610926.2015.1078479.
Full textRefaat, Tamer F. "Drift-diffusion model for reach-through avalanche photodiodes." Optical Engineering 40, no. 9 (2001): 1928. http://dx.doi.org/10.1117/1.1396655.
Full textBen Abdallah, Naoufel, Florian Méhats, and Nicolas Vauchelet. "Analysis of a Drift-Diffusion-Schrödinger–Poisson model." Comptes Rendus Mathematique 335, no. 12 (2002): 1007–12. http://dx.doi.org/10.1016/s1631-073x(02)02612-2.
Full textNguyen, Khanh P., Krešimir Josić, and Zachary P. Kilpatrick. "Optimizing sequential decisions in the drift–diffusion model." Journal of Mathematical Psychology 88 (February 2019): 32–47. http://dx.doi.org/10.1016/j.jmp.2018.11.001.
Full textQiangchang, Ju, and Chen Li. "Semiclassical limit for bipolar quantum drift-diffusion model." Acta Mathematica Scientia 29, no. 2 (2009): 285–93. http://dx.doi.org/10.1016/s0252-9602(09)60029-1.
Full textGallego, Samy, and Florian Méhats. "Numerical approximation of a quantum drift-diffusion model." Comptes Rendus Mathematique 339, no. 7 (2004): 519–24. http://dx.doi.org/10.1016/j.crma.2004.07.022.
Full textPinnau, René. "A REVIEW ON THE QUANTUM DRIFT DIFFUSION MODEL." Transport Theory and Statistical Physics 31, no. 4-6 (2002): 367–95. http://dx.doi.org/10.1081/tt-120015506.
Full textAbouchabaka, Jaafar, Rajae Aboulaïch, Abdeljalil Nachaoui, and Ali Souissi. "A decoupled algorithm for a drift-diffusion model." Mathematical Methods in the Applied Sciences 28, no. 11 (2005): 1291–313. http://dx.doi.org/10.1002/mma.613.
Full textXue, Jingming, Mary A. Peterson, and Robert C. Wilson. "A drift diffusion model of figure-ground perception." Journal of Vision 22, no. 14 (2022): 4205. http://dx.doi.org/10.1167/jov.22.14.4205.
Full textLee, Kwang-Ho, Tag-Gyeom Kim, and Yong-Hwan Cho. "Influence of Tidal Current, Wind, and Wave in Hebei Spirit Oil Spill Modeling." Journal of Marine Science and Engineering 8, no. 2 (2020): 69. http://dx.doi.org/10.3390/jmse8020069.
Full textJüngel, Ansgar, and Paola Pietra. "A Discretization Scheme for a Quasi-Hydrodynamic Semiconductor Model." Mathematical Models and Methods in Applied Sciences 07, no. 07 (1997): 935–55. http://dx.doi.org/10.1142/s0218202597000475.
Full textPisarenko, Ivan, and Eugeny Ryndin. "Drift-Diffusion Simulation of High-Speed Optoelectronic Devices." Electronics 8, no. 1 (2019): 106. http://dx.doi.org/10.3390/electronics8010106.
Full textHübner, Ronald, and Thomas Pelzer. "Improving parameter recovery for conflict drift-diffusion models." Behavior Research Methods 52, no. 5 (2020): 1848–66. http://dx.doi.org/10.3758/s13428-020-01366-8.
Full textJüngel, A. "Numerical Approximation of a Drift-Diffusion Model for Semiconductors with Nonlinear Diffusion." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 75, no. 10 (1995): 783–99. http://dx.doi.org/10.1002/zamm.19950751016.
Full textJiang, George J., and John L. Knight. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model." Econometric Theory 13, no. 5 (1997): 615–45. http://dx.doi.org/10.1017/s0266466600006101.
Full textNISHIBATA, SHINYA, NAOTAKA SHIGETA, and MASAHIRO SUZUKI. "ASYMPTOTIC BEHAVIORS AND CLASSICAL LIMITS OF SOLUTIONS TO A QUANTUM DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS." Mathematical Models and Methods in Applied Sciences 20, no. 06 (2010): 909–36. http://dx.doi.org/10.1142/s0218202510004477.
Full textARABSHAHI, H., REZAEE ROKN-ABADI, and S. GOLAFROZ. "COMPARISON OF TWO-VALLEY HYDRODYNAMIC MODEL IN BULK SiC AND ZnO MATERIALS." Modern Physics Letters B 23, no. 23 (2009): 2807–18. http://dx.doi.org/10.1142/s0217984909020916.
Full textDong, Jian Wei. "On the Multidimensional Bipolar Isothermal Quantum Drift-Diffusion Model." Advanced Materials Research 466-467 (February 2012): 186–90. http://dx.doi.org/10.4028/www.scientific.net/amr.466-467.186.
Full textYang, Yi, Robert A. Nawrocki, Richard M. Voyles, and Haiyan H. Zhang. "A Fractional Drift Diffusion Model for Organic Semiconductor Devices." Computers, Materials & Continua 69, no. 1 (2021): 237–66. http://dx.doi.org/10.32604/cmc.2021.017439.
Full textNagatani, Takashi. "Growth model with phase transition: Drift-diffusion-limited aggregation." Physical Review A 39, no. 1 (1989): 438–41. http://dx.doi.org/10.1103/physreva.39.438.
Full textPinnau, René. "Numerical approximation of the transient quantum drift diffusion model." Nonlinear Analysis: Theory, Methods & Applications 47, no. 9 (2001): 5849–60. http://dx.doi.org/10.1016/s0362-546x(01)00706-4.
Full textChen, Xiuqing, Li Chen, and Huaiyu Jian. "The Dirichlet problem of the quantum drift-diffusion model." Nonlinear Analysis: Theory, Methods & Applications 69, no. 9 (2008): 3084–92. http://dx.doi.org/10.1016/j.na.2007.09.003.
Full textPisarenko, I., E. Ryndin, and M. Denisenko. "Diffusion-drift model of injection lasers with double heterostructure." Journal of Physics: Conference Series 586 (January 30, 2015): 012015. http://dx.doi.org/10.1088/1742-6596/586/1/012015.
Full textReznik, D., and W. Gerlach. "Generalised drift-diffusion model of bipolar transport in semiconductors." Electrical Engineering 79, no. 3 (1996): 219–25. http://dx.doi.org/10.1007/bf01232790.
Full textFriedman, Avner, and Wenxiong Liu. "An augmented drift-diffusion model in a semiconductor device." Journal of Mathematical Analysis and Applications 168, no. 2 (1992): 401–12. http://dx.doi.org/10.1016/0022-247x(92)90168-d.
Full textChen, Xiuqing, and Li Chen. "Initial time layer problem for quantum drift-diffusion model." Journal of Mathematical Analysis and Applications 343, no. 1 (2008): 64–80. http://dx.doi.org/10.1016/j.jmaa.2008.01.015.
Full textChen, Qiang, and Ping Guan. "Weak solutions to the stationary quantum drift-diffusion model." Journal of Mathematical Analysis and Applications 359, no. 2 (2009): 666–73. http://dx.doi.org/10.1016/j.jmaa.2009.06.030.
Full textBrauer, Elizabeth J., Marek Turowski, and James M. McDonough. "Additive Decomposition Applied to the Semiconductor Drift-Diffusion Model." VLSI Design 8, no. 1-4 (1998): 393–99. http://dx.doi.org/10.1155/1998/96170.
Full textYamada, Y. "Energy transport drift-diffusion model for submicrometer GaAs MESFETs." Microelectronics Journal 28, no. 5 (1997): 561–69. http://dx.doi.org/10.1016/s0026-2692(96)00101-2.
Full textXu, Xiangsheng. "A drift-diffusion model for semiconductors with temperature effects." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 139, no. 5 (2009): 1101–19. http://dx.doi.org/10.1017/s0308210507001187.
Full textLuzardo, Andre, Elliot A. Ludvig, and François Rivest. "An adaptive drift-diffusion model of interval timing dynamics." Behavioural Processes 95 (May 2013): 90–99. http://dx.doi.org/10.1016/j.beproc.2013.02.003.
Full textBaro, M., N. Ben Abdallah, P. Degond, and A. El Ayyadi. "A 1D coupled Schrödinger drift-diffusion model including collisions." Journal of Computational Physics 203, no. 1 (2005): 129–53. http://dx.doi.org/10.1016/j.jcp.2004.08.009.
Full textUnterreiter, A., and S. Volkwein. "Optimal Control of the Stationary Quantum Drift-Diffusion Model." Communications in Mathematical Sciences 5, no. 1 (2007): 85–111. http://dx.doi.org/10.4310/cms.2007.v5.n1.a4.
Full textKaramarković, J. P., and N. D. Janković. "Modification of drift-diffusion model for short base transport." Electronics Letters 36, no. 24 (2000): 2047. http://dx.doi.org/10.1049/el:20001411.
Full textFisher, Geoffrey. "An attentional drift diffusion model over binary-attribute choice." Cognition 168 (November 2017): 34–45. http://dx.doi.org/10.1016/j.cognition.2017.06.007.
Full textJu, Qiang Chang. "The semiclassical limit in the quantum drift-diffusion model." Acta Mathematica Sinica, English Series 25, no. 2 (2009): 253–64. http://dx.doi.org/10.1007/s10114-008-7098-z.
Full textFang, W. F., and K. Itoi. "On the Time-Dependent Drift-Diffusion Model for Semiconductors." Journal of Differential Equations 117, no. 2 (1995): 245–80. http://dx.doi.org/10.1006/jdeq.1995.1054.
Full textChau, Edwin, Carolyn A. Murray, and Ladan Shams. "Hierarchical drift diffusion modeling uncovers multisensory benefit in numerosity discrimination tasks." PeerJ 9 (October 27, 2021): e12273. http://dx.doi.org/10.7717/peerj.12273.
Full text