Academic literature on the topic 'Driving test of vehicle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Driving test of vehicle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Driving test of vehicle"
Zhao, Danchen, Yaochen Li, and Yuehu Liu. "Simulating Dynamic Driving Behavior in Simulation Test for Unmanned Vehicles via Multi-Sensor Data." Sensors 19, no. 7 (April 8, 2019): 1670. http://dx.doi.org/10.3390/s19071670.
Full textMontazeri-Gh, M., A. Fotouhi, and A. Naderpour. "Driving patterns clustering based on driving features analysis." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 6 (May 25, 2011): 1301–17. http://dx.doi.org/10.1177/2041298310392599.
Full textLi, Xiao, Zhifei Pang, and Hongxue Zhao. "Research on Construction Method of Urban Driving Cycle of Pure Electric Vehicle." E3S Web of Conferences 252 (2021): 02064. http://dx.doi.org/10.1051/e3sconf/202125202064.
Full textLee, Jae-Gil, Kwan Lee, and Seoung-Ho Ryu. "Vehicle Politeness in Driving Situations." Future Internet 11, no. 2 (February 16, 2019): 48. http://dx.doi.org/10.3390/fi11020048.
Full textLyu, Meng, Xiaofeng Bao, Yunjing Wang, and Ronald Matthews. "Analysis of emissions from various driving cycles based on real driving measurements obtained in a high-altitude city." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 6 (February 7, 2020): 1563–71. http://dx.doi.org/10.1177/0954407019898959.
Full textBabangida, Aminu, and Péter Tamás Szemes. "Electric Vehicle Modelling and Simulation of a Light Commercial Vehicle Using PMSM Propulsion." Hungarian Journal of Industry and Chemistry 49, no. 1 (September 21, 2021): 37–46. http://dx.doi.org/10.33927/hjic-2021-06.
Full textChen, Gang, and Wei-gong Zhang. "Design of prototype simulation system for driving performance of electromagnetic unmanned robot applied to automotive test." Industrial Robot: An International Journal 42, no. 1 (January 19, 2015): 74–82. http://dx.doi.org/10.1108/ir-06-2014-0353.
Full textRahman, S. M. Ashrafur, I. M. Rizwanul Fattah, Hwai Chyuan Ong, Fajle Rabbi Ashik, Mohammad Mahmudul Hassan, Md Tausif Murshed, Md Ashraful Imran, et al. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles." Energies 14, no. 14 (July 12, 2021): 4195. http://dx.doi.org/10.3390/en14144195.
Full textHe, Ping, Zhu Rong Dong, Cheng Wei Han, and Song Hua Hu. "Design and Test Development of a Comprehensive Performance Test Bench for Electric Wheel." Applied Mechanics and Materials 644-650 (September 2014): 817–22. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.817.
Full textZhao, Jian Zhu, Lu Zhang, Guo Ye Wang, Yan Chen, and Zhong Fu Zhang. "Safe Test System for the Turning Vehicles ESP Control Performances on the Lateral Restricted Vehicle System." Advanced Materials Research 694-697 (May 2013): 1334–39. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.1334.
Full textDissertations / Theses on the topic "Driving test of vehicle"
Khan, Utsav, and Andrea Bianchi. "Steering system development using test rig and driving simulators." Thesis, KTH, Fordonsdynamik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265626.
Full textKonventionella modellbaserade utvecklingsmetoder såsom Model-in-Loop (MiL) och Software-in-Loop (SiL) har använts inom utvecklingen av elektriskt servoassisterad styrning (Elec-tric Power Assisted Steering, EPAS) under de senaste åren, men när det handlar om en fysisk motor och kommunikation huvudsakligen med fordonets nätverk, så sker utvecklingen oftast med verkliga fordonstest med nödvändig justering. Syftet och målet med detta examensarbete är att utveckla en HiL-rigg (Hardware-in-Loop) som involverar det verkliga EPAS systemet och Driver-in-Loop (DiL) med hjälp av en statisk körsimulator, där fokus ligger på att studera prestandan för HiL-rigg och dess förmåga att återskapa styrrelaterade Objektiva Mätetal (OM). I detta examensarbete består den inledande delen av studien av EPAS-system, HiL-test-riggar, Objektiva mätetal samt realtidssimuleringsmiljö. Den andra delen består av modellerings- och verifieringsmetoder för ett EPAS-system tillsammans med HiL-testriggar med fordonsmodeller med hög och låg trovärdighet och styrsystem i MiL- och SiL miljöer. Då detta examensarbete involverar en HiL-testrigg har vissa praktiska problem uppstått. Bland problemen var implementering och HiL-arkitektur, dataöverföring mellan testriggen och realtidssimulering med rest-bus simulering. Flertalet problem med en HiL-testrigg och dess begränsningar har behandlats: 1. EPAS-brus i vridmomentmätning; 2. Sys-tembandbreddsbegränsning från regler-och hårdvaruperspektiv; 3. Simuleringsmodell; 4. Systemfördröjningar och ojämnt vridmoment från elmotorn. På grund av dessa nackdelar är testscenarierna för närvarande begränsade till fordonsmanövrar med låga till mellanfrekvensområden. OM-värden från HiL-simuleringar stämmer överens med verkliga testdata, men den subjektiva styrkänslan kan fortfarande kännas ganska annorlunda vilket inte är representerat av OMs. Dessutom kan systemet förbättras genom att referens- och styrsignaler filtreras genom implementering av lågpassfilter eller observatörer, samt med olika servoreglertrategier och kompensatorer. När systemet är fullt funktionellt kan HiL simuleringen vara användbar vid utvecklingen av styrsystemet i ett tidigt skede, då det är känsligt för förändringar likt ett verkligt fordon under testning.
Romera, Orengo Javier. "Analysis of vehicle ergonomics using a driving test routine in the DHM tool IPS IMMA." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19055.
Full textPatil, Mayur. "Test Scenario Development Process and Software-in-the-Loop Testing for Automated Driving Systems." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574794282029419.
Full textMiller, Erik. "Implementation of a Scale Semi-Autonomous Platoon to Test Control Theory Attacks." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2057.
Full textCholasta, Lukáš. "Měření a porovnání jízdních parametrů vozidel v různých jízdních režimech." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-232481.
Full textFumero, Aguiló María C. "Development of Guidelines for In-Vehicle Information Presentation: Text vs. Speech." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/10067.
Full textMaster of Science
Naujoks, Frederik, Sebastian Hergeth, Katharina Wiedemann, Nadja Schömig, Yannick Forster, and Andreas Keinath. "Test procedure for evaluating the human-machine interface of vehicles with automated driving systems." Taylor & Francis, 2019. https://publish.fid-move.qucosa.de/id/qucosa%3A72242.
Full textWahlberg, Linnea. "Eyes on the Road! : Off-Road Glance Durations when Performing Tasks on In-Vehicle Systems while Driving in a Simulator." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94622.
Full textMatteusson, Theodor, and Niclas Persson. "Statistical Modelling of Plug-In Hybrid Fuel Consumption : A study using data science methods on test fleet driving data." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172812.
Full textFordonsindustrin vidtar stora tekniska steg för att minska utsläppen och bekämpa klimatförändringar. För att minska tillförlitligheten på fossila bränslen investeras en hel del forskning i elmotorer (EM) och deras tillämpningar. En sådan applikation är laddhybrider (PHEV), där förbränningsmotorer (ICE) och EM används i kombination, och turas om för att driva fordonet baserat på rådande körförhållanden. PHEV: s huvudoptimeringsproblem är att bestämma när man ska använda vilken motor. Om denna optimering görs med avseende på utsläpp bör hela den elektriska laddningen användas innan resan är slut. Men om laddningen används för tidigt måste senare delar av resan, för vilka det optimala valet hade varit att använda EM, göras med ICE. För att ta itu med detta optimeringsproblem, studerade vi bränsleförbrukningen under olika körförhållanden. Dessa körförhållanden kännetecknas av hundratals sensorer som samlar in data om fordonets tillstånd kontinuerligt vid körning. Från dessa data konstruerade vi 150 sekunder segment, inkluderandes exempelvis fordonshastighet, innan nya beskrivande attribut konstruerades för varje segment, exempelvis högsta fordonshastighet. Genom att använda egenskaperna för typiska körförhållanden som specificerats av Worldwide Harmonized Light Vehicles Test Cycle (WLTC), märktes segment som motorvägs- eller stadsvägsegment. För att minska dimensioner på data utan att förlora information, användes principal component analysis och en Gaussian Mixture model för att avslöja dolda strukturer i data. Tre maskininlärnings regressionsmodeller skapades och testades: en linjär blandad modell, en kernel ridge regression modell med linjär kernel funktion och slutligen en en kernel ridge regression modell med RBF kernel funktion. Genom att dela upp informationen i ett tränings set och ett test set utvärderades de tre modellerna på data som de inte har tränats på. För utvärdering och förklaringsgrad av varje modell användes, R2, Mean Absolute Error och Mean Squared Error. Studien visar att bränsleförbrukningen kan modelleras av sensordata för en PHEV-testflotta där 6 stycken attribut har en förklaringsgrad av 0.5 och därmed har störst inflytande på bränsleförbrukningen . Man måste komma ihåg att all data samlades in under Covid-19-utbrottet där resmönster inte ansågs vara normala och att ingen regressionsmodell kan förklara den verkliga världen bättre än vad underliggande data gör.
Dougherty, Bradley Edward. "Visual and Demographic Factors in Bioptic Driving Training and Road Safety." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366284836.
Full textBooks on the topic "Driving test of vehicle"
Kwok, Tom. Theory test. London (51a Blackstock Road, London, N4 2JW): Diamond School of Motoring, 1996.
Find full textA guide to the heavy goods vehicle driving test and licences. 5th ed. London: Kogan Page, 1986.
Find full textA guide to the heavy goods vehicle driving test and licences. 6th ed. London: Kogan Page, 1987.
Find full textThe official theory test for drivers of large vehicles: Valid for theory tests taken from 16 July 2001. 2nd ed. London: Stationery Office, 2000.
Find full textCDL exam -- CDL practice test secrets: Your key to exam success. [Beaumont, Tex.]: Mometrix Media, 2013.
Find full textBoyd, Robert A. RV Rite: Step-by-step illustrated driver training and education manual : professional training for all owners/operators of motor homes, fifth wheel trailers, travel trailers, campers, and tent trailers. [Puyallup, Wash: RV Rite, 2003.
Find full textNew Jersey. Legislature. Senate. Task Force on Alcohol Related Motor Vehicle Accidents and Fatalities in New Jersey. Public hearing before Senate Task Force on Alcohol Related Motor Vehicle Accidents and Fatalities in New Jersey: Should blood alcohol concentration at which a person is prohibited from operating a motor vehicle be changed. Trenton, N.J: The Unit, 1997.
Find full textMaze, T. H. AMASCOT: Automated mileage and stateline crossing operational test. [Ames, Iowa]: Center for Transportation Research and Education, Iowa State University, 1996.
Find full textBook chapters on the topic "Driving test of vehicle"
Kistler, Felix, Michael Nadj, Hans-Peter Reifenrath, Stefan Staudacher, and Michael Keckeisen. "Vehicle endurance testing through automated test driving." In Proceedings, 389–401. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29943-9_30.
Full textMajumdar, Rupak, Aman Mathur, Marcus Pirron, Laura Stegner, and Damien Zufferey. "Paracosm: A Test Framework for Autonomous Driving Simulations." In Fundamental Approaches to Software Engineering, 172–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71500-7_9.
Full textZhang, Ping, Xiaomin Ding, Yi Zhang, Quan Yuan, and Maoming Sun. "Research on Design and Application of Vehicle Simulation Driving Test Platform for University Lab." In Lecture Notes in Electrical Engineering, 647–54. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6232-2_75.
Full textDonn, Christian, Michael Folie, Valerie Bensch, Johannes Friebe, Jonathan Spike, Paul Goossens, and Christine Schwarz. "Concept analysis & system design of a hybrid electric vehicle with virtual test driving." In Proceedings, 73–91. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08844-6_6.
Full textFitch, Gregory M., and Richard J. Hanowski. "Using Naturalistic Driving Research to Design, Test and Evaluate Driver Assistance Systems." In Handbook of Intelligent Vehicles, 559–80. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-085-4_21.
Full textDennig, Hans-Jörg, Adrian Burri, and Philipp Ganz. "BICAR—Urban Light Electric Vehicle." In Small Electric Vehicles, 157–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65843-4_12.
Full textHan, Chenlei, Alexander Seiffer, Stefan Orf, Frank Hantschel, and Shiqing Li. "Validating Reliability of Automated Driving Functions on a Steerable VEhicle-in-the-Loop (VEL) Test Bench." In Proceedings, 546–59. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33521-2_37.
Full textGeneder, S., F. Pfister, C. Wilhelm, A. Arnold, P. Scherrmann, and H. P. Dohmen. "Energy Flux Simulation on a Vehicle Test Bed for Validating the Efficiency of Different Driving and Assistance Systems." In Sustainable Automotive Technologies 2013, 3–13. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01884-3_1.
Full textKaths, Jakob, Max-Arno Meyer, Christian Granrath, Jakob Andert, and Sébastien Christiaens. "Virtual test drives with multiple vehicles under test for the evaluation of collaborative assisted and automated driving functions." In Proceedings, 11–20. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-34752-9_2.
Full textFörster, Martin, Rolf Hettel, Christian Schyr, and Peter E. Pfeffer. "Lateral dynamics on the vehicle test bed – a steering force module as a validation tool for autonomous driving functions." In Proceedings, 163–75. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-22050-1_14.
Full textConference papers on the topic "Driving test of vehicle"
He, Yaohua, Can Yang, and Bo Shang. "Vehicle Driving Wandering Test System Based on LabVIEW." In SAE 2010 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-0998.
Full textPeng, Meichun, Xuqi Liu, and Quanzhen Lin. "Construction of Engine Emission Test Driving Cycle of City Transit Buses." In SAE 2015 Commercial Vehicle Engineering Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2015. http://dx.doi.org/10.4271/2015-01-2800.
Full textZhou, Xinglin, Yang Wu, and Wensha Lv. "Application of RTK Technology in Vehicle Driving Deviation Test." In 2016 International Forum on Management, Education and Information Technology Application. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ifmeita-16.2016.118.
Full textCorti, Enrico. "Vehicle Simulation on the Test Bench." In ASME 2004 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/icef2004-0834.
Full textHemmati, Maryam, Morteza Biglari-Abhari, and Smail Niar. "Adaptive Vehicle Detection for Real-time Autonomous Driving System." In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2019. http://dx.doi.org/10.23919/date.2019.8714818.
Full textJunfu, Huang, Zhang Qiang, Li Chaobin, Xin Chunhong, Yi Kan, and Yang Liangyi. "Study of Test and Evaluation Scenario for L2 level Intelligent Cruising Assist System Based on Natural Driving Data." In SAE 2020 Vehicle Electrification and Autonomous Vehicle Technology Forum. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-01-5124.
Full textSong, Ke, Bin Wei, Tian Zhu, Minyan Gong, Zhen Song, and Huan Chen. "Virtual Co-Simulation Platform for Test and Validation of ADAS and Autonomous Driving." In New Energy & Intelligent Connected Vehicle Technology Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-01-5040.
Full textKreft, Sven, Wadim Lorenz, Jan Berssenbru¨gge, Ju¨rgen Gausemeier, and Ansgar Tra¨chtler. "A VR-Based Prototyping and Demonstration Platform Integrating a Fully Active X-by-Wire Test Vehicle." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28732.
Full textYoung, Richard, Bijaya Aryal, Marius Muresan, Xuru Ding, Steve Oja, and S. Noel Simpson. "Road-to-Lab: Validation of the Static Load Test for Predicting On-Road Driving Performance While Using Advanced In-Vehicle Information and Communication Devices." In Driving Assessment Conference. Iowa City, Iowa: University of Iowa, 2005. http://dx.doi.org/10.17077/drivingassessment.1167.
Full textCorti, Enrico. "Eddy Current Brake Control for Test Cycles Simulation." In ASME 2003 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ices2003-0670.
Full textReports on the topic "Driving test of vehicle"
Bodie, Mark, Michael Parker, Alexander Stott, and Bruce Elder. Snow-covered obstacles’ effect on vehicle mobility. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38839.
Full textKurtz, Jennifer M., Samuel Sprik, Genevieve Saur, and Shaun Onorato. Fuel Cell Electric Vehicle Driving and Fueling Behavior. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1501674.
Full textFuller, Raymond G. Prolonged Heavy Vehicle Driving Performance: Analysis of Different Types of Following Manoeuvre. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada198730.
Full textWest, Jeremy, Mark Hoekstra, Jonathan Meer, and Steven Puller. Vehicle Miles (Not) Traveled: Why Fuel Economy Requirements Don't Increase Household Driving. Cambridge, MA: National Bureau of Economic Research, May 2015. http://dx.doi.org/10.3386/w21194.
Full textEllis, R. D., Thomas Meitzler, Gary Witus, Euijung Sohn, Darryl Byrk, Richard Goetz, and Grant Gerhart. Computational Modeling of Age-Differences In a Visually Demanding Driving Task: Vehicle Detection. Fort Belvoir, VA: Defense Technical Information Center, October 1997. http://dx.doi.org/10.21236/ada600550.
Full textRodier, Caroline. The Potential for Autonomous Vehicle Technologies to Address Barriers to Driving for Individuals with Autism. Mineta Transportation Institute, February 2020. http://dx.doi.org/10.31979/mti.2020.1706.
Full textKondo, Yoshinori, and Shinji Kobayashi. A Study on the Relation Between Driving Condition and Nano-Particle Emission From Diesel Vehicle. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0143.
Full textDavis, Williams. Yeager Airport Hydrogen Vehicle Test Project. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1244411.
Full textKodama, Kenji, Satoshi Hiranuma, Reiko Doumeki, Yoshinaka Takeda, and Tatsuya Ikeda. Development of DPF System for Commercial Vehicle (Third Report)~Active Regenerating Function in Various Driving Conditions. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0146.
Full textNorcross, Richard J., Roger V. Bostelman, and Joseph A. Falco. Automated Guided Vehicle Bumper Test Method Development. National Institute of Standards and Technology, May 2015. http://dx.doi.org/10.6028/nist.ir.8029.
Full text