Academic literature on the topic 'Drop casting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drop casting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Drop casting"
ABBAS, Istabrak A. Abed, and Omar A. IBRAHIM. "PREPARATION THE UV PHOTOCONDUCTIVE DETECTOR BY TPD:ZNO NPS BLEND." MINAR International Journal of Applied Sciences and Technology 03, no. 02 (June 1, 2021): 183–90. http://dx.doi.org/10.47832/2717-8234.2-3.23.
Full textKwack, E. Y., L. H. Back, X. M. Ruan, and A. Chaux. "Flow Measurements in an Aortocoronary Bypass Graft Casting." Journal of Biomechanical Engineering 118, no. 2 (May 1, 1996): 165–71. http://dx.doi.org/10.1115/1.2795955.
Full textZeng, Yi Dan, Qing Hu Yao, and Xia Wang. "The Effect of Air Gap between Casting and Water-Cooled Mold on Interface Heat Transfer Coefficient." Materials Science Forum 893 (March 2017): 174–80. http://dx.doi.org/10.4028/www.scientific.net/msf.893.174.
Full textValenza, Fabrizio, Rafal Nowak, Natalia Sobczak, Alberto Passerone, Michele Di Foggia, and Maria Luigia Muolo. "Interactions between Superalloys and Mould Materials for Investment Casting of Turbine Blades." Advances in Science and Technology 70 (October 2010): 130–35. http://dx.doi.org/10.4028/www.scientific.net/ast.70.130.
Full textClancy, I., G. Amarandei, C. Nash, and B. A. Glowacki. "Metal particle compaction during drop-substrate impact for inkjet printing and drop-casting processes." Journal of Applied Physics 119, no. 5 (February 7, 2016): 054903. http://dx.doi.org/10.1063/1.4941344.
Full textBrochocka, Agnieszka, Aleksandra Nowak, Hanna Zajączkowska, and Marta Sieradzka. "Chemosensitive Thin Films Active to Ammonia Vapours." Sensors 21, no. 9 (April 22, 2021): 2948. http://dx.doi.org/10.3390/s21092948.
Full textMiwa, Masaya, and Hideo Furuhashi. "Morphologies of P3HT and P3HT/PCBM Thin Films Prepared by Drop Casting and Spin Coating." Advanced Materials Research 718-720 (July 2013): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.3.
Full textSironi, Beatrice, Tim Snow, Christian Redeker, Anna Slastanova, Oier Bikondoa, Thomas Arnold, Jacob Klein, and Wuge H. Briscoe. "Structure of lipid multilayersviadrop casting of aqueous liposome dispersions." Soft Matter 12, no. 17 (2016): 3877–87. http://dx.doi.org/10.1039/c6sm00369a.
Full textCota Leal, Marcos Alan, Merida Sotelo Lerma, and Manuel Quevedo López. "FABRICACIÓN DE PELÍCULAS DE PEROVSKITA (CH3NH3PbI3-XClX) POR DROP CASTING." Biotecnia 19 (September 21, 2017): 34–37. http://dx.doi.org/10.18633/biotecnia.v19i0.408.
Full textKaliyaraj Selva Kumar, Archana, Yifei Zhang, Danlei Li, and Richard G. Compton. "A mini-review: How reliable is the drop casting technique?" Electrochemistry Communications 121 (December 2020): 106867. http://dx.doi.org/10.1016/j.elecom.2020.106867.
Full textDissertations / Theses on the topic "Drop casting"
Jergel, M., P. Šiffalovič, K. Végsö, E. Majková, S. V. Roth, O. Konovalov, and H. Y. Lee. "Grazing-incidence Small-angle X-ray Scattering Technique for Probing Nanostructures and Processes at Nanoscale." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42696.
Full textDedigamuwa, Gayan S. "Formation of nanocoatings by laser-assisted spray pyrolysis and laser ablation on 2d gold nanotemplates." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001205.
Full textBlaha, Marek. "Optimalizace výroby litinových odlitků za účelem snížení výskytu vad." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231936.
Full textHong, Fangjun. "Droplet spreading, substrate remelting and variable thermal contact resistance in microcasting /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?MECH%202005%20HONG.
Full textTalanda, Ivan. "Optimalizace technologie výroby odlitků ze slitin Al metodou vytavitelného modelu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230150.
Full textYong-Hua, En, and 雍華恩. "Studying the Fabrication and Photoelectric Characteristics of the CsWO3 Drop Casting on Graphene UV Photodetector." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/363ggh.
Full text國立中正大學
光機電整合工程研究所
102
In this research, we are synthesize the nano-sized homogenous CsxWO3 particles by using hydrothermal method, and then drop casting CsxWO3 solution on the Si substrate, which has transferred graphene on it. We try to observe that the effect of optical characteristics in UV irradiation with different number of CsxWO3 layers. The result revealed that the thin film of CsxWO3 has excellent absorbance in ultraviolet light, (hole-trapping chemisorbed oxygen molecules at the surface of photosensitive materials in which the UV light induced desorption/re-absorption of oxygen molecules occurs, resulting in the increase/reduction of the photocurrent.) According to the result, we found that having the three layers of drop casting has the best performance: responsivity = 1267.52 A/W, rising time = 4.91 s, falling time = 8.24 s, Ion/ Ioff = 1.62, It confirms the truth of using graphene as a base can improve responsivity and response time.
Pereira, Maria Elias Lopes. "Characterization of direct X-ray Detectors based on Organic Semiconductor thin films." Master's thesis, 2018. http://hdl.handle.net/10362/130841.
Full textA deteção de radiação ionizante, como os raios-X, é uma área de pesquisa em constante crescimento, graças aos seus vastos campos de aplicação, que abrangem desde a astrofísica, centrais nucleares, segurança industrial e civil, até ao diagnóstico médico. Neste projeto, realizado na Universidade de Bolonha, no departamento de física, um dos grupos de investigação mais ativos nesta área, quatro mo-léculas diferentes (TIPS, TIPGe, diF TES ADT e diF TEG ADT) foram estudadas na forma de filme fino orgânico semicondutor num fotocondutor. Os dispositivos foram preparados através da deposição por drop-casting de uma solução destas moléculas em três substratos (PET, PEN e vidro), para uma abordagem direta na deteção desta radiação. A influência de diferentes parâmetros, como a resistividade, percentagem de área ativa coberta pela molécula, quantidade e espessura dos cristais, foi investigada quanto ao desempenho dos detetores de raios-X. Descobriu-se que, no substrato PET, há um processo de descarga que parece ser importante para o desempenho do detetor e que aparentemente induz uma diminuição na corrente dos dispositivos base-ados em diF TES ADT e diF TEG ADT, tornando-os inadequados para qualquer tipo de aplicação. Com o substrato PEN, é possível obter dispositivos fiáveis e reprodutíveis com baixo ruído e sensibilidades aceitáveis. O substrato de vidro com o TIPGe daria o melhor dispositivo porque combina uma alta sensibilidade com um dispositivo fiável e reprodutível. No entanto, não é um substrato flexível e, portanto, não é adequado para muitas das aplicações de interesse, como por exemplo, aplicações de diagnóstico de saúde, como a dosimetria pessoal. Finalmente, ficou provado que as moléculas com o elemento germânio apresentam, como esperado pelo seu número atómico mais elevado que o do silício, as mais altas sensibilidades. Descobriu-se, ainda, que isso também se deve aos cristais de alta qualidade obtidos nessas moléculas. Em função dos resultados obtidos, a linha de investigação parece profícua, esperando-se aplicações práticas muito interessantes.
Book chapters on the topic "Drop casting"
Rodríguez-Hernández, Juan, and Edward Bormashenko. "Methodologies Involved in Manufacturing Self-Assembled Breath-Figures Patterns: Drop-Casting and Spin- and Dip-Coating – Characterization of Microporous Surfaces." In Breath Figures, 111–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51136-4_4.
Full textZaporojan, S., C. Plotnic, I. Calmicov, and V. Larin. "A Knowledge-Based Approach for Microwire Casting Plant Control." In Knowledge-Based Intelligent System Advancements, 419–37. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61692-811-7.ch019.
Full textXiong, Ligui, and Liqiong Zhang. "Research on the Tensile Properties of Packaging Film Based on Environmental Protection PVA-KGM." In Advances in Transdisciplinary Engineering. IOS Press, 2021. http://dx.doi.org/10.3233/atde210330.
Full text"coating layer itself, an d at the interface between the coating and the substrate, causes instant fracturing and separation of coating material from the surface. In general, if a coating or contaminant is CHEMICALLY bonded to a surface, dry ice particle blasting will NOT effectively remove the coating. If the bond is PHYSICAL o r MECHANICAL in nature, such as a coating of rubber residue which is "anchored" into the porous surface of an aluminum casting, then there is a good chance that dr y ice blasting will work. Contaminants which are etched, or stained into the surfaces of metals, ceramics, plastics, or other materials typically cannot be removed with dry ice blasting. If the surface of the substrate is extremely porous or rough, providing strong mechanical "anchoring" for the contaminant or coating, dr y ice blasting may not be able to remove all of the coating, or the rate of removal may be too slow to allow dry ice blasting to be cost effective. The classic example of a contaminant that does NOT respond to dry ice blast-ing is RUST. Rust is both chemically and strongly mechanically bonded to steel substrate. Advanced stages of rust must be "chiseled" away with abrasive sand blasting. Only the thin film of powderized "flash" rust on a fresh steel surface can be effectively removed with dry ice blasting. 4.2.1.1. Inductio n (venturi) and direct acceleration blast systems - the effect of the typ e of system on available kinetic energy In a two-hose induction (venturi) carbon dioxide blastin g system, the medium particles are moved from the hopper to the "gun" chamber by suction, where they drop to a very low velocity before being induced into the outflow of the nozzle by a large flow volume of compressed air. Some more advanced two-hose systems employ a small positive pressure to the pellet delivery hose. In any type of two-hose system, since the blast medium particles have only a short distance in which to gain momentum and accelerate to the nozzle exit (usually only 200 to 300 mm), the final particle average velocity is limited to between 60 and 120 meters per second. So, in general, two-hose systems, although not so costly, are limited in their ability to deliver contaminant removal kinetic energy to the surface to be cleaned. When more blasting energy is required, these systems must be "boosted" a t the expense of much more air volume required, and higher blast pressure is re-quired as well, with much more nozzle back thrust, and very much more blast noise generated at the nozzle exit plane. The other type of solid carbon dioxide medium blasting system is like the "pressurized pot" abrasive blasting system common in the sand blasting and Plas-ti c Media Blasting industries. These systems use a single delivery hose from the hopper to the "nozzle" applicator in which both the medium particles and the compressed air travel. These systems are more complex and a little more costly than the inductive two-hose systems, but the advantages gained greatly outweigh the extra initial expense. In a single-hose solid carbon dioxide particle blasting system, sometimes referred to as a "direct acceleration " system, the medium is introduced from the hopper into a single, pre-pressurized blast hose through a sealed airlock feeder. The particles begin their acceleration and velocity increase." In Surface Contamination and Cleaning, 162–63. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-25.
Full textConference papers on the topic "Drop casting"
Moorthy, Arjun, Muvva D. Prasad, Subhendu K. Panda, and Sudip K. Batabyal. "Low cost hot drop casting of CuS transparent conducting electrodes." In 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy). IEEE, 2017. http://dx.doi.org/10.1109/tapenergy.2017.8397340.
Full textIizuka, Naoki, Tomohiko Zanka, Yosuke Onishi, and Ichiro Fujieda. "Growth directions of C8-BTBT thin films during drop-casting." In SPIE OPTO, edited by Christopher E. Tabor, François Kajzar, Toshikuni Kaino, and Yasuhiro Koike. SPIE, 2016. http://dx.doi.org/10.1117/12.2212244.
Full textLiu, Peng, Yiyang Chang, and Jinwen Zhang. "The SWCNTs film-silicon vertical heterojunction fabricated by drop-casting technique." In 2014 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2014. http://dx.doi.org/10.1109/nems.2014.6908878.
Full textXiang, Li, Ya Wang, Zhilong Xin, and Hang Zhou. "Thickness-dependent photoresponse of P3HT:PCBM organic photodiode fabricated by drop-casting method." In 2021 9th International Symposium on Next Generation Electronics (ISNE). IEEE, 2021. http://dx.doi.org/10.1109/isne48910.2021.9493651.
Full textLiu, Yong-Ning, Yi-Qing Chen, and Chun-Hui Yang. "CFD simulation of liquid Mg drop impact on an Al substrate for compound casting." In 2016 International Conference on Advanced Materials, Technology and Application (AMTA2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813200470_0028.
Full textHashim, U., M. A. Farehanim, N. Azizah, S. Norhafiezah, M. F. Fatin, A. Rahim Ruslinda, and R. M. Ayub. "Comparison of drop casting vs. spray pyrolysis MWCNTs technique for surface modification based interdigitated electrode." In 2015 2nd International Conference on Biomedical Engineering (ICoBE). IEEE, 2015. http://dx.doi.org/10.1109/icobe.2015.7235903.
Full textPang, Jintao, Xianhao Le, Qian Zhang, Changju Wu, and Jin Xie. "The Shear Modulus Determination via Quartz Crystal Resonator for Graphene Oxide Film Prepared by Drop Casting." In 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2020. http://dx.doi.org/10.1109/mems46641.2020.9056303.
Full textAshraf, Juveiriah M., Ayman Rezk, Wafa Alnaqbi, Aisha Alhammadi, Sabina Abdul Hadi, and Ammar Nayfeh. "Modulating Surface Roughness of Low Temperature PECVD Germanium using Multilayer Drop Casting of 2.85 nm Silicon Nanoparticles." In 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2020. http://dx.doi.org/10.1109/nano47656.2020.9183406.
Full textBhamidipati, Kanthi Latha, and Tequila A. L. Harris. "Numerical Analysis of the Effects of Processing Conditions on the Casting of High Temperature PEMFC Membrane Solutions." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85064.
Full textKalter, R., B. W. Righolt, S. Kenjereš, C. R. Kleijn, and M. J. Tummers. "Experimental Modeling of Heat Transfer in a Continuous Casting Mould Model." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21179.
Full textReports on the topic "Drop casting"
Patterson, Michael N., Brian R. Westphal, David D. Tolman, and J. C. Price. HALEU Decontamination Investigations for EBR-II Recovered Uranium. HALEU Drip Casting Results in the Fuel Conditioning Facility Cathode Processor. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1503291.
Full text