To see the other types of publications on this topic, follow the link: Droplet bilayers.

Journal articles on the topic 'Droplet bilayers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Droplet bilayers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Allen-Benton, Maxwell, Heather E. Findlay, and Paula J. Booth. "Probing membrane protein properties using droplet interface bilayers." Experimental Biology and Medicine 244, no. 8 (2019): 709–20. http://dx.doi.org/10.1177/1535370219847939.

Full text
Abstract:
Integral membrane proteins comprise a large proportion of drug targets, yet are challenging to study in vitro due to their amphiphilic nature. Conducting useful functional in vitro studies requires an artificial membrane that can mimic the lipid environment of the biogenic membrane. Droplet interface bilayer technology provides a method to form artificial bilayers with a robustness and physicochemical complexity that has not previously been possible, facilitating more sophisticated in vitro studies of membrane proteins. This mini-review examines functional studies of membrane proteins that uti
APA, Harvard, Vancouver, ISO, and other styles
2

Fujiwara, Shougo, Kan Shoji, Chiho Watanabe, Ryuji Kawano, and Miho Yanagisawa. "Microfluidic Formation of Honeycomb-Patterned Droplets Bounded by Interface Bilayers via Bimodal Molecular Adsorption." Micromachines 11, no. 7 (2020): 701. http://dx.doi.org/10.3390/mi11070701.

Full text
Abstract:
Assembled water-in-oil droplets bounded by lipid bilayers are used in synthetic biology as minimal models of cell tissue. Microfluidic devices successfully generate monodispersed droplets and assemble them via droplet interface bilayesr (DIB) formation. However, a honeycomb pattern of DIB-bounded droplets, similar to epithelial tissues, remains unrealized because the rapid DIB formation between the droplets hinders their ability to form the honeycomb pattern. In this paper, we demonstrate the microfluidic formation of a honeycomb pattern of DIB-bounded droplets using two surfactants with diffe
APA, Harvard, Vancouver, ISO, and other styles
3

Bayley, Hagan, Brid Cronin, Andrew Heron, et al. "Droplet interface bilayers." Molecular BioSystems 4, no. 12 (2008): 1191. http://dx.doi.org/10.1039/b808893d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Abhijeet, Jochen Kleinen, Joachim Venzmer, Anna Trybala, Victor Starov, and Tatiana Gambaryan-Roisman. "Spreading and Imbibition of Vesicle Dispersion Droplets on Porous Substrates." Colloids and Interfaces 3, no. 3 (2019): 53. http://dx.doi.org/10.3390/colloids3030053.

Full text
Abstract:
Vesicles have recently found widespread use in applications such as conditioning of textiles, paper and hair, as well as transdermal drug delivery. The mode of treatment in several such cases involves the application of droplets of aqueous dispersions of vesicles onto dry porous substrates like paper and textiles. One of the factors which affects the performance of such treatments is the rate at which the droplets spread and imbibe on the porous substrate. Depending upon the specific purpose of the treatment either a fast or slow droplet spreading kinetics could be desired. Therefore, it is im
APA, Harvard, Vancouver, ISO, and other styles
5

Hwang, William L., Min Chen, Bríd Cronin, Matthew A. Holden, and Hagan Bayley. "Asymmetric Droplet Interface Bilayers." Journal of the American Chemical Society 130, no. 18 (2008): 5878–79. http://dx.doi.org/10.1021/ja802089s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rofeh, Justin, and Luke Theogarajan. "Instantaneous tension measurements in droplet interface bilayers using an inexpensive, integrated pendant drop camera." Soft Matter 16, no. 18 (2020): 4484–93. http://dx.doi.org/10.1039/d0sm00418a.

Full text
Abstract:
Adding an inexpensive horizontal camera to a microscope stage yields faster, simpler, and more accurate measurements of droplet interface bilayers. Measurements of monolayer tension, bilayer tension, and specific capacitance are all improved.
APA, Harvard, Vancouver, ISO, and other styles
7

Barlow, Nathan E., Halim Kusumaatmaja, Ali Salehi-Reyhani, et al. "Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers." Journal of The Royal Society Interface 15, no. 148 (2018): 20180610. http://dx.doi.org/10.1098/rsif.2018.0610.

Full text
Abstract:
For the past decade, droplet interface bilayers (DIBs) have had an increased prevalence in biomolecular and biophysical literature. However, much of the underlying physics of these platforms is poorly characterized. To further our understanding of these structures, lipid membrane tension on DIB membranes is measured by analysing the equilibrium shape of asymmetric DIBs. To this end, the morphology of DIBs is explored for the first time using confocal laser scanning fluorescence microscopy. The experimental results confirm that, in accordance with theory, the bilayer interface of a volume-asymm
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Shen Chun, Dawn Wang, Sin Jie Lin, Chen Yu Chung, and Yau Ming Chen. "Investigating the Use of Nanoscale Bilayers Assembly on Stainless Steel Plate for Surface Hydrophobic Modification and Condensation." Applied Mechanics and Materials 423-426 (September 2013): 792–96. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.792.

Full text
Abstract:
This study investigated the use of nanoscale bilayers assembly for hydrophobic surface modification on stainless steel plate and its effect on condensation. This study first performed nanoscale bilayers assembly method, with the addition of a fluorosilane treatment using chemical vapor deposition (CVD), to modify the surface structure and thereby the wettability of the surface at 15, 20, and 30 bilayers. Experimental results showed 15 bilayers to be the optimal number of bilayers among the samples tested, resulting in the largest contact angle of 150° (compared to 70° on unmodified surface), c
APA, Harvard, Vancouver, ISO, and other styles
9

Barlow, Nathan E., Guido Bolognesi, Anthony J. Flemming, Nicholas J. Brooks, Laura M. C. Barter, and Oscar Ces. "Multiplexed droplet Interface bilayer formation." Lab on a Chip 16, no. 24 (2016): 4653–57. http://dx.doi.org/10.1039/c6lc01011c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Jing, and Matthew Holden. "Repeated Perfusion of Droplet-Interface Bilayers." Biophysical Journal 104, no. 2 (2013): 113a. http://dx.doi.org/10.1016/j.bpj.2012.11.653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dixit, Sanhita S., Alexandra Pincus, Bin Guo, and Gregory W. Faris. "Droplet Shape Analysis and Permeability Studies in Droplet Lipid Bilayers." Langmuir 28, no. 19 (2012): 7442–51. http://dx.doi.org/10.1021/la3005739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Castell, Oliver K., Linda C. M. Gross, Bríd Cronin, and Mark I. Wallace. "Controlling Bilayer Curvature and Membrane Protein Density using Droplet Interface Bilayers." Biophysical Journal 104, no. 2 (2013): 43a. http://dx.doi.org/10.1016/j.bpj.2012.11.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Barlow, N. E., E. Smpokou, M. S. Friddin, et al. "Engineering plant membranes using droplet interface bilayers." Biomicrofluidics 11, no. 2 (2017): 024107. http://dx.doi.org/10.1063/1.4979045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mruetusatorn, Prachya, Jonathan B. Boreyko, Guru A. Venkatesan, Stephen A. Sarles, Douglas G. Hayes, and C. Patrick Collier. "Dynamic morphologies of microscale droplet interface bilayers." Soft Matter 10, no. 15 (2014): 2530. http://dx.doi.org/10.1039/c3sm53032a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Maglia, Giovanni, Andrew J. Heron, William L. Hwang, et al. "Electrical Communication In Droplet Interface Bilayers Networks." Biophysical Journal 96, no. 3 (2009): 544a. http://dx.doi.org/10.1016/j.bpj.2008.12.2947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Portonovo, Shiva A., Carl S. Salazar, and Jacob J. Schmidt. "hERG drug response measured in droplet bilayers." Biomedical Microdevices 15, no. 2 (2012): 255–59. http://dx.doi.org/10.1007/s10544-012-9725-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Villar, Gabriel, Alexander D. Graham, and Hagan Bayley. "A Tissue-Like Printed Material." Science 340, no. 6128 (2013): 48–52. http://dx.doi.org/10.1126/science.1229495.

Full text
Abstract:
Living cells communicate and cooperate to produce the emergent properties of tissues. Synthetic mimics of cells, such as liposomes, are typically incapable of cooperation and therefore cannot readily display sophisticated collective behavior. We printed tens of thousands of picoliter aqueous droplets that become joined by single lipid bilayers to form a cohesive material with cooperating compartments. Three-dimensional structures can be built with heterologous droplets in software-defined arrangements. The droplet networks can be functionalized with membrane proteins; for example, to allow rap
APA, Harvard, Vancouver, ISO, and other styles
18

Leptihn, Sebastian, Oliver K. Castell, Brid Cronin, et al. "Constructing droplet interface bilayers from the contact of aqueous droplets in oil." Nature Protocols 8, no. 6 (2013): 1048–57. http://dx.doi.org/10.1038/nprot.2013.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pataki, Camille I., João Rodrigues, Lichao Zhang та ін. "Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors". Proceedings of the National Academy of Sciences 115, № 35 (2018): E8172—E8180. http://dx.doi.org/10.1073/pnas.1807981115.

Full text
Abstract:
Despite not spanning phospholipid bilayers, monotopic integral proteins (MIPs) play critical roles in organizing biochemical reactions on membrane surfaces. Defining the structural basis by which these proteins are anchored to membranes has been hampered by the paucity of unambiguously identified MIPs and a lack of computational tools that accurately distinguish monolayer-integrating motifs from bilayer-spanning transmembrane domains (TMDs). We used quantitative proteomics and statistical modeling to identify 87 high-confidence candidate MIPs in lipid droplets, including 21 proteins with predi
APA, Harvard, Vancouver, ISO, and other styles
20

Jaggers, Oskar B., Pietro Ridone, Boris Martinac, and Matthew A. B. Baker. "Fluorescence microscopy of piezo1 in droplet hydrogel bilayers." Channels 13, no. 1 (2019): 102–9. http://dx.doi.org/10.1080/19336950.2019.1586046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chiu, Ming, Jared A. Wood, Asaph Widmer-Cooper, and Chiara Neto. "Aligned Droplet Patterns by Dewetting of Polymer Bilayers." Macromolecules 51, no. 15 (2018): 5485–93. http://dx.doi.org/10.1021/acs.macromol.8b00620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aghdaei, Sara, Mairi E. Sandison, Michele Zagnoni, Nicolas G. Green, and Hywel Morgan. "Formation of artificial lipid bilayers using droplet dielectrophoresis." Lab on a Chip 8, no. 10 (2008): 1617. http://dx.doi.org/10.1039/b807374k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dixit, Sanhita S., Hanyoup Kim, Arseny Vasilyev, Aya Eid, and Gregory W. Faris. "Light-Driven Formation and Rupture of Droplet Bilayers." Langmuir 26, no. 9 (2010): 6193–200. http://dx.doi.org/10.1021/la1010067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bayley, Hagan. "Building And Controlling Networks Of Droplet Interface Bilayers." Biophysical Journal 96, no. 3 (2009): 214a. http://dx.doi.org/10.1016/j.bpj.2008.12.1886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gehan, P., S. Kulifaj, P. Soule, et al. "Penetratin translocation mechanism through asymmetric droplet interface bilayers." Biochimica et Biophysica Acta (BBA) - Biomembranes 1862, no. 11 (2020): 183415. http://dx.doi.org/10.1016/j.bbamem.2020.183415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Thomas, Christopher A., Devon Richtsmeier, Aaron Smith, Peter Mullner, and Daniel Fologea. "Lysenin Channel Reconstitution into Unsupported Droplet Interface Bilayers." Biophysical Journal 114, no. 3 (2018): 264a. http://dx.doi.org/10.1016/j.bpj.2017.11.1530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

de Bruin, Abigail, Mark S. Friddin, Yuval Elani, et al. "A transparent 3D printed device for assembling droplet hydrogel bilayers (DHBs)." RSC Adv. 7, no. 75 (2017): 47796–800. http://dx.doi.org/10.1039/c7ra09406j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Walter, Cornelia, Ralf Seemann, and Jean-Baptiste Fleury. "Flowing droplet interface bilayers: A microfluidic tool to control droplet trajectories and to study mechanical properties of unsupported lipid bilayers." Biomicrofluidics 14, no. 4 (2020): 044109. http://dx.doi.org/10.1063/5.0011489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nguyen, Mary-Anne, Bernadeta Srijanto, C. Patrick Collier, Scott T. Retterer, and Stephen A. Sarles. "Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays." Lab on a Chip 16, no. 18 (2016): 3576–88. http://dx.doi.org/10.1039/c6lc00810k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Boreyko, J. B., G. Polizos, P. G. Datskos, S. A. Sarles, and C. P. Collier. "Air-stable droplet interface bilayers on oil-infused surfaces." Proceedings of the National Academy of Sciences 111, no. 21 (2014): 7588–93. http://dx.doi.org/10.1073/pnas.1400381111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Holden, Matthew A. "Direct Measurement of Protein Translocation across Droplet Interface Bilayers." Biophysical Journal 106, no. 2 (2014): 209a—210a. http://dx.doi.org/10.1016/j.bpj.2013.11.1229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Watanabe, R., N. Soga, M. Hara, and H. Noji. "Arrayed water-in-oil droplet bilayers for membrane transport analysis." Lab on a Chip 16, no. 16 (2016): 3043–48. http://dx.doi.org/10.1039/c6lc00155f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Faugeras, Vincent, Olivier Duclos, Didier Bazile, and Abdou Rachid Thiam. "Membrane determinants for the passive translocation of analytes through droplet interface bilayers." Soft Matter 16, no. 25 (2020): 5970–80. http://dx.doi.org/10.1039/d0sm00667j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wu, Shen Chun, Sin Jie Lin, Dawn Wang, and Yau Ming Chen. "Investigating the Effect of Hydrophilic Surface Modification on Droplet Evaporation." Advanced Materials Research 1120-1121 (July 2015): 779–84. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.779.

Full text
Abstract:
In this study, surface modification of stainless steel flat plates was performed using nanoscale bilayers assembly method to increase the surface’s hydrophilicity and enhance evaporation. Thin layers of SiO2 nanoparticles layered onto the stainless steel surfaces were used to modify their surface properties, and the relationship between the number of layers (0~20) and water’s hydrophilicity (surface tension) was investigated. The effects of modification on evaporation were then tested using de-ionized water. According to experimental results, surface modification was able to reduce the contact
APA, Harvard, Vancouver, ISO, and other styles
35

Boreyko, J., P. Caveney, S. L. Norred, et al. "Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale." MRS Advances 2, no. 45 (2017): 2427–33. http://dx.doi.org/10.1557/adv.2017.489.

Full text
Abstract:
ABSTRACTAqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morpho-logical changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperatu
APA, Harvard, Vancouver, ISO, and other styles
36

Czekalska, Magdalena A., Tomasz S. Kaminski, Slawomir Jakiela, K. Tanuj Sapra, Hagan Bayley, and Piotr Garstecki. "A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings." Lab on a Chip 15, no. 2 (2015): 541–48. http://dx.doi.org/10.1039/c4lc00985a.

Full text
Abstract:
We report a droplet microfluidic system that automates the formation of lipid bilayers and allows for electrophysiological measurements and for an automated screening protocols in which the activity of proteins is tested against inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
37

YASUGA, Hiroki, Ryuji KAWANO, Masahiro TAKINOUE, et al. "29pm2-E-4 Formation of droplet network connected with artificial lipid bilayers using droplet-box." Proceedings of the Symposium on Micro-Nano Science and Technology 2015.7 (2015): _29pm2—E—4—_29pm2—E—4. http://dx.doi.org/10.1299/jsmemnm.2015.7._29pm2-e-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Boreyko, Jonathan B., Prachya Mruetusatorn, Stephen A. Sarles, Scott T. Retterer, and C. Patrick Collier. "Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers." Journal of the American Chemical Society 135, no. 15 (2013): 5545–48. http://dx.doi.org/10.1021/ja4019435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lein, Max, Jing Huang, and Matthew A. Holden. "Robust reagent addition and perfusion strategies for droplet-interface bilayers." Lab on a Chip 13, no. 14 (2013): 2749. http://dx.doi.org/10.1039/c3lc41323c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nisisako, Takasi, Shiva A. Portonovo, and Jacob J. Schmidt. "Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers." Analyst 138, no. 22 (2013): 6793. http://dx.doi.org/10.1039/c3an01314f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mruetusatorn, Prachya, Georgios Polizos, Panos G. Datskos, et al. "Control of Membrane Permeability in Air-Stable Droplet Interface Bilayers." Langmuir 31, no. 14 (2015): 4224–31. http://dx.doi.org/10.1021/la504712g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Vijayvergiya, Viksita, Shiv Acharya, Sidney P. Wilson, and Jacob J. Schmidt. "Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers." PLOS ONE 10, no. 10 (2015): e0141366. http://dx.doi.org/10.1371/journal.pone.0141366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vijayvergiya, Viksita, Shiv Acharya, and Jacob Schmidt. "Reconstitution and Measurement of Ion Channel Ensembles in Droplet Bilayers." Biophysical Journal 108, no. 2 (2015): 120a. http://dx.doi.org/10.1016/j.bpj.2014.11.670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nisisako, Takasi, Shiva A. Portonovo, and Jacob J. Schmidt. "Microfluidic Passive Permeability Assay using Nanoliter Droplet Interface Lipid Bilayers." Biophysical Journal 104, no. 2 (2013): 676a. http://dx.doi.org/10.1016/j.bpj.2012.11.3734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Szabo, Marc, and Mark I. Wallace. "Imaging potassium-flux through individual electropores in droplet interface bilayers." Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, no. 3 (2016): 613–17. http://dx.doi.org/10.1016/j.bbamem.2015.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

de Wit, Gabrielle, John S. H. Danial, Philipp Kukura, and Mark I. Wallace. "Dynamic label-free imaging of lipid nanodomains." Proceedings of the National Academy of Sciences 112, no. 40 (2015): 12299–303. http://dx.doi.org/10.1073/pnas.1508483112.

Full text
Abstract:
Lipid rafts are submicron proteolipid domains thought to be responsible for membrane trafficking and signaling. Their small size and transient nature put an understanding of their dynamics beyond the reach of existing techniques, leading to much contention as to their exact role. Here, we exploit the differences in light scattering from lipid bilayer phases to achieve dynamic imaging of nanoscopic lipid domains without any labels. Using phase-separated droplet interface bilayers we resolve the diffusion of domains as small as 50 nm in radius and observe nanodomain formation, destruction, and d
APA, Harvard, Vancouver, ISO, and other styles
47

Leptihn, Sebastian, James R. Thompson, J. Clive Ellory, Stephen J. Tucker, and Mark I. Wallace. "In Vitro Reconstitution of Eukaryotic Ion Channels Using Droplet Interface Bilayers." Journal of the American Chemical Society 133, no. 24 (2011): 9370–75. http://dx.doi.org/10.1021/ja200128n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sarles, Stephen A., and Donald J. Leo. "Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks." Lab on a Chip 10, no. 6 (2010): 710. http://dx.doi.org/10.1039/b916736f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Creasy, M. A., and D. J. Leo. "Non-invasive measurement techniques for measuring properties of droplet interface bilayers." Smart Materials and Structures 19, no. 9 (2010): 094016. http://dx.doi.org/10.1088/0964-1726/19/9/094016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dixit, Sanhita, Alexandra Pincus, Bin Guo, and Gregory W. Faris. "Droplet Interface Bilayers on a Petri Dish - Formation Methods and Characterization." Biophysical Journal 114, no. 3 (2018): 150a. http://dx.doi.org/10.1016/j.bpj.2017.11.839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!