Journal articles on the topic 'Droplet entrainment'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Droplet entrainment.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sujith, R. I., G. A. Waldherr, J. I. Jagoda, and B. T. Zinn. "An Experimental Investigation of the Behavior of Droplets in Axial Acoustic Fields." Journal of Vibration and Acoustics 119, no. 3 (1997): 285–92. http://dx.doi.org/10.1115/1.2889722.
Full textSingh, Digvijay, and Arup Kumar Das. "Predictability and benefits of coupled Eulerian-Lagrangian approach over Eulerian characterization of droplet annular flow." Fluid Dynamics Research 53, no. 6 (2021): 065501. http://dx.doi.org/10.1088/1873-7005/ac34ec.
Full textJauseau, Nicolas, Fernando Farelas, Marc Singer, and Srdjan Nešić. "Investigation of the Role of Droplet Transport in Mitigating Top of the Line Corrosion." Corrosion 74, no. 8 (2018): 873–85. http://dx.doi.org/10.5006/2764.
Full textBewley, Jennifer L., and Sonia Lasher-Trapp. "Progress on Predicting the Breadth of Droplet Size Distributions Observed in Small Cumuli." Journal of the Atmospheric Sciences 68, no. 12 (2011): 2921–29. http://dx.doi.org/10.1175/jas-d-11-0153.1.
Full textMarchetti, J. M., and H. F. Svendsen. "REVIEW OF KERNELS FOR DROPLET-DROPLET INTERACTION, DROPLET-WALL COLLISION, ENTRAINMENT, RE-ENTRAINMENT, AND BREAKAGE." Chemical Engineering Communications 199, no. 4 (2012): 551–75. http://dx.doi.org/10.1080/00986445.2011.592453.
Full textAbade, Gustavo C., Wojciech W. Grabowski, and Hanna Pawlowska. "Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Entraining Parcel Simulations." Journal of the Atmospheric Sciences 75, no. 10 (2018): 3365–79. http://dx.doi.org/10.1175/jas-d-18-0078.1.
Full textYang, Fan, Raymond Shaw, and Huiwen Xue. "Conditions for super-adiabatic droplet growth after entrainment mixing." Atmospheric Chemistry and Physics 16, no. 14 (2016): 9421–33. http://dx.doi.org/10.5194/acp-16-9421-2016.
Full textXie, Zhenqiang, and Xuewen Cao. "Effect of Entrainment on the Liquid Film Behavior in Pipe Elbows." Energies 17, no. 8 (2024): 1983. http://dx.doi.org/10.3390/en17081983.
Full textShi, H., and C. Kleinstreuer. "Simulation and Analysis of High-Speed Droplet Spray Dynamics." Journal of Fluids Engineering 129, no. 5 (2006): 621–33. http://dx.doi.org/10.1115/1.2717621.
Full textJia, Hailing, Xiaoyan Ma, and Yangang Liu. "Exploring aerosol–cloud interaction using VOCALS-REx aircraft measurements." Atmospheric Chemistry and Physics 19, no. 12 (2019): 7955–71. http://dx.doi.org/10.5194/acp-19-7955-2019.
Full textUrbansky, V. A., and A. A. Petruk. "Theoretical and experimental studies of the influence of gas flow parameters on the entrainment of liquid droplets from an experimental vessel." Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering 8, no. 3 (2024): 98–106. http://dx.doi.org/10.25206/2588-0373-2024-8-3-98-106.
Full textCamacho Hernandez, Jesus, Guido Link, Markus Schubert, and Uwe Hampel. "Experimental Study of a Compact Microwave Applicator for Evaporation of Airflow-Entrained Droplets." Materials 15, no. 19 (2022): 6765. http://dx.doi.org/10.3390/ma15196765.
Full textde Lozar, Alberto, and Juan Pedro Mellado. "Reduction of the Entrainment Velocity by Cloud Droplet Sedimentation in Stratocumulus." Journal of the Atmospheric Sciences 74, no. 3 (2017): 751–65. http://dx.doi.org/10.1175/jas-d-16-0196.1.
Full textEßl, Werner, Georg Reiss, Peter Raninger, et al. "Numerical Analysis of Convective Mass Transfer during Multi-Droplet Impingement on a Structured Surface in the Presence of an Adhered Liquid Film—An Application to Spray Etching of PCBs." Fluids 8, no. 6 (2023): 180. http://dx.doi.org/10.3390/fluids8060180.
Full textCooper, William A., Sonia G. Lasher-Trapp, and Alan M. Blyth. "The Influence of Entrainment and Mixing on the Initial Formation of Rain in a Warm Cumulus Cloud." Journal of the Atmospheric Sciences 70, no. 6 (2013): 1727–43. http://dx.doi.org/10.1175/jas-d-12-0128.1.
Full textSnider, Jefferson R., David Leon, and Zhien Wang. "Droplet Concentration and Spectral Broadening in Southeast Pacific Stratocumulus Clouds." Journal of the Atmospheric Sciences 74, no. 3 (2017): 719–49. http://dx.doi.org/10.1175/jas-d-16-0043.1.
Full textBeals, Matthew J., Jacob P. Fugal, Raymond A. Shaw, Jiang Lu, Scott M. Spuler, and Jeffrey L. Stith. "Holographic measurements of inhomogeneous cloud mixing at the centimeter scale." Science 350, no. 6256 (2015): 87–90. http://dx.doi.org/10.1126/science.aab0751.
Full textLiu, Chenglong, Wei Li, Feng Guo, Patrick Wong, and Xinming Li. "Effect of Oil Dispersion on Lubricating Film Thickness Generation under Oil Droplet Supply Conditions." Lubricants 11, no. 12 (2023): 512. http://dx.doi.org/10.3390/lubricants11120512.
Full textCherdantsev, Andrey V. "Experimental Investigation of Mechanisms of Droplet Entrainment in Annular Gas-Liquid Flows: A Review." Water 14, no. 23 (2022): 3892. http://dx.doi.org/10.3390/w14233892.
Full textKumar, Bipin, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao. "Impact of high- and low-vorticity turbulence on cloud–environment mixing and cloud microphysics processes." Atmospheric Chemistry and Physics 21, no. 16 (2021): 12317–29. http://dx.doi.org/10.5194/acp-21-12317-2021.
Full textUchida, J., C. S. Bretherton, and P. N. Blossey. "The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree?" Atmospheric Chemistry and Physics Discussions 9, no. 6 (2009): 25853–83. http://dx.doi.org/10.5194/acpd-9-25853-2009.
Full textEbner, J., M. Gerenda´s, O. Scha¨fer, and S. Wittig. "Droplet Entrainment From a Shear-Driven Liquid Wall Film in Inclined Ducts: Experimental Study and Correlation Comparison." Journal of Engineering for Gas Turbines and Power 124, no. 4 (2002): 874–80. http://dx.doi.org/10.1115/1.1476926.
Full textBurnet, Frédéric, and Jean-Louis Brenguier. "Observational Study of the Entrainment-Mixing Process in Warm Convective Clouds." Journal of the Atmospheric Sciences 64, no. 6 (2007): 1995–2011. http://dx.doi.org/10.1175/jas3928.1.
Full textHohne, Thomas. "ICONE23-1413 A DROPLET ENTRAINMENT MODEL FOR HORIZONTAL GAS/LIQUID FLOWS." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_192.
Full textRoy, Puja, Robert M. Rauber, and Larry Di Girolamo. "Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges." Atmospheric Chemistry and Physics 24, no. 20 (2024): 11653–78. http://dx.doi.org/10.5194/acp-24-11653-2024.
Full textGERASHCHENKO, S., G. GOOD, and Z. WARHAFT. "Entrainment and mixing of water droplets across a shearless turbulent interface with and without gravitational effects." Journal of Fluid Mechanics 668 (January 26, 2011): 293–303. http://dx.doi.org/10.1017/s002211201000577x.
Full textCooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth. "Initiation of coalescence in a cumulus cloud: a beneficial influence of entrainment and mixing." Atmospheric Chemistry and Physics Discussions 11, no. 4 (2011): 10557–613. http://dx.doi.org/10.5194/acpd-11-10557-2011.
Full textSchmid, S. R. "Hydrodynamic Segregation, Entrainment and Rejection of Oil in Emulsion Lubrication Problems." Journal of Tribology 119, no. 2 (1997): 342–48. http://dx.doi.org/10.1115/1.2833225.
Full textDerksen, J. W. B., G. J. H. Roelofs, and T. Röckmann. "Influence of entrainment of CCN on microphysical properties of warm cumulus." Atmospheric Chemistry and Physics Discussions 9, no. 2 (2009): 8791–816. http://dx.doi.org/10.5194/acpd-9-8791-2009.
Full textDerksen, J. W. B., G. J. H. Roelofs, and T. Röckmann. "Influence of entrainment of CCN on microphysical properties of warm cumulus." Atmospheric Chemistry and Physics 9, no. 16 (2009): 6005–15. http://dx.doi.org/10.5194/acp-9-6005-2009.
Full textLiu, Yan Jun, Xiao Rong Liu, Hui Li, Yong Sheng Li, Qing Li, and Yan Liu. "Effects of Copper Extraction-Stripping Loops on Entrainment in Aqueous Raffinate." Advanced Materials Research 908 (March 2014): 18–21. http://dx.doi.org/10.4028/www.scientific.net/amr.908.18.
Full textGao, Sinan, Chunsong Lu, Yangang Liu, et al. "Comprehensive quantification of height dependence of entrainment mixing between stratiform cloud top and environment." Atmospheric Chemistry and Physics 21, no. 14 (2021): 11225–41. http://dx.doi.org/10.5194/acp-21-11225-2021.
Full textUchida, J., C. S. Bretherton, and P. N. Blossey. "The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree?" Atmospheric Chemistry and Physics 10, no. 9 (2010): 4097–109. http://dx.doi.org/10.5194/acp-10-4097-2010.
Full textBerna, C., A. Escrivá, J. L. Muñoz-Cobo, and L. E. Herranz. "Review of droplet entrainment in annular flow: Characterization of the entrained droplets." Progress in Nuclear Energy 79 (March 2015): 64–86. http://dx.doi.org/10.1016/j.pnucene.2014.11.011.
Full textGood, G. H., S. Gerashchenko, and Z. Warhaft. "Intermittency and inertial particle entrainment at a turbulent interface: the effect of the large-scale eddies." Journal of Fluid Mechanics 694 (February 3, 2012): 371–98. http://dx.doi.org/10.1017/jfm.2011.552.
Full textTrabold, T. A., R. Kumar, and P. F. Vassallo. "Experimental Study of Dispersed Droplets in High-Pressure Annular Flows." Journal of Heat Transfer 121, no. 4 (1999): 924–33. http://dx.doi.org/10.1115/1.2826083.
Full textDunnewind, B., M. A. Bos, and W. Koops. "Entrainment of Oil from Oil Spills into the Water Column: A New Theory." International Oil Spill Conference Proceedings 2003, no. 1 (2003): 1059–66. http://dx.doi.org/10.7901/2169-3358-2003-1-1059.
Full textSun, Bao Nan, Zhan Lian, and Yong Zeng Yang. "On Theoretical Models for Oil Droplets Size Distribution under the Influence of Surface Wave Breaking." Advanced Materials Research 998-999 (July 2014): 511–17. http://dx.doi.org/10.4028/www.scientific.net/amr.998-999.511.
Full textWang, H. Y., V. G. McDonell, W. A. Sowa, and G. S. Samuelsen. "Scaling of the Two-Phase Flow Downstream of a Gas Turbine Combustor Swirl Cup: Part I—Mean Quantities." Journal of Engineering for Gas Turbines and Power 115, no. 3 (1993): 453–60. http://dx.doi.org/10.1115/1.2906730.
Full textDolna, Oktawia, Jarosław Mikielewicz, and Paulina Rolka. "Analytical studies on deposition and entrainment present in the Venturi nozzle two-phase flow." International Journal of Energy and Environmental Engineering 12, no. 3 (2021): 487–502. http://dx.doi.org/10.1007/s40095-021-00385-1.
Full textJarecka, Dorota, Wojciech W. Grabowski, Hugh Morrison, and Hanna Pawlowska. "Homogeneity of the Subgrid-Scale Turbulent Mixing in Large-Eddy Simulation of Shallow Convection." Journal of the Atmospheric Sciences 70, no. 9 (2013): 2751–67. http://dx.doi.org/10.1175/jas-d-13-042.1.
Full textFreud, E., D. Rosenfeld, D. Axisa, and J. R. Kulkarni. "Resolving both entrainment-mixing and number of activated CCN in deep convective clouds." Atmospheric Chemistry and Physics Discussions 11, no. 3 (2011): 9673–703. http://dx.doi.org/10.5194/acpd-11-9673-2011.
Full textHasson, D. A., and W. L. Flint. "An Investigation of the Liquid Petrol Wall Film in the Manifold of a Carburetted Spark Ignition Engine: Effect of Carburettor and Manifold Geometry on Wall Film Quantities, Engine Performance and Emissions." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 203, no. 2 (1989): 77–89. http://dx.doi.org/10.1243/pime_proc_1989_203_153_02.
Full textBhowmick, Taraprasad, and Michele Iovieno. "Direct Numerical Simulation of a Warm Cloud Top Model Interface: Impact of the Transient Mixing on Different Droplet Population." Fluids 4, no. 3 (2019): 144. http://dx.doi.org/10.3390/fluids4030144.
Full textBerna, C., A. Escrivá, J. L. Muñoz-Cobo, and L. E. Herranz. "Review of droplet entrainment in annular flow: Interfacial waves and onset of entrainment." Progress in Nuclear Energy 74 (July 2014): 14–43. http://dx.doi.org/10.1016/j.pnucene.2014.01.018.
Full textBai, Xing-Zhi, Zhe Zhang, Wen-Hua Wu, et al. "Fluid Dynamics of Interacting Rotor Wake with a Water Surface." Drones 8, no. 9 (2024): 469. http://dx.doi.org/10.3390/drones8090469.
Full textDuan, Yajuan, Markus D. Petters, and Ana P. Barros. "Understanding aerosol–cloud interactions through modeling the development of orographic cumulus congestus during IPHEx." Atmospheric Chemistry and Physics 19, no. 3 (2019): 1413–37. http://dx.doi.org/10.5194/acp-19-1413-2019.
Full textFreud, E., D. Rosenfeld, and J. R. Kulkarni. "Resolving both entrainment-mixing and number of activated CCN in deep convective clouds." Atmospheric Chemistry and Physics 11, no. 24 (2011): 12887–900. http://dx.doi.org/10.5194/acp-11-12887-2011.
Full textOuallal, M., S. Leyer, and S. Gupta. "Literature survey of droplet entrainment from water pools." Nuclear Engineering and Design 379 (August 2021): 111188. http://dx.doi.org/10.1016/j.nucengdes.2021.111188.
Full textHöhne, Thomas, and Susann Hänsch. "A droplet entrainment model for horizontal segregated flows." Nuclear Engineering and Design 286 (May 2015): 18–26. http://dx.doi.org/10.1016/j.nucengdes.2015.01.013.
Full text