Academic literature on the topic 'Drosophila Genetics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drosophila Genetics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Drosophila Genetics"

1

Schlenke, Todd A., and David J. Begun. "Natural Selection Drives Drosophila Immune System Evolution." Genetics 164, no. 4 (August 1, 2003): 1471–80. http://dx.doi.org/10.1093/genetics/164.4.1471.

Full text
Abstract:
Abstract Evidence from disparate sources suggests that natural selection may often play a role in the evolution of host immune system proteins. However, there have been few attempts to make general population genetic inferences on the basis of analysis of several immune-system-related genes from a single species. Here we present DNA polymorphism and divergence data from 34 genes thought to function in the innate immune system of Drosophila simulans and compare these data to those from 28 nonimmunity genes sequenced from the same lines. Several statistics, including average KA/KS ratio, average
APA, Harvard, Vancouver, ISO, and other styles
2

O'Grady, Patrick M. "Whither Drosophila?" Genetics 185, no. 2 (June 2010): 703–5. http://dx.doi.org/10.1534/genetics.110.118232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garza, D., M. M. Medhora, and D. L. Hartl. "Drosophila nonsense suppressors: functional analysis in Saccharomyces cerevisiae, Drosophila tissue culture cells and Drosophila melanogaster." Genetics 126, no. 3 (November 1, 1990): 625–37. http://dx.doi.org/10.1093/genetics/126.3.625.

Full text
Abstract:
Abstract Amber (UAG) and opal (UGA) nonsense suppressors were constructed by oligonucleotide site-directed mutagenesis of two Drosophila melanogaster leucine-tRNA genes and tested in yeast, Drosophila tissue culture cells and transformed flies. Suppression of a variety of amber and opal alleles occurs in yeast. In Drosophila tissue culture cells, the mutant tRNAs suppress hsp70:Adh (alcohol dehydrogenase) amber and opal alleles as well as an hsp70:beta-gal (beta-galactosidase) amber allele. The mutant tRNAs were also introduced into the Drosophila genome by P element-mediated transformation. N
APA, Harvard, Vancouver, ISO, and other styles
4

Thomas-Orillard, M., B. Jeune, and G. Cusset. "Drosophila-host genetic control of susceptibility to Drosophila C virus." Genetics 140, no. 4 (August 1, 1995): 1289–95. http://dx.doi.org/10.1093/genetics/140.4.1289.

Full text
Abstract:
Abstract Interactions between Drosophila C virus (DCV) and its natural host, Drosophila melanogaster, were investigated using 15 geographical population samples infected by intraabdominal inoculation. These strains derived from natural populations of D. melanogaster differed in susceptibility to the DCVc. One strain was "partially tolerant". Isofemale lines obtained from one susceptible and one partially tolerant strain were studied. The partially tolerant phenotype was dominant, and there was no difference between F1 progeny of direct and reciprocal crosses. Analysis of F2 progeny showed that
APA, Harvard, Vancouver, ISO, and other styles
5

Klaczko, Louis Bernard, Charles E. Taylor, and Jeffrey R. Powell. "GENETIC VARIATION FOR DISPERSAL BY DROSOPHILA PSEUDOOBSCURA AND DROSOPHILA PERSIMILIS." Genetics 112, no. 2 (February 1, 1986): 229–35. http://dx.doi.org/10.1093/genetics/112.2.229.

Full text
Abstract:
ABSTRACT Release-recapture experiments using Drosophila pseudoobscura and D. persimilis strains of different karyotypes were performed in a heterogeneous environment. The heterogeneity was due to both spatial variation and the species of yeast used to attract the released flies. No karyotypic-specific habitat preferences were detected. However, in all releases, different strains did behave differently with respect to one or both of the heterogeneous factors. These results indicate there is variation for dispersal behavior in these species that is most likely based on genotype-dependent habitat
APA, Harvard, Vancouver, ISO, and other styles
6

Moriyama, E. N., and D. L. Hartl. "Codon usage bias and base composition of nuclear genes in Drosophila." Genetics 134, no. 3 (July 1, 1993): 847–58. http://dx.doi.org/10.1093/genetics/134.3.847.

Full text
Abstract:
Abstract The nuclear genes of Drosophila evolve at various rates. This variation seems to correlate with codon-usage bias. In order to elucidate the determining factors of the various evolutionary rates and codon-usage bias in the Drosophila nuclear genome, we compared patterns of codon-usage bias with base compositions of exons and introns. Our results clearly show the existence of selective constraints at the translational level for synonymous (silent) sites and, on the other hand, the neutrality or near neutrality of long stretches of nucleotide sequence within noncoding regions. These feat
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, C. Y., J. Mote, and M. D. Brennan. "Tissue-specific expression phenotypes of Hawaiian Drosophila Adh genes in Drosophila melanogaster transformants." Genetics 125, no. 3 (July 1, 1990): 599–610. http://dx.doi.org/10.1093/genetics/125.3.599.

Full text
Abstract:
Abstract Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-m
APA, Harvard, Vancouver, ISO, and other styles
8

Provine, W. B. "Alfred Henry Sturtevant and crosses between Drosophila melanogaster and Drosophila simulans." Genetics 129, no. 1 (September 1, 1991): 1–5. http://dx.doi.org/10.1093/genetics/129.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wolstenholme, David R., and Douglas O. Clary. "SEQUENCE EVOLUTION OF DROSOPHILA MITOCHONDRIAL DNA." Genetics 109, no. 4 (April 1, 1985): 725–44. http://dx.doi.org/10.1093/genetics/109.4.725.

Full text
Abstract:
ABSTRACT We have compared nucleotide sequences of corresponding segments of the mitochondrial DNA (mtDNA) molecules of Drosophila yakuba and Drosophila melanogaster, which contain the genes for six proteins and seven tRNAs. The overall frequency of substitution between the nucleotide sequences of these protein genes is 7.2%. As was found for mtDNAs from closely related mammals, most substitutions (86%) in Drosophila mitochondrial protein genes do not result in an amino acid replacement. However, the frequencies of transitions and transversions are approximately equal in Drosophila mtDNAs, whic
APA, Harvard, Vancouver, ISO, and other styles
10

Sofer, W., and L. Tompkins. "Drosophila genetics in the classroom." Genetics 136, no. 1 (January 1, 1994): 417–22. http://dx.doi.org/10.1093/genetics/136.1.417.

Full text
Abstract:
Abstract Drosophila has long been useful for demonstrating the principles of classical Mendelian genetics in the classroom. In recent years, the organism has also helped students understand biochemical and behavioral genetics. In this connection, this article describes the development of a set of integrated laboratory exercises and descriptive materials--a laboratory module--in biochemical genetics for use by high-school students. The module focuses on the Adh gene and its product, the alcohol dehydrogenase enzyme. Among other activities, students using the module get to measure alcohol tolera
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Drosophila Genetics"

1

Nicholls, Felicity K. M. "Genetic analysis of the gene Additional sex combs and interacting loci." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29644.

Full text
Abstract:
In order to recover new mutant alleles of the Polycomb group gene Additional sex combs (Asx), mutagenized chromosomes were screened over the putative Asx allele XT129. Thirteen new mutant strains that fail to complement XT129 were recovered. Unexpectedly, the thirteen strains sorted into four complementation groups. Recombination mapping suggests that each complementation group represents a separate locus. The largest group fails to complement a deletion of Asx and maps in the vicinity of 2-72, the published location of Asx. All new mutant strains enhance the phenotype of Polycomb mutant flies
APA, Harvard, Vancouver, ISO, and other styles
2

O'Keefe, Louise. "Genetic analysis of the role of pebble during cytokinesis in Drosophila." Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pho415.pdf.

Full text
Abstract:
Errata pasted onto back page. Bibliography: p. 133-149. The RhoGEF activity of PBL is shown to be acting predominantly by the activation of Rho1 and downstream signaling pathways required for contractile ring function during cytokinesis. Genetic evidence suggests this could be through the activation of Diaphanous (an FH protein) to reorganize the actin cytoskeleton, as well as through the activation of Rho-kinase which results in the phosphorylation, and activation of myosin. Highlights a possible role for PBL during contractile ring function at a later stage that previously thought. Genetic
APA, Harvard, Vancouver, ISO, and other styles
3

Riddihough, Guy. "The Drosophila hsp27 promoter." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johnstone, Oona. "Characterization of the Vasa-eIF5B interaction during Drosophila development." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=84265.

Full text
Abstract:
Translational control is an important means of regulating gene expression. Development of the Drosophila germ line relies on translational regulation to differentially express maternal mRNAs, allowing it to develop distinctly from the soma. One of the critical factors required for germ cell development and function is the conserved DEAD-box RNA helicase Vasa (Vas). The research presented in this thesis examines the role of Vas in translational regulation during Drosophila germ line development. A two-hybrid screen conducted with Vas identified a translation initiation factor eIF5B (dIF2
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Li. "DRMT4 (Drosophila arginine methyltransferase 4) : functions in Drosophila oogenesis." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80905.

Full text
Abstract:
DRMT4 (Drosophila Arginine MethylTransferase 4) is an arginine methyltransferase in Drosophila (Boulanger et al. 2004). It shows the highest identities with mammalian PRMT4/CARM1 (Protein Arginine MethylTransferase 4) (59% identity, 75% similarity). HPLC analysis demonstrated that DRMT4 belongs to the type I class of methyltransferases (Boulanger et al. 2004), meaning that DRMT4 catalyzes asymmetrical dimethylarginine formation. A polyclonal antibody against DRMT4 was generated and used to study DRMT4 expression using western blots and immunostainings. In order to study DRMT4 function
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Michael James. "TACC proteins in Drosophila and Xenopus." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McGurk, Leeane. "Drosophila lacking RNA editing." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2695.

Full text
Abstract:
ADAR is an adenosine deaminase that acts on dsRNA. Once bound to dsRNA, ADAR deaminates specific adenosines into inosines. If this occurs within the coding region of a transcript the inosine will be read as a guanosine. This can lead to a change in the amino acid at this position and increase protein diversity. In mammals there are three ADAR genes: ADAR1, ADAR2 and ADAR3. However, only ADAR1 and ADAR2 have been shown to be enzymatically active. ADAR1 is widely expressed and can edit both coding RNA and non-coding RNA. ADAR2 is restricted to the CNS and the key transcript that it edits encodes
APA, Harvard, Vancouver, ISO, and other styles
8

Ometto, Lino. "The selective and demographic history of Drosophila melanogaster." Diss., [S.l.] : [s.n.], 2006. http://edoc.ub.uni-muenchen.de/archive/00004942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vermeulen, Cornelis Joseph. "Genetics of lifespan determination in Drosophila melanogaster /." [Wageningen] : Ponsen & Looyen, 2004. http://www.gbv.de/dms/goettingen/473006952.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gilchrist, Anthony Stuart. "Sperm displacement in drosophila melanogaster." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Drosophila Genetics"

1

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. Drosophila Genetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morgan, Thomas Hunt. The genetics of Drosophila. New York: Garland Pub., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nancy, Van Schaik, and Würgler F. E. 1936-, eds. Drosophila genetics: A practical course. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferrús, A. Neurogenetics of drosophila. Amsterdam: Elsevier Science Publishers B. V., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lasko, Paul F. Molecular genetics of Drosophila oogenesis. Austin: R.G. Landes Co., 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Pranveer. Evolutionary Population Genetics of Drosophila ananassae. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2565-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barker, J. S. F., William T. Starmer, and Ross J. MacIntyre, eds. Ecological and Evolutionary Genetics of Drosophila. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8768-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Demerec, M. Drosophila guide: Introduction to the genetics and cytology of Drosophila melanogaster. 9th ed. Washington, D. C: Carnegie Institution of Washington, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Drosophila melanogaster: Life cycle, genetics and development. New York: Nova Biomedical Books, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Greenspan, Ralph J. Fly pushing: The theory and practice of Drosophila genetics. Plainview, N.Y: Cold Spring Harbor Laboratory Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Drosophila Genetics"

1

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Transmission Genetics." In Drosophila Genetics, 55–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Mutation Genetics." In Drosophila Genetics, 135–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Population Genetics." In Drosophila Genetics, 163–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "General." In Drosophila Genetics, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Morphology of Drosophila Melanogaster." In Drosophila Genetics, 33–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Phenogenetics." In Drosophila Genetics, 103–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Cytology and Cytogenetics." In Drosophila Genetics, 177–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Molecular Biology." In Drosophila Genetics, 189–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Graf, Ulrich, Nancy van Schaik, and Friedrich E. Würgler. "Results and Answers." In Drosophila Genetics, 203–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76805-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Pranveer. "Drosophila ananassae." In Evolutionary Population Genetics of Drosophila ananassae, 19–30. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2565-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Drosophila Genetics"

1

Butnaru, Gallia, and Sorina Popescu. "Molecular profile of the D. melanogaster mutant genotype w1118 in the presence of variable amount of deuterium (D)." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.31.

Full text
Abstract:
The Drosophila melanogaster w1118 mutant line was used to identify the effect of deuterium (D) on DNA synthesis. D concentrations ranged from 30ppm to 96.89% (low and very high amount respec-tively). Five generations of flies were bred on culture media prepared with 6 concentrations of D. For each generation the DNA was analyzed, and its variability was established. The results showed a small involvement of D in the successive synthesis of nuclear DNA.
APA, Harvard, Vancouver, ISO, and other styles
2

Golan, Rotem, Christian Jacob, Savraj Grewal, and Jörg Denzinger. "Predicting patterns of gene expression during drosophila embryogenesis." In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2576768.2598250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Matić, Sanja Lj, Nikola Srećković, Jelena Katanić Stanković та Vladimir Mihailović. "IN VIVO PROTEKTIVNI EFEKAT EKSTRAKATA BILJKE Lysimachia vulgaris NA DNK OŠTEĆENJA INDUKOVANA ETIL METANSULFONATOM 2022ЗБОРНИК БИОДИВЕРЗИТЕТ". У XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.523m.

Full text
Abstract:
The in vivo genotoxic activity of the aerial part and root methanol extracts of Lysimachia vulgaris L. and ability to protect DNA from ethyl methanesulfonate- induced DNA damage was studied using comet assays in Drosophila melanogaster. Results revealed no significant differences in mean genetic damage index between exposure groups (20, 40, 80 mg mL-1 of Drosophila food) and negative control, indicating a non-genotoxic effect. Combined treatment of extracts and ethyl methanesulfonate showed a significant reduction in DNA damage with a percentage of reduction above 80. These findings suggest th
APA, Harvard, Vancouver, ISO, and other styles
4

Koppes, Ryan A., Douglas M. Swank, and David T. Corr. "Force Depression in the Drosophila Jump Muscle." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19436.

Full text
Abstract:
The depression of isometric force after active shortening, termed force depression (FD), is a well-accepted characteristic of skeletal muscle that has been demonstrated in both whole muscle [1,3] and single-fiber preparations [1,2]. Although this history-dependent behavior has been observed experimentally for over 70 years, its underlying mechanism(s) remain unknown. Drosophila melangastor, commonly known as the fruit fly, is a well established, comprehensively understood, and genetically manipulable animal model. Furthermore, Drosophila have proved to be an accurate model species for studying
APA, Harvard, Vancouver, ISO, and other styles
5

KYODA, KOJI, and HIROAKI KITANO. "SIMULATION OF GENETIC INTERACTION FOR DROSOPHILA LEG FORMATION." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447300_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ewer, John. "Genetic dissection of neuropeptide-controlled behavior in Drosophila." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jonathan B. "The genetic basis for variation in resistance to fungal infection in Drosophila melanogaster." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.113799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ALVES, FILIPA, and RUI DILÃO. "A SOFTWARE TOOL TO MODEL GENETIC REGULATORY NETWORKS: APPLICATIONS TO SEGMENTAL PATTERNING IN DROSOPHILA." In Proceedings of the International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773685_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Afanasyeva, K. P., A. N. Rusakovich, N. E. Kharchenko, I. D. Aleksandrov, and M. V. Aleksandrova. "GENOMIC CHANGES IN THE PROGENY OF DROSOPHILA MELANOGASTER MALES IRRADIATED BY y-RAYS." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-1-328-331.

Full text
Abstract:
The results of sequencing and bioinformatics analysis of genomic changes in 9 F1 progeny of males from the isogenic line D. melanogaster irradiated by Co60 Y—rays at a dose of 40 Gy (LD85) and in 3 control samples are presented. In 9 progeny from irradiated males, a total of 46 genomic changes (32 significant and 15 mosaic de novo mutations) were found, which is equal to a frequency of 5.2 mutations/genome. The spectrum of changes included 33 deletions (17-78 000 bp in size), 4 duplications (322-1371 bp), 4 reciprocal translocations and 6 inversions in X, 2 and 3 chromosomes. In 3 studied cont
APA, Harvard, Vancouver, ISO, and other styles
10

Joshi, Sagar D., and Lance A. Davidson. "Remote Control of Apical Epithelial Sheet Contraction by Laser Ablation or Nano-Perfusion: Acute Stimulus Triggers Rapid Remodeling of F-Actin Network in Apical Cortex." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-204904.

Full text
Abstract:
Apical contraction is the major tissue movement during remodeling of epithelial sheets in development. During apical contraction, groups of cells narrow their apices to form bottle-shaped structures, driving events such as sea-urchin gastrulation [1], Drosophila ventral-furrow formation, vertebrate neurulation and wound healing [2]. Tissue-folding events such as invagination, ingression and involution involve this tissue movement in which cells actively build “rifts” and “tubes”. Epithelial cells integrate genetic information, mechanical signals, and biochemical gradients to build these struct
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Drosophila Genetics"

1

Betson, Martha E. An Analysis of Rho-PKN Signaling in Prostate Cancer Using Drosophila Genetics. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada448101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Betson, Martha E. An Analysis of Rho-PKN Signaling in Prostate Cancer Using Drosophila Genetics. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada434481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Segal, Daniel, Lawrence Gilbert, and Shalom Applebaum. Molecular Genetic Dissection of Juvenile Hormone Synthesis in Drosophila. United States Department of Agriculture, June 1993. http://dx.doi.org/10.32747/1993.7604297.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

LaJeunesse, Dennis. Genetic and Molecular Characterization of Drosophila Brakeless: A Novel Modifier of Merlin Phenotypes. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada428432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LaJeunesse, Dennis R. Genetic and Molecular Characterization of Drosophila Brakeless: A Novel Modifier of Merlin Phenotypes. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada411513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LaJeunesse, Dennis. Genetic and Molecular Characterization of Drosophila Brakeless: A Novel Modifier of Merlin Phenotypes. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada421198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hawley, R. S. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Final progress report. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/666243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

LaJeunesse, Dennis. Genetic and Molecular Characterization of Drosophia Brakeless: A Novel Modifier of Merlin Phenotypes. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada443662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hawley, R. S. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, 1 November 1994--1 January 1996. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/304069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hawley, R. S. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, February 1, 1993--November 1, 1994. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/656510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!