Academic literature on the topic 'Drosophila IFM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Drosophila IFM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Drosophila IFM"

1

Loya, Amy K., Sarah K. Van Houten, Bernadette M. Glasheen, and Douglas M. Swank. "Shortening deactivation: quantifying a critical component of cyclical muscle contraction." American Journal of Physiology-Cell Physiology 322, no. 4 (2022): C653—C665. http://dx.doi.org/10.1152/ajpcell.00281.2021.

Full text
Abstract:
A muscle undergoing cyclical contractions requires fast and efficient muscle activation and relaxation to generate high power with relatively low energetic cost. To enhance activation and increase force levels during shortening, some muscle types have evolved stretch activation (SA), a delayed increased in force following rapid muscle lengthening. SA’s complementary phenomenon is shortening deactivation (SD), a delayed decrease in force following muscle shortening. SD increases muscle relaxation, which decreases resistance to subsequent muscle lengthening. Although it might be just as importan
APA, Harvard, Vancouver, ISO, and other styles
2

Kreuz, A. J., A. Simcox, and D. Maughan. "Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants." Journal of Cell Biology 135, no. 3 (1996): 673–87. http://dx.doi.org/10.1083/jcb.135.3.673.

Full text
Abstract:
Drosophila indirect flight muscle (IFM) contains two different types of tropomyosin: a standard 284-amino acid muscle tropomyosin, Ifm-TmI, encoded by the TmI gene, and two > 400 amino acid tropomyosins, TnH-33 and TnH-34, encoded by TmII. The two IFM-specific TnH isoforms are unique tropomyosins with a COOH-terminal extension of approximately 200 residues which is hydrophobic and rich in prolines. Previous analysis of a hypomorphic TmI mutant, Ifm(3)3, demonstrated that Ifm-TmI is necessary for proper myofibrillar assembly, but no null TmI mutant or TmII mutant which affects the TnH is
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Wenzhi, Qiufang Li, Meng Ding, et al. "Regular Exercise Rescues Heart Function Defects and Shortens the Lifespan of Drosophila Caused by dMnM Downregulation." International Journal of Environmental Research and Public Health 19, no. 24 (2022): 16554. http://dx.doi.org/10.3390/ijerph192416554.

Full text
Abstract:
Although studies have shown that myomesin 2 (MYOM2) mutations can lead to hypertrophic cardiomyopathy (HCM), a common cardiovascular disease that has a serious impact on human life, the effect of MYOM2 on cardiac function and lifespan in humans is unknown. In this study, dMnM (MYOM2 homologs) knockdown in cardiomyocytes resulted in diastolic cardiac defects (diastolic dysfunction and arrhythmias) and increased cardiac oxidative stress. Furthermore, the knockdown of dMnM in indirect flight muscle (IFM) reduced climbing ability and shortened lifespan. However, regular exercise significantly amel
APA, Harvard, Vancouver, ISO, and other styles
4

Glasheen, Bernadette M., Catherine C. Eldred, Leah C. Sullivan, et al. "Stretch activation properties of Drosophila and Lethocerus indirect flight muscle suggest similar calcium-dependent mechanisms." American Journal of Physiology-Cell Physiology 313, no. 6 (2017): C621—C631. http://dx.doi.org/10.1152/ajpcell.00110.2017.

Full text
Abstract:
Muscle stretch activation (SA) is critical for optimal cardiac and insect indirect flight muscle (IFM) power generation. The SA mechanism has been investigated for decades with many theories proposed, but none proven. One reason for the slow progress could be that multiple SA mechanisms may have evolved in multiple species or muscle types. Laboratories studying IFM SA in the same or different species have reported differing SA functional properties which would, if true, suggest divergent mechanisms. However, these conflicting results might be due to different experimental methodologies. Thus,
APA, Harvard, Vancouver, ISO, and other styles
5

Kulke, Michael, Ciprian Neagoe, Bernhard Kolmerer, et al. "Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle." Journal of Cell Biology 154, no. 5 (2001): 1045–58. http://dx.doi.org/10.1083/jcb.200104016.

Full text
Abstract:
Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and α-actinin. To investigate kettin's functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM–I-band protein, was not altered by actin
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Cuiping, and Douglas M. Swank. "The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type." American Journal of Physiology-Cell Physiology 312, no. 2 (2017): C111—C118. http://dx.doi.org/10.1152/ajpcell.00284.2016.

Full text
Abstract:
Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production ( FSA), whereas the jump muscle produces only minimal FSA. We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is su
APA, Harvard, Vancouver, ISO, and other styles
7

QIU, Feng, Anne LAKEY, Bogos AGIANIAN, et al. "Troponin C in different insect muscle types: identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect." Biochemical Journal 371, no. 3 (2003): 811–21. http://dx.doi.org/10.1042/bj20021814.

Full text
Abstract:
The indirect flight muscles (IFMs) of Lethocerus (giant water bug) and Drosophila (fruitfly) are asynchronous: oscillatory contractions are produced by periodic stretches in the presence of a Ca2+ concentration that does not fully activate the muscle. The troponin complex on thin filaments regulates contraction in striated muscle. The complex in IFM has subunits that are specific to this muscle type, and stretch activation may act through troponin. Lethocerus and Drosophila have an unusual isoform of the Ca2+-binding subunit of troponin, troponin C (TnC), with a single Ca2+-binding site near t
APA, Harvard, Vancouver, ISO, and other styles
8

Brault, V., M. C. Reedy, U. Sauder, R. A. Kammerer, U. Aebi, and C. Schoenenberger. "Substitution of flight muscle-specific actin by human (beta)-cytoplasmic actin in the indirect flight muscle of Drosophila." Journal of Cell Science 112, no. 21 (1999): 3627–39. http://dx.doi.org/10.1242/jcs.112.21.3627.

Full text
Abstract:
The human (beta)-cytoplasmic actin differs by only 15 amino acids from Act88F actin which is the only actin expressed in the indirect flight muscle (IFM) of Drosophila melanogaster. To test the structural and functional significance of this difference, we ectopically expressed (beta)-cytoplasmic actin in the IFM of Drosophila that lack endogenous Act88F. When expression of the heterologous actin was regulated by approximately 1.5 kb of the 5′ promoter region of the Act88F gene, little (beta)-cytoplasmic actin accumulated in the IFM of the flightless transformants. Including Act88F-specific 5′
APA, Harvard, Vancouver, ISO, and other styles
9

Babu, Sajesh, and Nallur B. Ramachandra. "Screen for new mutations on the 2nd chromosome involved in indirect flight muscle development in Drosophila melanogaster." Genome 50, no. 4 (2007): 343–50. http://dx.doi.org/10.1139/g07-012.

Full text
Abstract:
An extensive ethylmethanesulfonate mutagenesis of Drosophila melanogaster was undertaken to isolate the stronger alleles of 3 indirect flight-muscle mutations. We isolated 17 strong mutant lines, with nearly complete penetrance and expressivity, using direct screening under polarized light, from more than 1700 mutagenized chromosomes. On complementation, we found 11 of these 17 mutant lines to be alleles of 3 indirect flight-muscle mutations (Ifm(2)RU1, 3 noncomplementing lines; ifm(2)RU2, 6 alleles; ifm(2)RU3, 2 alleles) of the previously isolated 8 complementation groups (Ifm(2)RU1to ifm(2)R
APA, Harvard, Vancouver, ISO, and other styles
10

Reedy, Mary C., Belinda Bullard, and Jim O. Vigoreaux. "Flightin Is Essential for Thick Filament Assembly and Sarcomere Stability in Drosophila Flight Muscles." Journal of Cell Biology 151, no. 7 (2000): 1483–500. http://dx.doi.org/10.1083/jcb.151.7.1483.

Full text
Abstract:
Flightin is a multiply phosphorylated, 20-kD myofibrillar protein found in Drosophila indirect flight muscles (IFM). Previous work suggests that flightin plays an essential, as yet undefined, role in normal sarcomere structure and contractile activity. Here we show that flightin is associated with thick filaments where it is likely to interact with the myosin rod. We have created a null mutation for flightin, fln0, that results in loss of flight ability but has no effect on fecundity or viability. Electron microscopy comparing pupa and adult fln0 IFM shows that sarcomeres, and thick and thin f
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!