To see the other types of publications on this topic, follow the link: Drosophila willistoni.

Journal articles on the topic 'Drosophila willistoni'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Drosophila willistoni.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Miller, Wolfgang J., and Markus Riegler. "Evolutionary Dynamics of wAu-Like Wolbachia Variants in Neotropical Drosophila spp." Applied and Environmental Microbiology 72, no. 1 (2006): 826–35. http://dx.doi.org/10.1128/aem.72.1.826-835.2006.

Full text
Abstract:
ABSTRACT Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophila species sampled in different regions and at different tim
APA, Harvard, Vancouver, ISO, and other styles
2

RUBIN, P. M., E. L. S. LORETO, C. M. A. CARARETO, and V. L. S. VALENTE. "The copia retrotransposon and horizontal transfer in Drosophila willistoni." Genetics Research 93, no. 3 (2011): 175–80. http://dx.doi.org/10.1017/s0016672310000625.

Full text
Abstract:
SummaryThe copia element is a retrotransposon that is hypothesized to have been horizontally transferred from Drosophila melanogaster to some populations of Drosophila willistoni in Florida. Here we have used PCR and Southern blots to screen for sequences similar to copia element in South American populations of D. willistoni, as well as in strains previously shown to be carriers of the element. We have not found the canonical copia element in any of these populations. Unlike the P element, which invaded the D. melanogaster genome from D. willistoni and quickly spread worldwide, the canonical
APA, Harvard, Vancouver, ISO, and other styles
3

Jaenike, John, Michal Polak, Anna Fiskin, Mada Helou, and Miranda Minhas. "Interspecific transmission of endosymbiotic Spiroplasma by mites." Biology Letters 3, no. 1 (2006): 23–25. http://dx.doi.org/10.1098/rsbl.2006.0577.

Full text
Abstract:
The occurrence of closely related strains of maternally transmitted endosymbionts in distantly related insect species indicates that these infections can colonize new host species by lateral transfer, although the mechanisms by which this occurs are unknown. We investigated whether ectoparasitic mites, which feed on insect haemolymph, can serve as interspecific vectors of Spiroplasma poulsonii , a male-killing endosymbiont of Drosophila . Using Spiroplasma -specific primers for PCR, we found that mites can pick up Spiroplasma from infected Drosophila nebulosa females and subsequently transfer
APA, Harvard, Vancouver, ISO, and other styles
4

D'Ávila, Marícia F., Rosane N. Garcia, Elgion L. S. Loreto, and Vera Lúcia da S. Valente. "Analysis of phenotypes altered by temperature stress and hipermutability in Drosophila willistoni." Iheringia. Série Zoologia 98, no. 3 (2008): 345–54. http://dx.doi.org/10.1590/s0073-47212008000300009.

Full text
Abstract:
Drosophila willistoni (Sturtevant, 1916) is a species of the willistoni group of Drosophila having wide distribution from the South of USA (Florida) and Mexico to the North of Argentina. It has been subject of many evolutionary studies within the group, due to its considerable ability to successfully occupy a wide range of environments and also because of its great genetic variability expressed by different markers. The D. willistoni 17A2 strain was collected in 1991 in the state of Rio Grande do Sul, Brazil (30°05'S, 51°39'W), and has been maintained since then at the Drosophila laboratory of
APA, Harvard, Vancouver, ISO, and other styles
5

Valente, V.L.S., A. Ruszczyk, and dos Santos R.A. and. "Chromosomal polymorphism in urban Drosophila willistoni." Revista brasileira de genetica [Brazilian Journal of Genetics] 16 (June 5, 1993): 307–19. https://doi.org/10.5281/zenodo.10771649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Finokiet, Manuela, Beatriz Goni, and Élgion Lúcio Silva Loreto. "Genetic transformation of Drosophila willistoni using piggyBac transposon and GFP." Brazilian Archives of Biology and Technology 50, no. 1 (2007): 113–20. http://dx.doi.org/10.1590/s1516-89132007000100013.

Full text
Abstract:
Studies were carried out on the use of piggyBac transposable element as vector and the green fluorescent protein (EGFP) from the jellyfish, Aquorea victoria, as a genetic marker for the transformation of Drosophila willistoni. Preblastoderm embryos of D. willistoni white mutant were microinjected with a plasmid containing the EGFP marker and the piggyBac ITRs, together with a helper plasmid containing the piggyBac transposase placed under the control of the D. melanogaster hsp70 promoter. G0 adults transformants were recovered at a frequency of approximately 67%. Expression of EGFP in larvae,
APA, Harvard, Vancouver, ISO, and other styles
7

Regner, Luciana P., Eliana Abdelhay, Cláudia Rohde, Jaqueline J. S. Rodrigues, and Vera Lucia S. Valente. "Temperature-dependent gonadal hybrid dysgenesis in Drosophila willistoni." Genetics and Molecular Biology 22, no. 2 (1999): 205–11. http://dx.doi.org/10.1590/s1415-47571999000200012.

Full text
Abstract:
Temperature-dependent gonadal dysgenesis was shown to occur in the progeny of both inter- and intrastrain crosses involving two populations of Drosophila willistoni, one of which was an old laboratory stock, and the other, freshly collected from a natural population. We propose that the phenomenon observed was caused by the mobilization of transposable elements, as occurs in several other Drosophila species.
APA, Harvard, Vancouver, ISO, and other styles
8

Santos-Colares, Marisa C. Dos, Vera L. S. Valente, and Beatriz Goñi. "The meiotic chromosomes of male Drosophila willistoni." Caryologia 56, no. 4 (2003): 431–37. http://dx.doi.org/10.1080/00087114.2003.10589355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Machida, Waira S., Rosana Tidon, and Julia Klaczko. "Wing plastic response to temperature variation in two distantly related Neotropical Drosophila species (Diptera, Drosophilidae)." Canadian Journal of Zoology 100, no. 2 (2022): 82–89. http://dx.doi.org/10.1139/cjz-2021-0099.

Full text
Abstract:
Phenotypic plasticity has been described for morphological and life-history traits in many organisms. In Drosophila, temperature drives phenotypic change in several traits, but few Neotropical species have been studied and whether the phenotypic variation associated with plasticity is adaptive remains unclear. Here, we studied the phenotypic response to temperature variation in the distantly related Neotropical species Drosophila mercatorum Patterson and Wheeler, 1942 and Drosophila willistoni Sturtevant, 1916. We evaluate if wing shape variation follows that observed in the Neotropical specie
APA, Harvard, Vancouver, ISO, and other styles
10

Morais, Paula B., Allen N. Hagler, Carlos A. Rosa, Leda C. Mendonca-Hagler, and Louis B. Klaczko. "Yeasts associated with Drosophila in tropical forests of Rio de Janeiro, Brazil." Canadian Journal of Microbiology 38, no. 11 (1992): 1150–55. http://dx.doi.org/10.1139/m92-188.

Full text
Abstract:
The distribution and diversity of yeast species vectored by and from the crop of eight species groups of Drosophila is described for two rain forest sites and an urban wooded area in Rio de Janeiro, Brazil. The typical forest Drosophila groups guarani, tripunctata, and willistoni showed a higher diversity of yeasts than the cosmopolitan melanogaster species group, suggesting different strategies of utilization of substrates. Apiculate yeasts, including Kloeckera apis, Kloeckera javanica, and Kloeckera japonica, were the prevalent species. Geotrichum spp. and Candida citrea were also frequent i
APA, Harvard, Vancouver, ISO, and other styles
11

Blauth, Monica L., Rafaela V. Bruno, Eliana Abdelhay, Elgion L. S. Loreto, and Vera L. S. Valente. "Detection of P element transcripts in embryos of Drosophila melanogaster and D. willistoni." Anais da Academia Brasileira de Ciências 81, no. 4 (2009): 679–89. http://dx.doi.org/10.1590/s0001-37652009000400007.

Full text
Abstract:
The P element is one of the most thoroughly studied transposable elements (TE). Its mobilization causes the hybrid dysgenesis that was first described in Drosophila melanogaster. While studies of the P element have mainly been done in D. melanogaster, it is believed that Drosophila willistoni was the original host species of this TE and that P was transposed to the D. melanogaster genome by horizontal transfer. Our study sought to compare the transcriptional behavior of the P element in embryos of D. melanogaster, which is a recent host, with embryos of two strains of D. willistoni, a species
APA, Harvard, Vancouver, ISO, and other styles
12

Valente, Vera Lúcia da Silva, Beatriz Goñi, Victor Hugo Valiati, Cláudia Rohde, and Nena Basílio Morales. "Chromosomal polymorphism in Drosophila willistoni populations from Uruguay." Genetics and Molecular Biology 26, no. 2 (2003): 163–73. http://dx.doi.org/10.1590/s1415-47572003000200009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

SANTOS-COLARES, M. C., and V. L. S. VALENTE. "Meiosis in Drosophila willistoni and D. paulistorum females." Hereditas 141, no. 1 (2004): 89–93. http://dx.doi.org/10.1111/j.1601-5223.2004.01798.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mardiros, Xian B., Ronni Park, Bryan Clifton, et al. "Postmating Reproductive isolation between strains of Drosophila willistoni." Fly 10, no. 4 (2016): 162–71. http://dx.doi.org/10.1080/19336934.2016.1197448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Santos-Colares, Marisa Conceição dos, Tiago Hoerbe Degrandi, and Vera Lúcia S. Valente. "Cytological Detection of Male Recombination in Drosophila willistoni." CYTOLOGIA 69, no. 4 (2004): 359–65. http://dx.doi.org/10.1508/cytologia.69.359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Saavedra, C.C.R., M. Napp, M.L. Reguly, and V.L.S. Valente. "Isoenzymatic polymorphisms in urban populations of Drosophila willistoni." Revista chilena de historia natural 74 (June 5, 2001): 47–53. https://doi.org/10.5281/zenodo.10765782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Santos-Colares, M.C., and V.L.S. Valente. "Meiosis in Drosophila willistoni and S. paulistorum females." Hereditas 141 (June 5, 2004): 89–93. https://doi.org/10.5281/zenodo.10766115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Valente, V.L. da Silva, B. Goni, V.H. Valiati, C. Rohde, and N.B. Morales. "Chromosomal polymorphism in Drosophila willistoni populations from Uruguay." Genetics and Molecular Biology 26 (June 5, 2003): 163–73. https://doi.org/10.5281/zenodo.10771655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Daniels, S. B., K. R. Peterson, L. D. Strausbaugh, M. G. Kidwell, and A. Chovnick. "Evidence for horizontal transmission of the P transposable element between Drosophila species." Genetics 124, no. 2 (1990): 339–55. http://dx.doi.org/10.1093/genetics/124.2.339.

Full text
Abstract:
Abstract Several studies have suggested that P elements have rapidly spread through natural populations of Drosophila melanogaster within the last four decades. This observation, together with the observation that P elements are absent in the other species of the melanogaster subgroup, has lead to the suggestion that P elements may have entered the D. melanogaster genome by horizontal transmission from some more distantly related species. In an effort to identify the potential donor in the horizontal transfer event, we have undertaken an extensive survey of the genus Drosophila using Southern
APA, Harvard, Vancouver, ISO, and other styles
20

Figuero, María Luna, and Violeta Rafael. "Descripción de tres especies nuevas del género Drosophila (Diptera, Drosophilidae) en el Ecuador." Iheringia. Série Zoologia 103, no. 3 (2013): 246–54. http://dx.doi.org/10.1590/s0073-47212013000300006.

Full text
Abstract:
Se encontraron tres especies nuevas de Drosophila entre los individuos colectados en diferentes localidades del Ecuador. Una de las especies nuevas pertenecen al grupo Drosophila willistoni y otra al grupo Drosophila asiri, la tercera especie se encuentra sin agrupar. En todos los muestreos realizados se usaron trampas fabricadas con botellas de plástico agujereadas con cebo de banano y levadura. Las tres especies son: D. (Sophophora) neocapnoptera sp. nov., esta especie es similar a D. capnoptera Patterson & Mainland, 1944, sin embargo presentan algunas diferencias en el ala que permiten
APA, Harvard, Vancouver, ISO, and other styles
21

Ricchio, João, Fabiana Uno, and A. Bernardo Carvalho. "New Genes in the Drosophila Y Chromosome: Lessons from D. willistoni." Genes 12, no. 11 (2021): 1815. http://dx.doi.org/10.3390/genes12111815.

Full text
Abstract:
Y chromosomes play important roles in sex determination and male fertility. In several groups (e.g., mammals) there is strong evidence that they evolved through gene loss from a common X-Y ancestor, but in Drosophila the acquisition of new genes plays a major role. This conclusion came mostly from studies in two species. Here we report the identification of the 22 Y-linked genes in D. willistoni. They all fit the previously observed pattern of autosomal or X-linked testis-specific genes that duplicated to the Y. The ratio of gene gains to gene losses is ~25 in D. willistoni, confirming the pro
APA, Harvard, Vancouver, ISO, and other styles
22

Borba, Claudete M. B. de, and Marly Napp. "Contribuição ao estudo das populações naturais de Drosophila willistoni do Estado do Rio Grande do Sul." Ciência e Natura 7, no. 7 (1985): 181. http://dx.doi.org/10.5902/2179460x25422.

Full text
Abstract:
Forty six samples of natural populations of D. willistoni from three places of Rio Grande do Sul state were studied between december 1978 and july 1981. The data sugest that this species have a regulation of populacional size by a interection between temperature and humidity. A small coconut (Arecastrum romanzoffianum) show to be a suitable substrate to nurture·and also to ovoposition. Among the places studied, at the Parque Florestal Estadual do Turvo it was possible to observe a fit population of D. willistoni in majority of gathering periods, probabily because the ecological and climatic co
APA, Harvard, Vancouver, ISO, and other styles
23

Ebbert, Mercedes A. "The Interaction Phenotype in the Drosophila willistoni-Spiroplasma Symbiosis." Evolution 45, no. 4 (1991): 971. http://dx.doi.org/10.2307/2409703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

da Silva, L. Basso, D. F. Leite, V. L. S. Valente, and C. Rohde. "Mating activity of yellow and sepia Drosophila willistoni mutants." Behavioural Processes 70, no. 2 (2005): 149–55. http://dx.doi.org/10.1016/j.beproc.2005.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Garcia, R.N., E.L.S. Loreto, Y.-P. Crespo, and V.L.S. Valente. "Evidencias de metilacao no genoma de Drosophila willistoni. (Abstract)." Resumos do Congresso Brasileiro de Genetica 49 (June 5, 2003): 359. https://doi.org/10.5281/zenodo.10745771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Valente, V.L.S., C. Rohde, V.H. Valiati, N.B. Morales, and B. Goni. "Chromosome inversions occurring in Uruguayan populations of Drosophila willistoni." Drosophila Information Service 84 (June 5, 2001): 55–59. https://doi.org/10.5281/zenodo.10771653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bizzo, Luís, Marco S. Gottschalk, Daniela C. De Toni, and Paulo R. P. Hofmann. "Seasonal dynamics of a drosophilid (Diptera) assemblage and its potencial as bioindicator in open environments." Iheringia. Série Zoologia 100, no. 3 (2010): 185–91. http://dx.doi.org/10.1590/s0073-47212010000300001.

Full text
Abstract:
Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species group
APA, Harvard, Vancouver, ISO, and other styles
28

Salceda, Victor. "A prospective study of inversion polymorphism in natural populations of two Drosophila species from eastern Mexico." Genetika 42, no. 3 (2010): 407–14. http://dx.doi.org/10.2298/gensr1003407s.

Full text
Abstract:
Relative frequencies for heterozygous inversions in nine populations of D. nebulosa and six of D. willistoni were analyzed. The analysis corresponds to a grand total of 1828 arm chromosomes in which their genotype were determined, of them 404 correspond for each one of the two polymorphic chromosomes, X and III, of D. nebulosa and 204 per chromosome arm in D. willistoni. The more abundant inversions, according to their relative frequencies in D. nebulosa were the XL inversion with 7.9 % and inversion ?A? in the third chromosome with 15.6 %, the remaining inversion found did not reach the ten p
APA, Harvard, Vancouver, ISO, and other styles
29

Bentley, J.K., G. Hinds, and G.D.D. Hurst. "The male-killing Spiroplasmas of Drosophila nebulosa and Drosophila willistoni have identical ITS sequences." Drosophila Information Service 85 (June 5, 2002): 63–65. https://doi.org/10.5281/zenodo.10735804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Garcia, Rosane Nunes, Marícia Fantinel D’Ávila, Lizandra Jaqueline Robe, et al. "First evidence of methylation in the genome of Drosophila willistoni." Genetica 131, no. 1 (2007): 91–105. http://dx.doi.org/10.1007/s10709-006-9116-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cláudia, Rohde, Tiago H. Degrandi, Daniela C. De Toni, and Vera L. S. Valente. "Drosophila willistoni polytene chromosomes. I. Pericentric inversion on X chromosome." Caryologia 58, no. 3 (2005): 249–54. http://dx.doi.org/10.1080/00087114.2005.10589459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

de, Borba C.M.B., and M. Napp. "Genetic-ecologic correlations in the enzyme variability of Drosophila willistoni." Revista brasileira de genetica [Brazilian Journal of Genetics] 9 (June 5, 1986): 593–614. https://doi.org/10.5281/zenodo.10736831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rohde, C., T.H. Degrandi, Toni D.C. De, and V.L.S. Valente. "Drosophila willistoni polytene chromosomes. I. Pericentric inversion on X chromosome." Caryologia 58 (June 5, 2005): 249–54. https://doi.org/10.5281/zenodo.10765352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Valente, V.L.S., and A.M. Araujo. "Comments on breeding sites of Drosophila willistoni Sturtevant (Diptera, Drosophilidae)." Revista brasileira de entomologia 30 (June 5, 1986): 281–86. https://doi.org/10.5281/zenodo.10771633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sassi, Adriana Koslovski, Fabiana Herédia, Élgion Lucio da Silva Loreto, Vera Lucia da Silva Valente, and Claudia Rohde. "Transposable elements P and gypsy in natural populations of Drosophila willistoni." Genetics and Molecular Biology 28, no. 4 (2005): 734–39. http://dx.doi.org/10.1590/s1415-47572005000500013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ritchie, M. G., and J. M. Gleason. "Rapid evolution of courtship song pattern in Drosophila willistoni sibling species." Journal of Evolutionary Biology 8, no. 4 (1995): 463–79. http://dx.doi.org/10.1046/j.1420-9101.1995.8040463.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

SANTOS-COLARES, M. C., B. GOÑI, and V. L. S. VALENTE. "Male meiotic chromosomes of five species of the Drosophila willistoni group." Hereditas 143, no. 2006 (2006): 173–76. http://dx.doi.org/10.1111/j.2006.0018-0661.01920.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Holyoake, A. J. "Vege and Mar: Two Novel hAT MITE Families from Drosophila willistoni." Molecular Biology and Evolution 20, no. 2 (2003): 163–67. http://dx.doi.org/10.1093/molbev/msg023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fresia, P., J. Graneri, and B. Goni. "Anesthetic effects of two chemicals on the fertility of Drosophila willistoni." Drosophila Information Service 84 (June 5, 2001): 141–42. https://doi.org/10.5281/zenodo.10745197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Parada, C., and B. Goni. "Hypermutable strains isolated from Uruguayan populations of Drosophila willistoni (Diptera, Drosophilidae)." Drosophila Information Service 86 (June 5, 2003): 143–46. https://doi.org/10.5281/zenodo.10761746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ritchie, M.G., and J.M. Gleason. "Rapid evolution of courtship song pattern in Drosophila willistoni sibling species." Journal of Evolutionary Biology 8 (June 5, 1995): 463–79. https://doi.org/10.5281/zenodo.10764922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Santos-Colares, M.C., B. Goni, and Valente V.L.S. and. "Male meiotic chromosomes of five species of the Drosophila willistoni group." Hereditas 143 (June 5, 2006): 173–76. https://doi.org/10.5281/zenodo.10766141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sassi, A.K., F. Heredia, E.L da S. Loreto, V.L. da S. Valente, and C. Rohde. "Transposable elements P and gypsy in natural populations of Drosophila willistoni." Genetics and Molecular Biology 28 (June 5, 2005): 734–39. https://doi.org/10.5281/zenodo.10766211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zanini, R., M. Depra, and V.L.d.S. Valente. "On the geographic distribution of the Drosophila willistoni group (Diptera, Drosophilidae) Ð updated geographic distribution of the Neotropical willistoni subgroup." Drosophila Information Service 98 (June 5, 2015): 39–43. https://doi.org/10.5281/zenodo.10774017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gleason, Jennifer M., Elizabeth C. Griffith, and Jeffrey R. Powell. "A Molecular Phylogeny of the Drosophila willistoni Group: Conflicts Between Species Concepts?" Evolution 52, no. 4 (1998): 1093. http://dx.doi.org/10.2307/2411239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pita, Sebastián, Yanina Panzera, Vera Lúcia da Silva Valente, et al. "Cytogenetic mapping of the Muller F element genes in Drosophila willistoni group." Genetica 142, no. 5 (2014): 397–403. http://dx.doi.org/10.1007/s10709-014-9784-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gleason, J.M., E.C. Griffith, and J.R. Powell. "A molecular phylogeny of the Drosophila willistoni group: Conflicts between species concepts?" Evolution 52 (June 5, 1998): 1093–103. https://doi.org/10.5281/zenodo.10746337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Regner, L.-P., A. Zaha, E. Abdelhay, and V.L.S. Valente. "P elements in natural populations of Drosophila willistoni from different geographical origins." Drosophila Information Service 81 (June 5, 1998): 156–60. https://doi.org/10.5281/zenodo.10764542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Salceda, V.M. "Inversion polymorphism in a natural population of Drosophila willistoni from Tabasco, Mexico." Drosophila Information Service 84 (June 5, 2001): 99–100. https://doi.org/10.5281/zenodo.10765956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Armstrong, Earlene, Linda Bass, Kathleen Staker, and Louise Harrell. "A comparison of the biology of a Nosema in Drosophila melanogaster to Nosema kingi in Drosophila willistoni." Journal of Invertebrate Pathology 48, no. 1 (1986): 124–26. http://dx.doi.org/10.1016/0022-2011(86)90151-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!