Dissertations / Theses on the topic 'Drought recovery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Drought recovery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ahmadi, Behzad. "On the Drought Recovery and Resiliency: How Terrestrial and Riverine Ecosystems Recover from Agricultural and Hydrological Droughts." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4834.
Full textMullen, Caroline. "An investigation into the effects of drought and drought recovery on macroinvertebrate communities." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/7137/.
Full textKebede, Yohannes. "Economic evaluation of post-drought recovery agricultural project : the case of Tegulet and Bulga District, Shoa Province, Ethiopia." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63894.
Full textKolus, Hannah. "Assessing Terrestrial Biosphere Model Simulation of Ecosystem Drought Response and Recovery." Thesis, Northern Arizona University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10283123.
Full textSevere drought plays a critical role in altering the magnitude and interannual variability of the net terrestrial carbon sink. Drought events immediately decrease net primary production (NPP), and drought length and magnitude tend to enhance this negative impact. However, satellite and in-situ measurements have also indicated that ecosystem recovery from extreme drought can extend several years beyond the return to normal climate conditions. If an ecosystem’s drought recovery time exceeds the time interval between successive droughts, these legacy effects may reinforce the impact of future drought. Since the frequency and severity of extreme climate events are expected to increase with climate change, both the immediate and prolonged impact of drought may contribute to amplified climate warming by decreasing the strength of the land carbon sink. However, it is unknown whether terrestrial biosphere models capture the impact of drought legacy effects on carbon stocks and cycling. Using a suite of twelve land surface models from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we assessed model ability to simulate drought legacy effects by analyzing the modeled NPP response to drought events across forested regions of the US and Europe. We found that modeled drought legacy effects last about one year (2% reduction in NPP), with complete NPP recovery in the second post-drought year. Since observations suggest that legacy effects extend up to four years post-drought, with a 9% growth reduction in the first post-drought year, models appear to underestimate both the timescales and magnitude of drought legacy effects. We further explored vegetation sensitivity to climate anomalies through global, time-lagged correlation analysis of NPP and climatic water deficit. Regional differences in the lag time between climate anomaly and NPP response are prevalent, but low sensitivities (correlations) characterize the entire region. Significant correlations coincided with characteristic lag times of 0 to 6 months, indicating relatively immediate NPP response to moisture anomalies. Model ability to accurately simulate vegetation’s response to drought and sensitivity to climate anomalies is necessary in order to produce reliable forecasts of land carbon sink strength and, consequently, to predict the rate at which climate change will progress in the future. Thus, the discrepancies between observed and simulated vegetation recovery from drought points to a potential critical model deficiency.
Busso, Carlos A. "Factors Affecting Recovery from Defoliation during Drought in Two Aridland Tussock Grasses." DigitalCommons@USU, 1988. https://digitalcommons.usu.edu/etd/6455.
Full textMurdock, Justin N. "Regulators of stream ecosystem recovery from disturbance." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/906.
Full textGoldsby, Anthony Lee. "Establishment, drought tolerance and recovery, and canopy analysis of turfgrasses in the transition zone." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/15416.
Full textDepartment of Horticulture, Forestry, and Recreation Resources
Dale J. Bremer
Jack Fry
Increasing water scarcity may result in greater irrigation restrictions for turfgrass. Drought tolerance and recovery of Kentucky bluegrasses (Poa. pratensis L.) (KBG) were evaluated during and after 88 and 60 day dry downs in 2010 and 2011, respectively, under a rainout shelter. Changes in green coverage were evaluated with digital images. Green coverage declined slowest during dry downs and increased fastest during recoveries in the cultivar ‘Apollo’, indicating it had superior drought tolerance. Electrolyte leakage, photosynthesis, and leaf water potential were evaluated in 7 KBG cultivars during and after the dry downs. Soil moisture at 5 and 20 cm was measured. There were generally no differences in physiological parameters among cultivars during or after dry down. The highest reduction in soil moisture at 5 and 20 cm was in Apollo, suggesting it had a better developed root system for mining water from the profile during drought. Weed prevention and turfgrass establishment of ‘Legacy’ buffalograss (Buchloe dactyloides [Nutt.] Engelm.) and ‘Chisholm’ zoysiagrass (Zoysia japonica Steud.) grown on turf reinforcement mats (TRM) was evaluated. ‘Chisholm’ zoysiagrass stolons grew under the TRM; as such, use of TRM for this cultivar is not practical. Buffalograss had 90% or greater coverage when established on TRM in 2010 and 65% or greater coverage in 2011; coverage was similar to that in oxadiazon-treated plots at the end of each year. ‘Legacy’ buffalograss plugs were established on TRM over plastic for 3 weeks, stored in TRM under tree shade for 7, 14, or 21 days, and evaluated for establishment after storage. In 2010, plugs on mats stored for 7 days had similar coverage to the control, but in 2011 displayed similar coverage to plugs stored on TRM for 14 or 21 day treatments. Green leaf are index (LAI) is an important indicator of turfgrass performance, but its measurement is time consuming and destructive. Measurements using hyperspectral radiometry were compared with destructive measurements of LAI. Results suggest spectral radiometry has potential to accurately predict LAI. The robustness of prediction models varied over the growing season. Finding one model to predict LAI across and entire growing season still seems unrealistic.
Woods, Natasha Nicole. "The Relative Importance of Abiotic and Biotic Factors for Seedling Establishment in the Colorado Desert, CA." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429882344.
Full textAlshugeairy, Zaniab. "Genetic, phenomic and molecular analysis of drought avoidance and recovery traits in rice for the improvement of plant breeding." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=203868.
Full textCorreia, Barbara dos Santos. "Linking omics and ecophysiology in Eucalytus: unravelling stress tolerance in a forest species." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/18399.
Full textEucalyptus plantations are among the most productive forest stands worldwide. In Portugal and Spain, they are widely used for pulp production and as an energy crop. However, the region’s Mediterranean climate, with increasingly severe summer drought, negatively affects eucalypt growth and increases mortality. The aim of this doctoral thesis was to unravel drought tolerance in Eucalyptus globulus by investigating and interconnecting information on the processes mediating water deficit and rehydration, from gene and molecular regulation to physiological responses and plant performance, using two different genotypes and different stress trials. The thesis disclosed herein is presented in a series of research papers (chapters 2, 3, 4 and 5), preceded by a general introduction (chapter 1) and closed with concluding remarks (chapter 6). Chapter 2 describes a greenhouse trial and a slowly imposed water deficit, and is divided into three subchapters. Two genotypes (AL-18 and AL-10) were submitted to a 3-week water stress period at two different intensities (18% and 25% of field capacity), followed by 1 week of rewatering. Recovery was assessed 1 day and 1 week after rehydration. Several phytohormones were monitored in leaves, xylem sap and roots, 2 h, 4 h, 24 h, and 168 h after rewatering. Water deficit reduced height, biomass, water potential, and gas exchange. Contrarily, the levels of pigments, chlorophyll fluorescence parameters and MDA increased. ABA and ABA-GE levels increased, and JA content decreased in leaves and increased in xylem sap. During recovery, most of the physiological and biochemical responses of stressed plants were reversed. Comparative proteome (using difference gel electrophoresis) and metabolome (using gas chromatography–mass spectrometry) analyses enabled the separation and isolation of 2031 peptide spots, 217 of which were identified, and the detection of 121 polar metabolites. The analysis of the resilient clone AL-18, which presented a response network very distinct from the responsive clone AL-10, reinforced the role of specific photosynthetic and defence-related proteins as key players in mediating drought tolerance and revealed new players: glutamine synthetase, malate dehydrogenase and isoflavone reductase-like protein. Chapter 3 regards a climate chamber trial and a sudden water shortage, and is divided in two subchapters. The relative expression of 12 transcripts was analysed by quantitative PCR in two clones with different degrees of tolerance (AL-18 and AL-13) 7 and 11 days after water withholding and rehydration (2 h and 3 days after rewatering). Sudden water shortage was more detrimental to the plants than when slowly imposed, with heavier outcomes in clone AL-13, including plant death. Potential molecular indicators linked to enhanced water stress tolerance in Eucalyptus globulus were identified: rubisco activase (RCA), ferredoxin-NADP(H) oxireductase (FNR), mitochondrial malate dehydrogenase (mMDH), peroxisomal catalase (CAT) and isoflavone reductase (IFR). Afterwards, several biochemical markers of oxidative stress and DNA methylation patterns were quantified in the leaves of AL-18. The alterations detected using global and specific indicators reflected the parallel induction of redox and complex DNA methylation changes occurring during stress imposition and relief. Chapter 4 reports a field trial: the previously identified set of indicators for selection of water stress tolerance was tested in field-grown AL-18 and AL-13. Some of the plants were irrigated (IR), and others were left under environmental conditions of reduced rainfall (NI) during six and a half weeks prior to rewatering. Clone AL-18 showed few fluctuations in the conditions tested, and the alterations found in clone AL-13 highlighted an induction of photosynthetic and photorespiration metabolism after artificial rehydration. The results corroborated that responses to field conditions cannot be extrapolated from a stress applied individually in the context of developing selection markers. Chapter 5 describes a climate chamber trial that tested the isolated and combined effect of drought and heat. Physiological, biochemical and metabolomic alterations were monitored in AL-18 after a 5-day of consistent drought and/or 4 h at 40ºC. Testing drought-stressed plants subject to a heat shock revealed a decrease in gas exchange, Ψpd and JA, no alterations in electrolyte leakage, MDA, starch and pigments and increased glutathione pool in relation to control. The induction of cinnamate was a novel response triggered only by the combined stress. These results highlighted that the combination of drought and heat provides significant protection from more detrimental effects of drought-stressed eucalypts, confirming that combined stresses alter plant metabolism in a novel manner that cannot be extrapolated by the sum of the different stresses applied individually. This thesis describes a number of biological responses that enable E. globulus to thrive under conditions of water deficit and provides useful information of pathways to be explored in order to find suitable markers of abiotic stress tolerance in this species. Despite that, a bigger challenge remains and consists of the need to focus our studies in more realistic, field-like experiments, at least in the context of finding suitable selection markers in the climate change era.
As plantações de eucalipto estão entre as mais produtivas do mundo inteiro. Em Portugal e Espanha, são amplamente utilizadas na produção de polpa e como fonte de energia. No entanto, o clima mediterrânico da região, com secas de verão cada vez mais severas, afeta negativamente o crescimento do eucalipto e aumenta a sua mortalidade. Esta tese de doutoramento tem como objetivo desvendar a tolerância à seca da espécie Eucalyptus globulus, investigando e interligando informação dos processos que medeiam o défice hídrico e a reidratação, desde a regulação genética e molecular até às respostas fisiológicas e desempenho da planta, utilizando dois genótipos distintos e diferentes ensaios experimentais. Esta tese está estruturada sob a forma de estudos científicos (capítulos 2, 3, 4 e 5), precedidos por uma introdução geral (capítulo 1), e termina com as notas finais (capítulo 6). O capítulo 2 descreve um ensaio de estufa e um défice hídrico imposto lentamente, e está dividido em 3 subcapítulos. Dois genótipos (AL-18 e AL-10) foram sujeitos a um período de stress hídrico de 3 semanas com duas intensidades diferentes (18% e 25% da capacidade de campo), seguido de uma semana de reidratação. A recuperação foi avaliada um dia e uma semana depois da reidratação. Várias fitohormonas foram monitorizadas nas folhas, seiva xilémica e raízes, 2 h, 4 h, 24 h e 168 h depois da reidratação. A falta de água reduziu a altura, a biomassa, o potencial hídrico e as trocas gasosas. Pelo contrário, os níveis de pigmentos, parâmetros da fluorescência da clorofila e MDA aumentaram. Os níveis de ABA e de ABA-GE aumentaram, enquanto o JA diminuiu nas folhas e aumentou na seiva xilémica. Durante a recuperação, a maioria das alterações fisiológicas e bioquímicas provocadas pelo stress reverteram. Análises comparativas do proteoma (analisado por eletroforese em gel diferencial) e do metaboloma (analisado por cromatografia gasosa com espetrometria de massa) permitiram a separação de 2031 pontos peptídicos, dos quais 217 foram identificados, e a deteção de 121 metabolitos polares. A análise do clone resiliente AL-18, que apresentou uma rede de resposta bem distinta do clone responsivo AL-10, reforçou o papel de proteínas específicas da fotossíntese e relacionadas com a defesa como intermediários chave na tolerância à seca e revelou novos intermediários: glutamina sintetase, malato desidrogenase e isoflavona redutase. O capítulo 3 diz respeito a um ensaio em câmara climática e a uma rápida escassez de água, e está dividido em 2 subcapítulos. A expressão relativa de 12 transcritos foi analisada por PCR quantitativo em dois clones com diferentes graus de tolerância (AL-18 e AL-13) depois de 7 e 11 dias sem qualquer rega e posterior reidratação. A rápida escassez de água foi mais prejudicial para as plantas do que o défice hídrico imposto lentamente, com maior visibilidade no clone AL-13 que revelou morte de algumas plantas. Indicadores moleculares potencialmente ligados a uma tolerância aumentada foram identificados: rubisco ativase (RCA), ferredoxina-NADP(H) oxidorredutase (FNR), malato desidrogenase mitocondrial (mMDH) catalase peroxissomal (CAT) e isoflavona redutase (IFR). De seguida, vários marcadores bioquímicos de stress oxidativo e padrões de metilação do DNA foram quantificados nas folhas do clone AL-18. As alterações detetadas utilizando indicadores globais e específicos refletiram a indução de complexas modificações redox e de metilação do DNA, que ocorrem paralelamente durante a imposição e interrupção do stress. O capítulo 4 reporta um ensaio de campo: o conjunto de indicadores de seleção de tolerância hídrica identificado anteriormente foi testado em AL-18 e AL-13 plantados no campo. Algumas das plantas foram regadas artificialmente (IR) e outras foram deixadas nas condições ambientais de precipitação reduzida (NI) durante seis semanas e meia antes de voltar a regar. O clone AL-18 mostrou pouca variação nas condições testadas, e as alterações encontradas no clone AL-13 realçaram a indução do metabolismo fotossintético e fotorespiratório após a reidratação artificial. Estes resultados mostraram que as respostas das plantas no campo não podem ser extrapoladas a partir do estudo de um stress aplicado individualmente, particularmente no contexto de encontrar marcadores de seleção. O capítulo 5 descreve um ensaio em câmara climática que testou o efeito isolado e combinado de seca e calor. Alterações fisiológicas, bioquímicas e metabolómicas foram monitorizadas no clone AL-18 após 5 dias de seca consistente e/ou 4 h a 40ºC. Testar plantas em stress hídrico sujeitas a um choque térmico revelou uma diminuição das trocas gasosas, do potencial hídrico e do JA, nenhum efeito a nível da perda de eletrólitos, MDA, amido e pigmentos e um aumento na glutationa, em comparação com condições controlo. O stress combinado induziu também a produção do cinamato, uma resposta nova. Estes resultados realçam que a combinação de seca e calor fornece uma proteção significante contra os efeitos mais prejudiciais da seca isolada em eucalipto, confirmando que o stress combinado altera o metabolismo das plantas de uma forma nova que não pode ser extrapolada pela soma dos diferentes stresses aplicados individualmente. Esta tese descreve um conjunto de respostas biológicas que permitem ao eucalipto manter-se em condições de défice hídrico e revela informação útil de várias vias metabólicas a serem exploradas de modo a encontrar marcadores de tolerância ao stress abiótico apropriados. Apesar disso, um desafio maior permanece. Consiste na necessidade de focarmos os nossos estudos em experiências mais realistas, que mimetizem as condições de campo, pelo menos no contexto de encontrarmos marcadores de seleção ajustados a uma era de alterações climáticas.
Saunders, Debra, and debbie saunders@anu edu au. "Ecology and conservation of the swift parrot - an endangered austral migrant." The Australian National University. College of Science, 2008. http://thesis.anu.edu.au./public/adt-ANU20081010.161656.
Full textFranklin, Maria Lucia Torres. "Estudo do metabolismo dos lipÃdeos de membranas do cloroplasto e dos genes associados em Vigna unguiculata (L.) Walp. em condiÃÃo de dÃficit hÃdrico e reidrataÃÃo subseqÃente." Universidade Federal do CearÃ, 2008. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10590.
Full textFundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
As membranas biolÃgicas sÃo alvos preferenciais dos efeitos deletÃrios do estresse hÃdrico, induzidos por aÃÃo de enzimas hidrolÃticas e espÃcies reativas do oxigÃnio (ERO), ambas estimuladas durante o estresse. A biossÃntese dos lipÃdeos dos cloroplastos pode ser importante para a tolerÃncia ao estresse hÃdrico e para a recuperaÃÃo apÃs reidrataÃÃo. Nesse trabalho nos estudamos o metabolismo dos cloroplastos, monogalactosil-diacilglicerol (MGDG), digalactosil-diacilglicerol (DGDG), sulfoquinovosil-diacilglicerol (SQDG), phosphatidil-glicerol (PG), no Ãmbito do dÃficit hÃdrico e da reidrataÃÃo apÃs o fim do estresse. Com este intuito, nos medimos o teor dos lipÃdeos da folhas, acompanhamos a incorporaÃÃo do precursor 14C-acetato nos lipÃdeos e analisamos a expressÃo dos genes codificadores das enzimas de sÃntese chave dos lipÃdeos (MGD1, MGD2, DGD1, DGD2, SQD2 e PGP1) durante o estresse hÃdrico e apÃs a reidrataÃÃo. Visando de uma melhor compreensÃo da relaÃÃo entre o metabolismo destes lipÃdeos e a tolerÃncia a seca, nos trabalhamos com duas cultivares de Vigna unguiculata L. Walp, uma tolerante (cv. EPACE) e outra sensÃvel (cv. 1183) a seca. Por meio de varredura diferencial de um biblioteca de cDNA de V.unguiculata, foram obtidas as seqÃÃncias completas dos cDNA dos genes VuMGD1, VuMGD2, VuDGD1, VuDGD2, VuSQD2 e VuPGP1. Os resultados mostram que em condiÃÃes de estresse hÃdrico a cultivar tolerante, alÃm de preservar seu teor de lipÃdeos durante a seca, à igualmente capaz de estimular a biossÃntese do DGDG aumentando significativamente a relaÃÃo DGDG:MGDG de suas membranas. NÃs sugerimos que o DGDG acumulado em condiÃÃo de seca à transportado para as membranas externas ao cloroplasto e que isso contribui para a tolerÃncia à seca. Os efeitos da desidrataÃÃo celular sobre as membranas tÃm conseqÃÃncias diretas sobre a capacidade das plantas a se recuperarem apÃs reidrataÃÃo. 48 horas apÃs a rega, a cv. sensÃvel 1183 nÃo à capaz de se recuperar em termos de teor de galactolipÃdeos e incorporaÃÃo do precursor. Na cv. tolerante, no entanto, o teor de DGDG permanece elevado, mesmo apÃs a reidrataÃÃo. Em conclusÃo, nossos resultados sugerem a importÃncia dos lipÃdeos membranares na tolerÃncia/sensibilidade das plantas ao dÃficit hÃdrico, em particular o balanÃo entre as classes lipÃdicas de propriedades fÃsico-quÃmicas diferentes (SQDG versus PG e DGDG versus MGDG) que poderiam afetar a estrutura e o funcionamento das membranas.
Membranes are main targets of degradation by reactive oxygen species and hydrolytic activities induced by drought. Chloroplasts lipid biosynthesis, especially galactolipids monogalactosyl-diacylglycerol (MGDG) and digalactosyl-diacylglycerol (DGDG) are important for plant tolerance to water deficit and for recovery after rehydration. In this thesis, we studied the metabolism of the chloroplast membrane lipids, MGDG, DGDG, sulphoquinovosyl-diacylglycerol (SQDG), phosphatidyl-glycerol (PG) under drought and during recovery from drought. Aiming this, we measured leaf lipids content, followed 14C-acÃtate incorporation and expression of genes coding for chloroplast membrane lipid synthases (MGD1, MGD2, DGD1, DGD2, SQD2 and PGP1) during drought and recovery. In order to better understand the relationship between drought tolerance and lipid metabolism, two cultivars of Vigna unguiculata L. Walp, one drought tolerant (cv. EPACE) the other drought susceptible (cv. 1183) were compared. The cDNA complete sequences for VuMGD1, VuMGD2, VuDGD1, VuDGD2, VuSQD2 and VuPGP1 were obtained from screening of a V.unguiculata cDNA library. The results showed that under water stress conditions, the tolerant cultivar, besides its ability to preserve its lipids pool despites drought, is able to strongly stimulate the DGDG biosynthesis, increasing the DGDG:MGDG ratio in its membranes. We suggest that DGDG accumulated under drought condition, when phosphate is deficient, is exported for extrachloroplastic membranes, and thus contributes to plant drought tolerance. Effects of loss of water on cell membranes have direct consequences on plant capacity to recover from stress. 48 hours after rewatering, the susceptible cv. 1183 was not able to fully recover from a moderate stress in terms of leaf galactolipid content and acetate incorporation into MGDG. In EPACE-1, MGDG leaf content remained unchanged after rehydration and DGDG remained higher than in the control plants. In conclusion, our results highlight the importance of membrane lipids in plant adaptation to water deficit and in their capacity to recover from stress. Of particular importance is the balance between lipid classes with various physico-chemical properties (SQDG versus PG, DGDG versus MGDG), since they most likely have a profound influence on membrane structure and function.
Torres, Franklin Maria Lucia. "Étude du métabolisme des lipides de membranes chloroplastiques et des gènes associés chez Vigna unguiculata dans le cadre de la sécheresse et de la reprise après réhydratation." Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0086.
Full textMembranes are main targets of degradation by reactive oxygen species and hydrolytic activities induced by drought. Chloroplasts lipid biosynthesis, especially galactolipids monogalactosyl-diacylglycerol (MGDG) and digalactosyl-diacylglycerol (DGDG) are important for plant tolerance to water deficit and for recovery after rehydration. In this thesis, we studied the metabolism of the chloroplast membrane lipids, MGDG, DGDG, sulphoquinovosyl-diacylglycerol (SQDG), phosphatidyl-glycerol (PG) under drought and during recovery from drought. Aiming this, we measured leaf lipids content, followed 14Cacétate incorporation and expression of genes coding for chloroplast membrane lipid synthases (MGD1, MGD2, DGD1, DGD2, SQD2 and PGP1) during drought and recovery. In order to better understand the relationship between drought tolerance and lipid metabolism, two cultivars of Vigna unguiculata L. Walp, one drought tolerant (cv. EPACE) the other drought susceptible (cv. 1183) were compared. The cDNA complete sequences for VuMGD1, VuMGD2, VuDGD1, VuDGD2, VuSQD2 and VuPGP1 were obtained from screening of a V.unguiculata cDNA library. The results showed that under water stress conditions, the tolerant cultivar, besides its ability to preserve its lipids pool despites drought, is able to strongly stimulate the DGDG biosynthesis, increasing the DGDG:MGDG ratio in its membranes. We suggest that DGDG accumulated under drought condition, when phosphate is deficient, is exported for extrachloroplastic membranes, and thus contributes to plant drought tolerance. Effects of loss of water on cell membranes have direct consequences on plant capacity to recover from stress. 48 hours after rewatering, the susceptible cv. 1183 was not able to fully recover from a moderate stress in terms of leaf galactolipid content and acetate incorporation into MGDG. In EPACE-1, MGDG leaf content remained unchanged after rehydration and DGDG remained higher than in the control plants. In conclusion, our results highlight the importance of membrane lipids in plant adaptation to water deficit and in their capacity to recover from stress. Of particular importance is the balance between lipid classes with various physico-chemical properties (SQDG versus PG, DGDG versus MGDG), since they most likely have a profound influence on membrane structure and function
Lamacque, Lia. "Caractérisation physiologique de la réponse à la sècheresse de la Lavande et du Lavandin : impact de la culture inter-rang." Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC012.
Full textFrench Lavender and Lavandin crops are subject to severe dieback, resulting from the interaction between Stolbur's disease and increasingly intense and frequent droughts. Improving the resistance of Lavender plantations is a challenge to safeguard this sector with a strong economic, tourist and social impact on its territory. A project involving partners from research and the Lavender sector aims to increase crop resistance through new practices. Within this framework, the objectives of the thesis were i) to identify physiological indicators of the state of stress, and in particular a physiological threshold of non-recovery, following severe droughts in Lavender and Lavandin and ii) to evaluate the effect of the agro-ecological practice of inter-row cultivation on the response of Lavandin to summer drought. In addition, a study on climate forecasting focused on production departments revealed an increase in summer and autumn temperatures and a decrease in autumn rainfall on the near horizon (2021-2050), confirming the interest of our work for the sector. To continuously monitor the physiological condition of the plants during a drought, PépiPIAF-type dendrometers, which measure variations in stem diameter, were used on these species. Two indices related to the intensity of the drought and the damage caused were thus identified: percentage loss of diameter (PLD) and loss of rehydration capacity (PLRC). Plants did not recover from a drought (PLRC = 100%) when the PLD had reached a maximum value of about 21%. These results mean that the inability to recover occurs when the elastic water storage are empty, thus demonstrating their importance during intense droughts. During dehydration, acoustic measurements and electrolyte leakage showed that this inability was associated with significant cell damage and not a high level of embolism. These two indices developed under controlled conditions also made it possible to diagnose the stress state of lavandins in the field. Dendrometers on lavandins revealed water stress exerted by an inter-crop vegetation cover during the growing season and summer drought. The water stress was earlier with this cover but the intensity of the drought was identical to that with bare soil. In addition to the importance of this work in fundamental research, in particular on the mechanisms of plant mortality, these results open perspectives on the anticipation of mortality in Lavender plantations, and even on the management of irrigation of these crops, for a reasoned control of the hydric stress necessary for the production of essential oils but harmful to the plants according to its intensity and the period
Scherrer, Pascal, and n/a. "Monitoring Vegetation Change in the Kosciuszko Alpine Zone, Australia." Griffith University. Australian School of Environmental Studies, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040715.125310.
Full textZwicke, Marine. "Impacts d'une canicule sécheresse sur le fonctionnement et la structure des communautés végétales de l'écosystème prairial." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-01020033.
Full textChurchel, Melissa A. "Macroinvertebrate communities of headwater streams in the Georgia Piedmont drought recovery and reference conditions /." 2005. http://purl.galileo.usg.edu/uga%5Fetd/churchel%5Fmelissa%5Fa%5F200508%5Fms.
Full textFonseca, Ana Margarida Dias Ferrão. "Drought recovery of Maritime pine saplings (Pinus pinaster Ait.): Short and Long-term effects." Master's thesis, 2018. http://hdl.handle.net/10316/86192.
Full textO ritmo acelerado das mudanças climáticas pode superar a capacidade das populações de se adaptarem em regiões onde as secas podem aumentar tanto em duração quanto em gravidade. Em um cronograma de longo prazo, declínio da floresta generalizados podem levar a reduções na produtividade primária líquida dos ecossistemas florestais, perda de biodiversidade e mudanças em sua composição e comunidades florestais. A mortalidade de plantas devido a períodos mais longos de secas e temperaturas mais elevadas tornou-se um importante foco de atenção recentemente, com vários relatos destacando episódios de mortalidade graves em todo o mundo, portanto a pesquisa sobre a resposta das plantas ao stress hídrico está se tornando cada vez mais importante. Embora exista uma rica literatura sobre as respostas das plantas ao stress hídrico, nossa compreensão actual das causas da mortalidade das árvores ainda é limitada. Prever como as florestas responderão às futuras mudanças climáticas depende de um melhor entendimento da reacção à seca, em nível de espécie, por meio de mecanismos fisiológicos.Vários ecossistemas podem já estar respondendo às mudanças climáticas. Entre outros, a capacidade de recuperação após o distúrbio depende do impacto e frequência de episódios de seca no passado. Sob as actuais projecções de aquecimento global, os ecossistemas terrestres poderiam levar mais tempo para se recuperar após a seca, o que poderia aumentar a vulnerabilidade desses sistemas à seca. Assim, identificar os mecanismos subjacentes que controlam a resiliência das plantas ao longo do tempo é essencial para entender melhor a capacidade de recuperação dos ecossistemas.O principal objetivo desta pesquisa foi avaliar os diferentes componentes da resiliência à seca em mudas de Pinus pinaster Aiton para entender a capacidade de lidar com o estresse, a curto e a longo prazo. A fotossíntese, a condutância estomática, a transpiração, o teor relativo de água, o potencial hídrico e o potencial hídrico do meio dia, a eficiência no uso e a altura do crescimento foram mensurados em mudas de Pinus pinaster submetidas a estresse hídrico e após a reidratação. O comportamento das plantas foi avaliado principalmente através da medição da assimilação de CO2, condutância estomática, crescimento de plantas e desempenho hidráulico de mudas de Pinus pinaster Aiton durante a seca e após a rega. Os objetivos específicos foram: 1) identificar se a recuperação e a resiliência são condicionadas pelo nível de estresse induzido pela seca; 2) avaliar se a resiliência e recuperação diferem a curto e longo prazo; 3) avaliar se, após a reidratação, a quantidade de água recebida tem impacto na resiliência e velocidade de recuperação em cada variável medida. Durante o stress hídrico, todas as variáveis apresentaram valores menores, quando comparadas com o período pré-seca. Após a rega, as variáveis hidráulicas aumentaram logo após, somente após 27 dias as mudas atingiram os mais altos níveis de fotossíntese, transpiração e condutância estomática. Estes resultados indicam que a limitação hidráulica foi o processo que rege a recuperação da troca de gás da seca. Depois de reabastecer todos os parâmetros, recupere para valores mais altos em comparação com o período de seca. No entanto, em geral, a resiliência foi baixa no tempo da experiência, com a maioria dos parâmetros não alcançando valores similares aos anteriores à seca.
The rapid pace of climate change may outstrip the capacity of populations to adapt in regions where droughts are predicted to increase in both duration and severity. In a long-term schedule, widespread forest declines could lead to reductions in net primary productivity of forest ecosystems, loss in biodiversity and changes on its composition and woodland communities. Mortality of plants because of longer droughts and higher temperatures events has become a major focus of attention recently, with various reports highlighting severe mortality episodes around the globe, thus research on plant response to water stress is becoming increasingly important. Even though exists a rich literature on plant responses to water stress, our current understanding of the causes of tree mortality is still limited. Predicting how forests will respond to future climate changes hinges on a better understanding in the reaction to drought, at a species level, through physiological mechanisms.Several ecosystems may already be responding to climate change. Among others, recovery capacity after disturbance depends on the impact and frequency of past drought episodes. Under current global warming projections, terrestrial ecosystems could take longer to recover after drought, which could increase the vulnerability of these systems to drought. Thus, identifying the underlying mechanisms that control plants’ resilience over time is essential to better understand ecosystems capacity to recover. The main goal of this research was to evaluate the different components of drought resilience in Pinus pinaster Aiton saplings to understand this species’ ability to cope with stress, in short and long-term periods. Photosynthesis, stomatal conductance, transpiration, relative water content, leaf predawn and midday water potential, water use efficiency and growth parameters (height and diameter) were measured in Pinus pinaster saplings under water stress, and after rehydration. Plants’ behavior was mainly assessed through the measurement of CO2 assimilation, stomatal conductance, plant growth and hydraulic performance of Pinus pinaster Aiton saplings during drought and after re-watering. The specific aims were: 1) to identify whether recovery and resilience are conditioned by the level of drought induced stress; 2) to evaluate whether resilience and recovery differ at a short and long-term period; 3) to assess if, after rehydration, the amount of water received has an impact on resilience and recovery speed in each measured variable. During water stress, all variables showed lower values, compared with the pre-drought period. After re-watering, hydraulic variables increased soon after, only after 27 days did saplings reach the highest levels of photosynthesis, transpiration, and stomatal conductance. These results indicate that hydraulic limitation was the process governing gas-exchange recovery from drought. After rewatering all the parameters recover to higher values compared with the drought period. However, in general, the resilience was low within the time of the experience, with most of the parameters not attaining similar values to the ones before the drought.