Academic literature on the topic 'Dual-fuel engine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dual-fuel engine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dual-fuel engine"

1

Qu, Ping, Hong Liang Yu, Feng Bo Zhang, Wen Juan Zhao, Feng Li, and Jia Lin Wan. "Characteristic Analysis in Combustion Process of Marine Dual Fuel Engine." Applied Mechanics and Materials 727-728 (January 2015): 465–68. http://dx.doi.org/10.4028/www.scientific.net/amm.727-728.465.

Full text
Abstract:
Currently, the research of marine dual fuel engine is rare, while the combustion process of marine dual fuel engine is no precise conclusion. This paper built a combustion model of dual fuel engine by AVL FIRE software, and compared experimental data to prove the accuracy of the model, analyzed the characteristics in combustion process of marine dual fuel engines, provided a theoretical basis for the further optimize and design of marine dual fuel engine.
APA, Harvard, Vancouver, ISO, and other styles
2

Guan, Xiao Le, and Wei Gang Zheng. "Analysis of Combustion and Emission Characteristics of Diesel, Natural Gas Dual Fuel Engine." Advanced Materials Research 744 (August 2013): 248–52. http://dx.doi.org/10.4028/www.scientific.net/amr.744.248.

Full text
Abstract:
Research on combustion characteristics of diesel, natural gas dual fuel engine, and to analyze the influence of pilot diesel fuel supply system parameters on the combustion characteristics of dual fuel engine. Based on the experiment, firstly comparing the combustion characteristics of diesel engine with diesel, natural gas dual fuel engine, and compared the effect of load on the combustion characteristics of dual fuel engines, and specifically elaborated the load, speed, rate of substitution, effects of ignition oil quantity, inlet concentration of the mixed gas, the fuel supply advance angle and other factors on combustion changes of dual fuel heat release rate, pressure, discharge characteristics.Analysis of the natural gas / diesel dual fuel engine is currently studying the existing problems of key technologies and development prospects.
APA, Harvard, Vancouver, ISO, and other styles
3

Sasaki, Senichi. "Dual-Fuel Engine, Otto Cycle and Diesel Cycle." Journal of The Japan Institute of Marine Engineering 44, no. 6 (2009): 978. http://dx.doi.org/10.5988/jime.44.978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cui, Xiang Dong, Zhi De Zhang, and Bin Li. "Study on Energy Saving and Environmental Protection of Marine Dual Fuel Diesel Engine and Using Problems in China." Advanced Materials Research 1010-1012 (August 2014): 1912–17. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.1912.

Full text
Abstract:
With concern about the influence from hazardous emissions of marine diesel engine using fuel oil as fuel and international convention on marine diesel engine emission regulations, the new technology developments of foreign marine dual fuel diesel engines and their latest progresses are introduced, and the development trend of dual fuel diesel engine applications on ship demonstrated. The using problems of the marine dual fuel diesel engine in China are researched with an analysis and prospect of action and reaction in China.
APA, Harvard, Vancouver, ISO, and other styles
5

Song, Jiantong, Chunhua Zhang, Guoqing Lin, and Quanchang Zhang. "Performance and emissions of an electronic control common-rail diesel engine fuelled with liquefied natural gas-diesel dual-fuel under an optimization control scheme." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 6 (October 5, 2018): 1380–90. http://dx.doi.org/10.1177/0954407018801076.

Full text
Abstract:
In order to reduce the fuel consumption and hydrocarbon and CO emissions of liquefied natural gas-diesel dual-fuel engines under light loads, an optimization control scheme, in which the dual-fuel engine runs in original diesel mode under light loads, is used in this paper. The performance and exhaust emissions of the dual-fuel engine and the original diesel engine are compared and analyzed by bench tests of an electronic control common-rail diesel engine. Experimental results show that the brake-specific fuel consumption and hydrocarbon and CO emissions of the liquefied natural gas-diesel dual-fuel engine are not deteriorated under light loads. Compared with diesel, the brake power and torque of dual-fuel remain unchanged, the brake-specific fuel consumption decreases, and the smoke density and CO2 emissions of dual-fuel decrease, while the hydrocarbon and CO emissions increase, and there is no significant difference in NOx emissions.
APA, Harvard, Vancouver, ISO, and other styles
6

Bandyopadhyay, Debjyoti, Prasanna S. Sutar, Shailesh B. Sonawane, Sandeep D. Rairikar, and Sukrut S. Thipse. "Diesel Control Strategy in Dual-Fuel Engine." ARAI Journal of Mobility Technology 4, no. 3 (August 9, 2024): 1273–86. http://dx.doi.org/10.37285/ajmt.4.3.10.

Full text
Abstract:
Dual-fuel engines are capable of operating using a mixture of two different fuels. Generally, the primary fuel is a gaseous fuel (CNG, LPG, Hydrogen), while diesel is used as a pilot ignition source, i.e. functioning on heat of compression and not a spark plug. There have been a few dual-fuel engine strategies to control the speed of the engine based on varying loads, but these require the addition of complex mechanisms to the existing systems. This paper discloses a methodology for controlling the diesel quantity during dual-fuel operation. According to the engine speed and accelerator pedal position, a gaseous fuel injector in the system injects a predetermined quantity of gaseous fuel. Based on the regulated quantity of gaseous fuel, the intake manifold creates an air-gas fuel mixture. The air-gaseous fuel mixture and a metered quantity of diesel are delivered to the combustion chamber via the intake manifold, fuel injection pump, and other components. The governor and fuel injection pump work together to measure the quantity of diesel according to speed and load conditions. During dual-fuel operation, the governor regulates engine speed by controlling the quantity of diesel delivered to the engine based on speed and load conditions. Keywords: Dual-fuel, Control Strategies, Off-Road Engines, Combustion, Emissions, Diesel Replacement
APA, Harvard, Vancouver, ISO, and other styles
7

Kuleshov, Andrei, Aleksey Kuleshov, Mikhail Gordin, Vladimir Markov, Feodor Karpets, and Matvey Shlenov. "Environmental indicators of dual-fuel hydrogen engine." E3S Web of Conferences 417 (2023): 03018. http://dx.doi.org/10.1051/e3sconf/202341703018.

Full text
Abstract:
Hydrogen is considered as a promising gas engine fuel for diesel engines. The problems that occur when converting engines to work on hydrogen are presented. Reliable ignition of hydrogen in the engine is achieved by implementing a two-fuel cycle. In this case, hydrogen ignites from the diesel fuel combustion. Calculations of diesel fuel and hydrogen supply effect on the workflow of a dual-fuel engine of the D-245 type were realized. The main indicators of the engine are calculated when the hydrogen supply changes from 0 to 80%. A criterion characterizing the total toxicity of engine exhaust gases is proposed. The optimal supply of hydrogen was 40%. With such a supply of hydrogen, there was a decrease in the smokiness of exhaust gases by 53%, carbon dioxide emissions by 44%, but the emission of nitrogen oxides increased by 27%. With an increase in the supply of hydrogen from 0 to 40%, the maximum calculated effective performance of engine increased by 7.1%.
APA, Harvard, Vancouver, ISO, and other styles
8

Yuvenda, Dori, Bambang Sudarmanta, Arif Wahjudi, and Rozy Aini Hirowati. "Effect of Adding Combustion Air on Emission in a Diesel Dual-Fuel Engine with Crude Palm Oil Biodiesel Compressed Natural Gas Fuels." International Journal of Renewable Energy Development 11, no. 3 (June 6, 2022): 871–77. http://dx.doi.org/10.14710/ijred.2022.41275.

Full text
Abstract:
A diesel dual-fuel engine uses two fuels designed to reduce the consumption of fossil fuels. Generally, the specific fuel consumption of diesel dual-fuel engines has increased. However, in combination with alternative fuels, namely compressed natural gas injected through air intake, the use of diesel fuel can be reduced. However, using two fuels in a diesel dual-fuel engine increases the equivalent ratio; therefore, the air and fuel mixture becomes richer because the air entering the cylinder during the intake stroke is partially replaced by compressed natural gas. This results in incomplete combustion and increases exhaust emissions, particularly hydrocarbon (HC) and carbon monoxide (CO) emissions. This study aims to improve the combustion process in dual-fuel diesel engines by improving the air-fuel ratio; thus, it can approach the stoichiometric mixture by adding combustion air forcibly to produce complete combustion to reduce CO and HC emissions. An experimental approach using a single-cylinder diesel engine modified into a diesel dual-fuel engine powered by crude palm oil biodiesel and compressed natural gas was adopted. The combustion air was forcibly added to the cylinder using an electric supercharger at different air mass flow rates ranging from 0.007074 to 0.007836 kg/s and different engine loads (1000 to 4000 watts). The results indicated that adding more air to the cylinder could produce complete combustion, reducing the emission levels produced by a diesel dual-fuel engine. An air mass flow rate of 0.007836 kg/s can reduce CO, HC, and particulate matter emissions by averages of 60.55%, 49.63%, and 86.87%, respectively, from the standard diesel dual-fuel engine. Increasing in the amount of oxygen concentration improves the quality of the air-fuel ratio, which results in improved combustion and thereby reducing emissions.
APA, Harvard, Vancouver, ISO, and other styles
9

Robi Fajerin Darmawan and Bambang Sudarmanta. "Kajian Tekno Ekonomi Terkait Konversi Limbah Biomassa Refuse Derived Fuel (RDF) Menjadi Listrik Melalui Metode Gasifikasi Tiga Tingkat dan Mesin Diesel Dual Fuel di Pulau Batam." EduInovasi: Journal of Basic Educational Studies 4, no. 2 (July 28, 2024): 1331–61. http://dx.doi.org/10.47467/edu.v4i2.4319.

Full text
Abstract:
The increasing energy demand has led to a decrease in the availability of fossil fuels, making it necessary to seek renewable alternative energy sources. One of the alternative energy solutions that is currently being widely developed is biomass. Biomass can be converted into renewable energy through a process called gasification. Gasification is the conversion process of solid fuels, often referred to as Municipal Solid Waste (MSW), which can be processed into Biomass Refuse Derived Fuel (RDF) for the three-stage gasification process to produce syngas. Syngas can then be used as fuel for diesel engines to generate electricity in a “Waste to Electric” system. This study utilizes a diesel engine with a dual-fuel system. The objective of operating the diesel engine with a dual-fuel system is to determine the impact of using syngas, obtained from the gasification of RDF pellets, in a diesel engine with a dual-fuel system. The dual-fuel diesel system operates using two types of fuel: diesel fuel and gas fuel. The gas fuel used is syngas resulting from the gasification of RDF biomass pellets. During the gasification process, variations in the air ratio will be adjusted in the pyrolysis, oxidation, and reduction zones with air ratio comparisons of 0:10:0, 1:8:1, 2:7:1, and 1:7:2. The syngas produced from the gasification process will be used as fuel for the dual-fuel diesel engine. The performance characterization of the dual-fuel diesel engine will be conducted by testing the engine at 5000 rpm with load variations from 500 watts to 5000 watts in 500-watt increments, and by varying the mass flow rate of the syngas by adjusting the syngas valve opening. This study aims to demonstrate that RDF has promising potential as a renewable electricity source. The three-stage gasification process has proven effective in converting RDF into high-quality syngas. The dual-fuel diesel engine can operate stably and produce electricity with lower emissions compared to conventional diesel engines. The utilization of RDF biomass waste for power generation through three-stage gasification and dual-fuel diesel engines offers a sustainable solution to waste management issues and provides environmentally friendly electricity on Batam Island.
APA, Harvard, Vancouver, ISO, and other styles
10

Iswantoro, Adhi, I. Made Ariana, and Muhammad Syuhri. "Analysis of Exhaust Gas Emissions on Dual Fuel Diesel Engine Single Cylinder Four-stroke with LPG-Diesel Oil." IOP Conference Series: Earth and Environmental Science 972, no. 1 (January 1, 2022): 012034. http://dx.doi.org/10.1088/1755-1315/972/1/012034.

Full text
Abstract:
Abstract Diesel engine is one of type of internal combustion engine that is applied in industry, including the maritime industry. The increasing use of diesel engines, has a effect on increasing emissions. Diesel engines emissions consist of SOx, NOx, HC, and others. To reduce the emissions, there are many method, one of them is using dual-fuel system. The alternative fuel can be used is Gas, which is easily available, namely LPG or liquefied petroleum gas. To supply LPG to combustion chamber, a converter-kit are needed to be install on diesel engine. There are several previous research that prove that LPG can be used as an alternative in a dual-fuel system and can reduce the emissions. One of them by Ma’amuri (2016) who designed a mechanical LPG-diesel oil as dual-fuel, using a membrane converter. Result of this research provide that good diesel engine performance. In this research, LPG-diesel oil as dual-fuel using converter kit based on ECU or electronic control unit, and then, analyze the diesel engine emissions with experimental method. The purpose of this research is to determine the emissions produced by LPG-diesel oil as dual-fuel with converter kit based ECU. After taking and analytical data, known that the NOx emission from dual fuel diesel engine using ECU-based converter kit is lower than NOx emission from conventional diesel engine with B30 diesel fuel with percentage is 25,61 % for 3ms opening duration of gas injector, 39,99 % for 4 ms opening duration of gas injector and 26,5 % for 5 ms opening duration of gas injector. The NOx emission of conventional diesel engine is 2,46 g/kWh.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dual-fuel engine"

1

Verma, Saket. "Experimental investigation and exergy analysis of a dual fuel engine using alternative fuels." Thesis, IITD, 2019. http://eprint.iitd.ac.in:80//handle/2074/8099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Königsson, Fredrik. "On Combustion in the CNG-Diesel Dual Fuel Engine." Doctoral thesis, KTH, Förbränningsmotorteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151188.

Full text
Abstract:
Currently there is a large interest in alternative transport fuels. There are two underlying reasons for this interest: the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors, the CNG-diesel dual fuelengine is an attractive concept. The primary fuel of the dual fuel engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste, commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. Furthermore, fossil methane, natural gas, is one of the most abundant fossil fuels.Thedual fuelengine is, from a combustion point of view, a hybridof the diesel and theOtto-engineand it shares characteristics with both. From a market standpoint, the dual fuel technology is highly desirable; however, from a technical point of view it has proven difficult to realize. The aim of this project was to identify limitations to engine operation, investigate these challenges, and ,as much as possible, suggest remedies. Investigations have been made into emissions formation, nozzle-hole coking, impact of varying in-cylinder air motion, behavior and root causes of pre-ignitions, and the potential of advanced injection strategies and unconventional combustion modes. The findings from each of these investigations have been summarized, and recommendations for the development of a Euro 6 compliant dual fuel engine have been formulated. Two key challenges must be researched further for this development to succeed: an aftertreatment system which allows for low exhaust temperatures must be available, and the root cause of pre-ignitions must be found and eliminated.

QQC 20140915

APA, Harvard, Vancouver, ISO, and other styles
3

Park, Talus. "Dual fuel conversion of a direct injection diesel engine." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=460.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains x, 96 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 61-62).
APA, Harvard, Vancouver, ISO, and other styles
4

Lago, Sari Rafael. "Dual Mode Dual Fuel Combustion: Implementation on a Real Medium Duty Engine Platform." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165366.

Full text
Abstract:
[ES] Históricamente, el sector del transporte de servicio mediano y pesado ha sido desafiado por las regulaciones de emisiones que se han impuesto a lo largo de los años, lo que requirió intensificar el esfuerzo de investigación con el objetivo de avanzar en el desarrollo tecnológico para ofrecer una opción que cumpla con las normas a un precio similar para el propietario. No obstante, la reciente introducción de la normativa EUVI ha requerido la adición de un complejo sistema de postratamiento, agregando nuevos costes fijos al producto, así como costes operativos con el consumo de urea. Este avance fue necesario debido a la limitación de la combustión diésel convencional que no puede desacoplar las altas emisiones de NOx y la eficiencia. Esta limitación tecnológica ha impulsado la investigación sobre diferentes conceptos de combustión que podrían mantener niveles de eficiencia similares a los de la combustión diésel controlando la formación de emisiones durante el proceso de combustión. Entre las diferentes soluciones que han ido apareciendo a lo largo de los años, se demostró que la Ignición por Compresión Controlada por Reactividad (RCCI por sus siglas en inglés) tiene una ventaja competitiva debido a su mejor controlabilidad, alta eficiencia y bajas emisiones de hollín y NOx. A pesar de sus beneficios, la extensión de RCCI a la operación de mapa completo ha indicado limitaciones importantes como gradientes de presión excesivos a alta carga, o alta inestabilidad de combustión y productos no quemados a baja carga del motor. Recientemente, se introdujo el concepto de combustión Dual-Mode Dual-Fuel (DMDF) como un intento de resolver los inconvenientes de la combustión RCCI manteniendo sus ventajas. Los resultados preliminares obtenidos en un motor mono cilíndrico (SCE por sus siglas en inglés) han demostrado que el DMDF puede alcanzar niveles de eficiencia similares a los de la combustión diésel convencional al mismo tiempo que favorece niveles ultra bajos de hollín y NOx. Si bien, los requisitos de la condición límite son difíciles de encajar en el rango operativo de sistema de gestión de aire, así como inconvenientes como el exceso de HC y CO que aún persiste en la zona de baja y media carga, lo que puede ser un desafío para el sistema de postratamiento. Además, las futuras regulaciones a corto plazo exigirán una reducción del 15 % de las emisiones de CO2 en 2025, reto que la literatura sugiere que no se logrará fácilmente solo mediante la optimización del proceso de combustión. En este sentido, esta tesis tiene como objetivo general la implementación del concepto de combustión DMDF en un motor multicilindro (MCE por sus siglas en inglés) bajo las restricciones de las aplicaciones reales para realizar una combustión limpia y eficiente en el mapa completo a la vez que brinda alternativas para reducir la concentración de HC y CO y lograr un ahorro de CO2. Este objetivo se logra mediante un primer extenso procedimiento de calibración experimental que tiene como objetivo trasladar las pautas de la combustión DMDF del SCE al MCE respetando los límites operativos del hardware original, evaluando su impacto en los resultados de combustión, rendimiento y emisiones en condiciones estacionarias y condiciones de ciclo de conducción. A continuación, se realizan estudios específicos para abordar el problema relacionado con la concentración excesiva de productos no quemados mediante investigaciones experimentales y simulaciones numéricas para comprender las consecuencias del uso de combustibles con diferente reactividad en la eficiencia de conversión del catalizador de oxidación original y su capacidad para lograr emisiones en el escape menores que el límite EUVI. Finalmente, se busca la reducción de CO2 a través de la modificación del combustible, investigando tanto la mejora del proceso de combustión como el equilibrio entre el ciclo de vida del combustible.
[CA] Històricament, el sector del transport de servei mitjà i pesat ha sigut desafiat per les regulacions d'emissions que s'han imposat al llarg dels anys, la qual cosa va requerir intensificar l'esforç d'investigació amb l'objectiu d'avançar en el desenvolupament tecnològic per a oferir una opció que complisca amb les normes a un preu similar per al propietari. No obstant això, la recent introducció de la normativa EUVI ha requerit l'addició d'un complex sistema de postractament, agregant nous costos fixos al producte, així com costos operatius amb el consum d'urea. Aquest avanç va ser necessari a causa de la limitació de la combustió dièsel convencional que no pot desacoblar les altes emissions de NOx i l'eficiència. Aquesta limitació tecnològica ha impulsat la investigació sobre diferents conceptes de combustió que podrien mantindre nivells d'eficiència similars als de la combustió dièsel controlant la formació d'emissions durant el procés de combustió. Entre les diferents solucions que han anat apareixent al llarg dels anys, es va demostrar que la Ignició per Compressió Controlada per Reactivitat (RCCI per les seues sigles en anglés) té un avantatge competitiu a causa de la seua millor controlabilitat, alta eficiència i baixes emissions de sutge i NOx. Malgrat els seus beneficis, l'extensió del RCCI a l'operació de mapa complet ha indicat limitacions importants com a gradients de pressió excessius a alta càrrega, o alta inestabilitat de combustió i productes no cremats a baixa càrrega del motor. Recentment, es va introduir el concepte de combustió Dual-Mode Dual-Fuel (DMDF) com un intent de resoldre els inconvenients de la combustió RCCI mantenint els seus avantatges. Els resultats preliminars obtinguts en un motor mono-cilíndric (SCE per les seues sigles en anglés) han demostrat que el DMDF pot aconseguir nivells d'eficiència similars als de la combustió dièsel convencional al mateix temps que afavoreix nivells ultra baixos de sutge i NOx. Si bé, els requisits de la condició límit són difícils d'encaixar en el rang operatiu de sistema de gestió d'aire, així com inconvenients com l'excés de HC i CO que encara persisteix en la zona de baixa i mitja càrrega, la qual cosa pot ser un desafiament per al sistema de postractament. A més, les futures regulacions a curt termini exigiran una reducció del 15% de les emissions de CO¿ en 2025, repte que la literatura suggereix que no s'aconseguirà fàcilment només mitjançant l'optimització del procés de combustió. En aquest sentit, aquesta tesi té com a objectiu general la implementació del concepte de combustió DMDF en un motor multi-cilindre (MCE per les seues sigles en anglés) sota les restriccions de les aplicacions reals per a realitzar una combustió neta i eficient en el mapa complet alhora que brinda alternatives per a reduir la concentració de HC i CO i aconseguir un estalvi de CO¿. Aquest objectiu s'aconsegueix mitjançant un primer extens procediment de calibratge experimental que té com a objectiu traslladar les pautes de la combustió DMDF del SCE al MCE respectant els límits operatius del motor original, avaluant el seu impacte en els resultats de combustió, rendiment i emissions en condicions estacionàries i condicions de cicle de conducció. A continuació, es realitzen estudis específics per a abordar el problema relacionat amb la concentració excessiva de productes no cremats mitjançant investigacions experimentals i simulacions numèriques per a comprendre les conseqüències de l'ús de combustibles amb diferent reactivitat en l'eficiència de conversió del catalitzador d'oxidació original i la seua capacitat per a aconseguir emissions al tub d'escapament menors que el límit EUVI. Finalment, es busca la reducció de CO2 a través de la modificació del combustible, investigant tant la millora del procés de combustió com l'equilibri entre el cicle de vida del combustible.
[EN] The medium and heavy-duty transport sector was historically challenged by the emissions regulations that were imposed along the years, requiring to step up the research effort aiming at advancing the product development to deliver a normative compliant option at similar price to the owner. Nonetheless, the recent introduction of EUVI normative have required the addition of a complex aftertreatment system, adding new fixed costs to the product as well as operational costs with the urea consumption. This breakthrough was required due to the limitation of the conventional diesel combustion which cannot decouple high NOx emissions and efficiency. This technological limitation has boosted the investigation on different combustion concepts that could maintain similar efficiency levels than the diesel combustion while controlling the emission formation during the combustion process. Among the different solutions that have appeared along the years, Reactivity Controlled Compression Ignition (RCCI) was demonstrated to have a competitive edge due to its better controllability, high efficiency and low soot and NOx emissions. Despite the benefits, the extension of RCCI to full map operation has presented significant limitations, as excessive pressure gradients at high load and high combustion instability and unburned products at low engine load. Recently, Dual-Mode Dual-Fuel (DMDF) combustion concept was introduced as an attempt of solving the drawbacks of the RCCI combustion while maintaining its advantages. The preliminary results obtained in single cylinder engine (SCE) have evidenced that DMDF can achieves similar efficiency levels than those from conventional diesel combustion while promoting ultra-low levels of soot and NOx. Albeit, the boundary condition requirements are hard to fit in the operating range of commercial air management system as well as drawbacks like excessive HC and CO that still persists from low to medium load, which can be a challenge for the aftertreatment system. Moreover, short-term future regulations will demand a 15 % reduction of CO2 emissions in 2025 which was proven in the literature to not be easily achieved only by combustion process optimization. In this sense, this thesis has as general objective the implementation of the DMDF combustion concept in a multi-cylinder engine (MCE) under the restrictions of real applications to realize clean and efficient combustion in the complete map while providing alternatives to reduce the HC and CO concentration and accomplish CO2 savings. This objective is accomplished by means of a first extensive experimental calibration procedure aiming to translate the guidelines of the DMDF combustion from the SCE to the MCE while respecting the operating limits of the stock hardware, assessing its impacts on combustion, performance, and emission results under steady and driving cycle conditions. Next, dedicated studies are performed to address the issue related with the excessive concentration of unburned products by means of experimental investigations and numerical simulations, to understand the consequences of using fuels with different reactivity in the stock oxidation catalyst conversion efficiency and its ability in achieving EUVI tailpipe emissions. Finally, CO2 reduction is explored through fuel modification, investigating both combustion process improvement and well-to-wheel balance as paths to realize CO2 abatement.
This doctoral thesis has been partially supported by the Spanish Ministry of Science Innovation and Universities under the grant:"Ayudas para contratos predoctorales para la formación de doctores" (PRE2018-085043)
Lago Sari, R. (2021). Dual Mode Dual Fuel Combustion: Implementation on a Real Medium Duty Engine Platform [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165366
TESIS
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, Sunmeet. "Utilization of methane in a compression ignition engine under dual fuel mode." Thesis, IIT Delhi, 2017. http://localhost:8080/xmlui/handle/12345678/7243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roberts, Stefan Ross. "Non-intrusive knock detection in a turbocharged, dual fuel engine." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq22664.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rabello, de Castro Ricardo. "Effect of the fuel composition of syngas on the combustion process in Dual-Fuel engine." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1032.

Full text
Abstract:
Le gaz de synthèse, également appelé ‘syngas', est considéré comme un carburant alternatif prometteur pour lutter à la fois contre le réchauffement climatique et la gestion des déchets, deux défis majeurs de la société moderne. La composition chimique du gaz de synthèse dépend fortement des caractéristiques de la matière première et du processus utilisé pour sa production, et impacte son efficacité en tant que carburant dans les moteurs à combustion. L'objectif principal de cette étude est de déterminer comment optimiser un moteur à combustion interne bicarburant (ICE) syngas/diesel pour différentes compositions de gaz de synthèse, ratios de substitution de diesel et richesse de prémélange gaz/air. Nous commençons par donner un aperçu des moyens de sa production et des compositions du gaz de synthèse pour sélectionner trois mélanges représentatifs de ses éléments de base. Ensuite, nous examinons les études sur le syngas/diesel (ou autre carburant à haute réactivité) pour déterminer comment chaque paramètre affecte les performances et les émissions du moteur. Dans le chapitre suivant, nous déterminons deux propriétés de combustion, à savoir les vitesses de flamme laminaire et les longueurs de Markstein, pour plusieurs conditions pertinentes pour le moteur et pour les trois compositions. Ensuite, nous poursuivons les expériences menées dans un moteur entièrement métallique (non transparent) pour mesurer les performances du moteur et les émissions à l'échappement. Dans cette expérience, nous explorons comment le rapport énergétique syngas-diesel, la richesse du mélange syngas/air et les effets de la composition du gaz de synthèse produisent différents résultats de performance et émissions. Enfin, nous effectuons des expériences dans un moteur optique Dual-Fuel pour déterminer le comportement des flammes et des radicaux, par analyse des images de combustion du moteur
Synthesis Gas, also known as Syngas, is deemed as a promising alternative fuel to tackle both global warming and waste management - two major challenges for modern society. The chemical composition of syngas, however, is highly dependent on the characteristics of the feedstock and the process used in its production; and so is its efficiency as a fuel in combustion engines. The main goal of this study is to determine how to optimize a syngas/diesel Dual-Fuel Internal Combustion Engine (ICE) for different syngas compositions, diesel substitution ratios and syngas/air equivalence ratios. We start providing an overview of syngas production and compositions to select three representative mixtures of its basic elements. Afterwards, we review Dual-Fuel syngas/diesel (or a high-reactivity fuel) studies to determine how each parameter affects the engine performance and emissions. In the following chapter, we determine two combustion properties, namely, the laminar flame speeds and the Markstein lengths, for several engine-relevant conditions for the three compositions. Then, we proceed conducting experiments in a full-metal (not optical) engine to measure engine performance and exhaust emissions. In that experiment we explore how the syngas-diesel energy ratio, the premixed Syngas/air equivalence ratio and the Syngas composition effects, produce different performances and exhaust emissions. Finally, we perform experiments in an optical Dual-Fuel engine to determine flame and radicals´ behaviors, followed by an analysis of engine combustion images
APA, Harvard, Vancouver, ISO, and other styles
8

Mirmohammadsadeghi, Mahmoudreza. "Investigation of diesel-ethanol and diesel-gasoline dual fuel combustion in a single cylinder optical diesel engine." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/17436.

Full text
Abstract:
Ever growing population and increased energy consumption across all industries has resulted in higher atmospheric concentration of the greenhouse gases (GHG) and therefore an increase in the planet's average temperature, which has led to increasingly demanding and more strict legislations on pollutant sources, and more specifically, the automotive industry. As a consequence of all this, the demand for research into alternative energy sources has greatly increased. In this study combustion characteristics, engine performance, and exhaust emission of diesel-ethanol and diesel-gasoline are investigated in an optical direct injection diesel engine. In particular, effects of different substitution ratios and diesel injection strategies are studied when the total fuel energy is kept constant. The three main substitution ratios used in this study include 45% (45% of fuel energy from port-injected ethanol/gasoline and 55% from direct injection diesel), 60%, and 75%. The engine used for this investigation is a Ricardo Hydra single cylinder optical engine running at 1200 rpm. In-cylinder pressure measurement is used for calculating all engine parameters, heat release rate, and efficiency. In addition to the thermodynamic analysis of the combustion parameters, high speed camera was used alongside with a copper vapor laser or the high speed image intensifier in the high speed video imaging for the optical analysis of the effect of the above-mentioned parameters on autoignition and combustion processes, while Horiba particulate analyser and AVL smoke meter were utilized in monitoring and recording emissions for every tested condition. Depending on the testing conditions, such as injection strategy and intake conditions, both dual-fuel operations were able to deliver high efficiency and improved emissions compared to that of a pure diesel engine operation, with the diesel-gasoline operation offering more consistency in improved thermal efficiency, and the diesel-ethanol operation delivering lower emission output. The optical analysis of the combustion represents the main difference in the flame propagation, distribution and quality for each substitute fuel and its substitution percentage, as well as the condition under examination.
APA, Harvard, Vancouver, ISO, and other styles
9

Chintala, Venkateswarlu. "Experimental investigation on utilization of hydrogen in a compression ignition engine under dual-fuel mode." Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zastavniouk, Oleg. "Study of mixing phenomena in a dual fuel diesel engine air intake manifold." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq22695.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Dual-fuel engine"

1

Limbrick, A. J. Power generation from landfill gas at Wapseyś Wood,Buckinghamshire using a 1.2 MW dual fuel engine. Maidenhead, Berks: Green Land Reclamation, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karim, G. A. An examination of cyclic variations in a dual fuel engine: International Fuels and Lubricants Meeting and Exposition, Portland, Oregon, October 10-13, 1988. Warrendale, PA: SAE, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karim, G. A. Exhaust emissions from dual fuel engines at light load: Fuels and Lubricants Meeting and Exposition, Philadelphia, Pennsylyvania, October 18-21, 1993. Warrendale, PA: SAE, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Debasree, Ghosh. Modeling of Hydrogen Aided Diesel-Producer Gas Dual Fuel CI Engine. LAP Lambert Academic Publishing, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karim, Ghazi A. Dual-Fuel Diesel Engines. CRC Press, 2015. http://dx.doi.org/10.1201/b18163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dual-Fuel Diesel Engines. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karim, G. A. Dual-Fuel Diesel Engines. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karim, Ghazi A. Dual-Fuel Diesel Engines. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Karim, Ghazi A. Dual-Fuel Diesel Engines. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Karim, Ghazi A. Dual-Fuel Diesel Engines. Taylor & Francis Group, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Dual-fuel engine"

1

Karim, Ghazi A. "The Dual Fuel Engine." In Automotive Engine Alternatives, 83–104. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9348-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gavrilov, Vladimir, Valery Medvedev, and Dmitry Bogachev. "Spontaneous Combustion of Pilot Fuel in Dual-Fuel Engine." In International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019, 361–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57450-5_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gavrilov, Vladimir, Valeriy Medvedev, and Dmitry Bogachev. "Improvement of Fuel Injection Process in Dual-Fuel Marine Engine." In Advances in Intelligent Systems and Computing, 392–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19756-8_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Misra, Ashwin, Mukesh Yadav, Ayush Sharma, and Ghanvir Singh. "Methane–Diesel Dual Fuel Engine: A Comprehensive Review." In Proceedings of International Conference in Mechanical and Energy Technology, 327–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2647-3_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Priyam, Abhishek, Prabha Chand, and D. B. Lata. "Effect of Hydrogen and Producer Gas Addition on the Performance and Emissions on a Dual-Fuel Diesel Engine." In Advanced Engine Diagnostics, 29–56. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3275-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar, Chandra Bhushan, D. B. Lata, and Dhaneshwar Mahto. "Experimental Analysis of Ignition Delay in Dual Fuel Diesel Engine with Secondary Fuel." In Advances in Smart Grid Automation and Industry 4.0, 279–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7675-1_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Whelan, Steve, Hoi Ching Wong, Ian May, and Alasdair Cairns. "Reduction of in-cylinder emissions on a dual-fuel engine." In Proceedings, 609–25. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-12918-7_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gurung, Diwakar, Ankur Rajvanshi, S. Lalhriatpuia, and Premendra Mani Pradhan. "Performance Analysis of Combined Biogas-Diesel Run Dual-Fuel Engine." In Lecture Notes in Electrical Engineering, 559–66. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4286-7_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saxena, Mohit Raj, and Rakesh Kumar Maurya. "Low and Medium Carbon Alcohol Fueled Dual-Fuel Compression Ignition Engine." In Alcohol as an Alternative Fuel for Internal Combustion Engines, 213–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0931-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Selmane, Fouad, Mohamed Djermouni, and Ahmed Ouadha. "Thermodynamic Study of a Turbocharged Diesel-Hydrogen Dual Fuel Marine Engine." In Springer Proceedings in Energy, 221–29. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6595-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dual-fuel engine"

1

Grochowina, Marcus, Daniel Hertel, Simon Tartsch, and Thomas Sattelmayer. "Ignition of Diesel Pilot Fuel in Dual-Fuel Engines." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9671.

Full text
Abstract:
Dual-Fuel (DF) engines offer great fuel flexibility combined with low emissions in gas mode. The main source of energy in this mode is provided by gaseous fuel, while the Diesel fuel acts only as an ignition source. For this reason, the reliable autoignition of the pilot fuel is of utmost importance for combustion in DF-engines. However, the autoignition of the pilot fuel suffers from low compression temperatures caused by Miller valve timings. These valve timings are applied to increase efficiency and reduce nitrogen oxide emissions. Previous studies have investigated the influence of injection parameters and operating conditions on ignition and combustion in DF-engines using a unique periodically chargeable combustion cell. Direct light high-speed images and pressure traces clearly revealed the effects of injection parameters and operating conditions on ignition and combustion. However, these measurement techniques are only capable of observing processes after ignition. In order to overcome this drawback, a high-speed shadowgraph technique was applied in this study to examine the processes prior to ignition. Measurements were conducted to investigate the influence of compression temperature and injection pressure on spray formation and ignition. Results showed that the autoignition of Diesel pilot fuel strongly depends on the fuel concentration within the spray. The high-speed shadowgraph images revealed that in the case of very low fuel concentration within the pilot spray only the first-stage of the two-stage ignition occurs. This leads to large cycle-to-cycle variations and misfiring. However, it was found that a reduced number of injection holes counteracts these effects. The comparison of a Diesel injector with 10-holes and a modified injector with 5-holes showed shorter ignition delays, more stable ignition and a higher number of ignited sprays on a percentage basis for the 5-hole nozzle.
APA, Harvard, Vancouver, ISO, and other styles
2

Goto, Shinichi, Hirohide Furutani, and Rafael D. Delic. "Dual-Fuel Diesel Engine Using Butane." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dimyani, Ahmad, Achmad Praptijanto, Widodo Budi Santoso, Bambang Wahono, Arifin Nur, Iman Abdurahman, Mulia Pratama, Suherman, Aam Muharam, and Yanuandri Putrasari. "Dual-Fuel-Engine using biogas-POME." In PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY ENGINEERING AND APPLICATION 2022 (ICSEEA2022). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0205783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elnajjar, Emad, Mohamed Y. E. Selim, and Farag Omar. "Effect of Dual Fuel Engine Parameters and Fuel Type on Engine Noise Emissions." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24253.

Full text
Abstract:
Investigating experimentally the effects of different fuel types and engine parameters on the overall generated engine noise levels. Engine parameters such as: Engine speed, Injection timing angle, engine loading, different pilot fuel to gases fuel ratio and engine compression ratio. Engine noises due to combustion, turbulent flow and motoring were reported in this study by direct sound pressure level SPL (dB) measurements and compared to the maximum cylinder pressure rise rate with respect to the engine crank angle (dP/dθ)max. Experimental procedures conducted using a Ricardo diesel version variable compression research engine. The study was conducted for three different fuels: single diesel fuel, and dual fuel engine that uses LPG or natural gas. The study for each fuel type covered the following operating parameters range, engine speed from 20–28 rev/sec, injection timing form 20 to 45° BTDC, compression ratio from 16 to 22, load range 2 to 14 N.m, and ratio of pilot to gaseous fuel from 0 to 10%. The study reported the location (crank angle) corresponding to maximum cylinder pressure and max pressure rise rate. Results from testing dual fuel engine with varying design and operating parameters are presented and discussed. The present work reported higher SPL (dB) generated from burning a dual fuel compared to burning diesel fuel only.
APA, Harvard, Vancouver, ISO, and other styles
5

Wakizaka, Hiroaki, Akihiro Hara, Tsugio Fukushima, Yasuhiro Noda, and Tohru Nakazono. "Study of Dual Fuel Engine for Low Calorie Biomass Gas." In Small Engine Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-32-0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thijssen, Barend. "Dual-fuel-electric LNG carriers." In SNAME Maritime Convention. SNAME, 2005. http://dx.doi.org/10.5957/smc-2005-d39.

Full text
Abstract:
Sixteen dual-fuel-electric LNG carriers, featuring sixty-four dual-fuel engines, have been ordered so far by six different ship owners at four different shipyards. More orders for dual-fuel-electric LNG carriers are expected anytime soon, and dual-fuel-electric machinery starts to become an established standard in LNG carrier propulsion and electric power generation. This paper aims to describe the market requirements that apply for LNG carrier machinery concepts, the dual-fuel engine technology, the dual-fuel-electric machinery concept for LNG carriers, as well as the application of and experience with dual-fuel engines to date.
APA, Harvard, Vancouver, ISO, and other styles
7

Nielsen, Ole Bjorn, Bjorn Qvale, and Spencer Sorenson. "Ignition Delay in the Dual Fuel Engine." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Loth, John, Robert Bond, and Donald Lyons. "Avgas/Ethanol Dual-Fuel Aircraft Engine/Conversion." In General, Corporate & Regional Aviation Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/971464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gopalakrishnan, Mukunda, and Frederico Paulo Tischer. "Torque Model for a Dual Fuel Engine." In SAE 2014 Commercial Vehicle Engineering Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. http://dx.doi.org/10.4271/2014-01-2417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gettel, L. E., G. C. Perry, J. Boisvert, and P. J. O'Sullivan. "Microprocessor Dual-Fuel Diesel Engine Control System." In 1986 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/861577.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Dual-fuel engine"

1

Wallner, Thomas. Efficiency-Optimized Dual Fuel Engine with In-Cylinder Gasoline/CNG Blending. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1495698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Masimalai, Senthil Kumar. Effect of Hydrogen Induction on Combustion Characteristics of a Dual Fuel Engine Fuelled with Diesel and Hydrogen. Warrendale, PA: SAE International, October 2012. http://dx.doi.org/10.4271/2012-32-0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Le, Tuan Anh, and Truc The Nguyen. Experimental Study on Performance, Emissions and Combustion Characteristics of a Single Cylinder Dual Fuel LPG/Diesel Engine. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Author, Not Given. Demonstration of Caterpillar C-10 dual-fuel engines in MCI 102DL3 commuter buses. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/752408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Develop the dual fuel conversion system for high output, medium speed diesel engines. Final report. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/291025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 4, July--September, 1997. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/291029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 5, November 1997--January 1998. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/291030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 1, September 1--December 31, 1996. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/291026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 2, January 1--March 31, 1997. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/291027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 3, April 1--June 30, 1997. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/291028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography