To see the other types of publications on this topic, follow the link: Dual-fuel engine.

Dissertations / Theses on the topic 'Dual-fuel engine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Dual-fuel engine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Verma, Saket. "Experimental investigation and exergy analysis of a dual fuel engine using alternative fuels." Thesis, IITD, 2019. http://eprint.iitd.ac.in:80//handle/2074/8099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Königsson, Fredrik. "On Combustion in the CNG-Diesel Dual Fuel Engine." Doctoral thesis, KTH, Förbränningsmotorteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151188.

Full text
Abstract:
Currently there is a large interest in alternative transport fuels. There are two underlying reasons for this interest: the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors, the CNG-diesel dual fuelengine is an attractive concept. The primary fuel of the dual fuel engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste, commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. Furthermore, fossil methane, natural gas, is one of the most abundant fossil fuels.Thedual fuelengine is, from a combustion point of view, a hybridof the diesel and theOtto-engineand it shares characteristics with both. From a market standpoint, the dual fuel technology is highly desirable; however, from a technical point of view it has proven difficult to realize. The aim of this project was to identify limitations to engine operation, investigate these challenges, and ,as much as possible, suggest remedies. Investigations have been made into emissions formation, nozzle-hole coking, impact of varying in-cylinder air motion, behavior and root causes of pre-ignitions, and the potential of advanced injection strategies and unconventional combustion modes. The findings from each of these investigations have been summarized, and recommendations for the development of a Euro 6 compliant dual fuel engine have been formulated. Two key challenges must be researched further for this development to succeed: an aftertreatment system which allows for low exhaust temperatures must be available, and the root cause of pre-ignitions must be found and eliminated.

QQC 20140915

APA, Harvard, Vancouver, ISO, and other styles
3

Park, Talus. "Dual fuel conversion of a direct injection diesel engine." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=460.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains x, 96 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 61-62).
APA, Harvard, Vancouver, ISO, and other styles
4

Lago, Sari Rafael. "Dual Mode Dual Fuel Combustion: Implementation on a Real Medium Duty Engine Platform." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165366.

Full text
Abstract:
[ES] Históricamente, el sector del transporte de servicio mediano y pesado ha sido desafiado por las regulaciones de emisiones que se han impuesto a lo largo de los años, lo que requirió intensificar el esfuerzo de investigación con el objetivo de avanzar en el desarrollo tecnológico para ofrecer una opción que cumpla con las normas a un precio similar para el propietario. No obstante, la reciente introducción de la normativa EUVI ha requerido la adición de un complejo sistema de postratamiento, agregando nuevos costes fijos al producto, así como costes operativos con el consumo de urea. Este avance fue necesario debido a la limitación de la combustión diésel convencional que no puede desacoplar las altas emisiones de NOx y la eficiencia. Esta limitación tecnológica ha impulsado la investigación sobre diferentes conceptos de combustión que podrían mantener niveles de eficiencia similares a los de la combustión diésel controlando la formación de emisiones durante el proceso de combustión. Entre las diferentes soluciones que han ido apareciendo a lo largo de los años, se demostró que la Ignición por Compresión Controlada por Reactividad (RCCI por sus siglas en inglés) tiene una ventaja competitiva debido a su mejor controlabilidad, alta eficiencia y bajas emisiones de hollín y NOx. A pesar de sus beneficios, la extensión de RCCI a la operación de mapa completo ha indicado limitaciones importantes como gradientes de presión excesivos a alta carga, o alta inestabilidad de combustión y productos no quemados a baja carga del motor. Recientemente, se introdujo el concepto de combustión Dual-Mode Dual-Fuel (DMDF) como un intento de resolver los inconvenientes de la combustión RCCI manteniendo sus ventajas. Los resultados preliminares obtenidos en un motor mono cilíndrico (SCE por sus siglas en inglés) han demostrado que el DMDF puede alcanzar niveles de eficiencia similares a los de la combustión diésel convencional al mismo tiempo que favorece niveles ultra bajos de hollín y NOx. Si bien, los requisitos de la condición límite son difíciles de encajar en el rango operativo de sistema de gestión de aire, así como inconvenientes como el exceso de HC y CO que aún persiste en la zona de baja y media carga, lo que puede ser un desafío para el sistema de postratamiento. Además, las futuras regulaciones a corto plazo exigirán una reducción del 15 % de las emisiones de CO2 en 2025, reto que la literatura sugiere que no se logrará fácilmente solo mediante la optimización del proceso de combustión. En este sentido, esta tesis tiene como objetivo general la implementación del concepto de combustión DMDF en un motor multicilindro (MCE por sus siglas en inglés) bajo las restricciones de las aplicaciones reales para realizar una combustión limpia y eficiente en el mapa completo a la vez que brinda alternativas para reducir la concentración de HC y CO y lograr un ahorro de CO2. Este objetivo se logra mediante un primer extenso procedimiento de calibración experimental que tiene como objetivo trasladar las pautas de la combustión DMDF del SCE al MCE respetando los límites operativos del hardware original, evaluando su impacto en los resultados de combustión, rendimiento y emisiones en condiciones estacionarias y condiciones de ciclo de conducción. A continuación, se realizan estudios específicos para abordar el problema relacionado con la concentración excesiva de productos no quemados mediante investigaciones experimentales y simulaciones numéricas para comprender las consecuencias del uso de combustibles con diferente reactividad en la eficiencia de conversión del catalizador de oxidación original y su capacidad para lograr emisiones en el escape menores que el límite EUVI. Finalmente, se busca la reducción de CO2 a través de la modificación del combustible, investigando tanto la mejora del proceso de combustión como el equilibrio entre el ciclo de vida del combustible.
[CA] Històricament, el sector del transport de servei mitjà i pesat ha sigut desafiat per les regulacions d'emissions que s'han imposat al llarg dels anys, la qual cosa va requerir intensificar l'esforç d'investigació amb l'objectiu d'avançar en el desenvolupament tecnològic per a oferir una opció que complisca amb les normes a un preu similar per al propietari. No obstant això, la recent introducció de la normativa EUVI ha requerit l'addició d'un complex sistema de postractament, agregant nous costos fixos al producte, així com costos operatius amb el consum d'urea. Aquest avanç va ser necessari a causa de la limitació de la combustió dièsel convencional que no pot desacoblar les altes emissions de NOx i l'eficiència. Aquesta limitació tecnològica ha impulsat la investigació sobre diferents conceptes de combustió que podrien mantindre nivells d'eficiència similars als de la combustió dièsel controlant la formació d'emissions durant el procés de combustió. Entre les diferents solucions que han anat apareixent al llarg dels anys, es va demostrar que la Ignició per Compressió Controlada per Reactivitat (RCCI per les seues sigles en anglés) té un avantatge competitiu a causa de la seua millor controlabilitat, alta eficiència i baixes emissions de sutge i NOx. Malgrat els seus beneficis, l'extensió del RCCI a l'operació de mapa complet ha indicat limitacions importants com a gradients de pressió excessius a alta càrrega, o alta inestabilitat de combustió i productes no cremats a baixa càrrega del motor. Recentment, es va introduir el concepte de combustió Dual-Mode Dual-Fuel (DMDF) com un intent de resoldre els inconvenients de la combustió RCCI mantenint els seus avantatges. Els resultats preliminars obtinguts en un motor mono-cilíndric (SCE per les seues sigles en anglés) han demostrat que el DMDF pot aconseguir nivells d'eficiència similars als de la combustió dièsel convencional al mateix temps que afavoreix nivells ultra baixos de sutge i NOx. Si bé, els requisits de la condició límit són difícils d'encaixar en el rang operatiu de sistema de gestió d'aire, així com inconvenients com l'excés de HC i CO que encara persisteix en la zona de baixa i mitja càrrega, la qual cosa pot ser un desafiament per al sistema de postractament. A més, les futures regulacions a curt termini exigiran una reducció del 15% de les emissions de CO¿ en 2025, repte que la literatura suggereix que no s'aconseguirà fàcilment només mitjançant l'optimització del procés de combustió. En aquest sentit, aquesta tesi té com a objectiu general la implementació del concepte de combustió DMDF en un motor multi-cilindre (MCE per les seues sigles en anglés) sota les restriccions de les aplicacions reals per a realitzar una combustió neta i eficient en el mapa complet alhora que brinda alternatives per a reduir la concentració de HC i CO i aconseguir un estalvi de CO¿. Aquest objectiu s'aconsegueix mitjançant un primer extens procediment de calibratge experimental que té com a objectiu traslladar les pautes de la combustió DMDF del SCE al MCE respectant els límits operatius del motor original, avaluant el seu impacte en els resultats de combustió, rendiment i emissions en condicions estacionàries i condicions de cicle de conducció. A continuació, es realitzen estudis específics per a abordar el problema relacionat amb la concentració excessiva de productes no cremats mitjançant investigacions experimentals i simulacions numèriques per a comprendre les conseqüències de l'ús de combustibles amb diferent reactivitat en l'eficiència de conversió del catalitzador d'oxidació original i la seua capacitat per a aconseguir emissions al tub d'escapament menors que el límit EUVI. Finalment, es busca la reducció de CO2 a través de la modificació del combustible, investigant tant la millora del procés de combustió com l'equilibri entre el cicle de vida del combustible.
[EN] The medium and heavy-duty transport sector was historically challenged by the emissions regulations that were imposed along the years, requiring to step up the research effort aiming at advancing the product development to deliver a normative compliant option at similar price to the owner. Nonetheless, the recent introduction of EUVI normative have required the addition of a complex aftertreatment system, adding new fixed costs to the product as well as operational costs with the urea consumption. This breakthrough was required due to the limitation of the conventional diesel combustion which cannot decouple high NOx emissions and efficiency. This technological limitation has boosted the investigation on different combustion concepts that could maintain similar efficiency levels than the diesel combustion while controlling the emission formation during the combustion process. Among the different solutions that have appeared along the years, Reactivity Controlled Compression Ignition (RCCI) was demonstrated to have a competitive edge due to its better controllability, high efficiency and low soot and NOx emissions. Despite the benefits, the extension of RCCI to full map operation has presented significant limitations, as excessive pressure gradients at high load and high combustion instability and unburned products at low engine load. Recently, Dual-Mode Dual-Fuel (DMDF) combustion concept was introduced as an attempt of solving the drawbacks of the RCCI combustion while maintaining its advantages. The preliminary results obtained in single cylinder engine (SCE) have evidenced that DMDF can achieves similar efficiency levels than those from conventional diesel combustion while promoting ultra-low levels of soot and NOx. Albeit, the boundary condition requirements are hard to fit in the operating range of commercial air management system as well as drawbacks like excessive HC and CO that still persists from low to medium load, which can be a challenge for the aftertreatment system. Moreover, short-term future regulations will demand a 15 % reduction of CO2 emissions in 2025 which was proven in the literature to not be easily achieved only by combustion process optimization. In this sense, this thesis has as general objective the implementation of the DMDF combustion concept in a multi-cylinder engine (MCE) under the restrictions of real applications to realize clean and efficient combustion in the complete map while providing alternatives to reduce the HC and CO concentration and accomplish CO2 savings. This objective is accomplished by means of a first extensive experimental calibration procedure aiming to translate the guidelines of the DMDF combustion from the SCE to the MCE while respecting the operating limits of the stock hardware, assessing its impacts on combustion, performance, and emission results under steady and driving cycle conditions. Next, dedicated studies are performed to address the issue related with the excessive concentration of unburned products by means of experimental investigations and numerical simulations, to understand the consequences of using fuels with different reactivity in the stock oxidation catalyst conversion efficiency and its ability in achieving EUVI tailpipe emissions. Finally, CO2 reduction is explored through fuel modification, investigating both combustion process improvement and well-to-wheel balance as paths to realize CO2 abatement.
This doctoral thesis has been partially supported by the Spanish Ministry of Science Innovation and Universities under the grant:"Ayudas para contratos predoctorales para la formación de doctores" (PRE2018-085043)
Lago Sari, R. (2021). Dual Mode Dual Fuel Combustion: Implementation on a Real Medium Duty Engine Platform [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165366
TESIS
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, Sunmeet. "Utilization of methane in a compression ignition engine under dual fuel mode." Thesis, IIT Delhi, 2017. http://localhost:8080/xmlui/handle/12345678/7243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roberts, Stefan Ross. "Non-intrusive knock detection in a turbocharged, dual fuel engine." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq22664.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rabello, de Castro Ricardo. "Effect of the fuel composition of syngas on the combustion process in Dual-Fuel engine." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1032.

Full text
Abstract:
Le gaz de synthèse, également appelé ‘syngas', est considéré comme un carburant alternatif prometteur pour lutter à la fois contre le réchauffement climatique et la gestion des déchets, deux défis majeurs de la société moderne. La composition chimique du gaz de synthèse dépend fortement des caractéristiques de la matière première et du processus utilisé pour sa production, et impacte son efficacité en tant que carburant dans les moteurs à combustion. L'objectif principal de cette étude est de déterminer comment optimiser un moteur à combustion interne bicarburant (ICE) syngas/diesel pour différentes compositions de gaz de synthèse, ratios de substitution de diesel et richesse de prémélange gaz/air. Nous commençons par donner un aperçu des moyens de sa production et des compositions du gaz de synthèse pour sélectionner trois mélanges représentatifs de ses éléments de base. Ensuite, nous examinons les études sur le syngas/diesel (ou autre carburant à haute réactivité) pour déterminer comment chaque paramètre affecte les performances et les émissions du moteur. Dans le chapitre suivant, nous déterminons deux propriétés de combustion, à savoir les vitesses de flamme laminaire et les longueurs de Markstein, pour plusieurs conditions pertinentes pour le moteur et pour les trois compositions. Ensuite, nous poursuivons les expériences menées dans un moteur entièrement métallique (non transparent) pour mesurer les performances du moteur et les émissions à l'échappement. Dans cette expérience, nous explorons comment le rapport énergétique syngas-diesel, la richesse du mélange syngas/air et les effets de la composition du gaz de synthèse produisent différents résultats de performance et émissions. Enfin, nous effectuons des expériences dans un moteur optique Dual-Fuel pour déterminer le comportement des flammes et des radicaux, par analyse des images de combustion du moteur
Synthesis Gas, also known as Syngas, is deemed as a promising alternative fuel to tackle both global warming and waste management - two major challenges for modern society. The chemical composition of syngas, however, is highly dependent on the characteristics of the feedstock and the process used in its production; and so is its efficiency as a fuel in combustion engines. The main goal of this study is to determine how to optimize a syngas/diesel Dual-Fuel Internal Combustion Engine (ICE) for different syngas compositions, diesel substitution ratios and syngas/air equivalence ratios. We start providing an overview of syngas production and compositions to select three representative mixtures of its basic elements. Afterwards, we review Dual-Fuel syngas/diesel (or a high-reactivity fuel) studies to determine how each parameter affects the engine performance and emissions. In the following chapter, we determine two combustion properties, namely, the laminar flame speeds and the Markstein lengths, for several engine-relevant conditions for the three compositions. Then, we proceed conducting experiments in a full-metal (not optical) engine to measure engine performance and exhaust emissions. In that experiment we explore how the syngas-diesel energy ratio, the premixed Syngas/air equivalence ratio and the Syngas composition effects, produce different performances and exhaust emissions. Finally, we perform experiments in an optical Dual-Fuel engine to determine flame and radicals´ behaviors, followed by an analysis of engine combustion images
APA, Harvard, Vancouver, ISO, and other styles
8

Mirmohammadsadeghi, Mahmoudreza. "Investigation of diesel-ethanol and diesel-gasoline dual fuel combustion in a single cylinder optical diesel engine." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/17436.

Full text
Abstract:
Ever growing population and increased energy consumption across all industries has resulted in higher atmospheric concentration of the greenhouse gases (GHG) and therefore an increase in the planet's average temperature, which has led to increasingly demanding and more strict legislations on pollutant sources, and more specifically, the automotive industry. As a consequence of all this, the demand for research into alternative energy sources has greatly increased. In this study combustion characteristics, engine performance, and exhaust emission of diesel-ethanol and diesel-gasoline are investigated in an optical direct injection diesel engine. In particular, effects of different substitution ratios and diesel injection strategies are studied when the total fuel energy is kept constant. The three main substitution ratios used in this study include 45% (45% of fuel energy from port-injected ethanol/gasoline and 55% from direct injection diesel), 60%, and 75%. The engine used for this investigation is a Ricardo Hydra single cylinder optical engine running at 1200 rpm. In-cylinder pressure measurement is used for calculating all engine parameters, heat release rate, and efficiency. In addition to the thermodynamic analysis of the combustion parameters, high speed camera was used alongside with a copper vapor laser or the high speed image intensifier in the high speed video imaging for the optical analysis of the effect of the above-mentioned parameters on autoignition and combustion processes, while Horiba particulate analyser and AVL smoke meter were utilized in monitoring and recording emissions for every tested condition. Depending on the testing conditions, such as injection strategy and intake conditions, both dual-fuel operations were able to deliver high efficiency and improved emissions compared to that of a pure diesel engine operation, with the diesel-gasoline operation offering more consistency in improved thermal efficiency, and the diesel-ethanol operation delivering lower emission output. The optical analysis of the combustion represents the main difference in the flame propagation, distribution and quality for each substitute fuel and its substitution percentage, as well as the condition under examination.
APA, Harvard, Vancouver, ISO, and other styles
9

Chintala, Venkateswarlu. "Experimental investigation on utilization of hydrogen in a compression ignition engine under dual-fuel mode." Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zastavniouk, Oleg. "Study of mixing phenomena in a dual fuel diesel engine air intake manifold." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq22695.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stewart, Jill. "Combustion diagnostics of a dual fuel CI engine : an experimental and theoretical study." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/7840.

Full text
Abstract:
The term 'dual fuel' refers to a compression ignition engine where a small quantity of diesel fuel called the pilot is used to ignite a second gaseous fuel which is the primary energy source. The motivation to use dual fuel has traditionally been economic, as the primary fuel is often less expensive than the distillate fuel it replaces. However, some benefits in terms of the reduced emissions of smoke and oxides of nitrogen (NOx) can also be achieved. In this research, a small, direct injection diesel engine was converted to dual fuel operation. This engine is typical of those used in stationary power generation applications. A review of literature revealed that whilst performance and emissions trends were well established for indirect injection engines, little research had been conducted on a direct injection engine. In particular, this class of small, high speed industrial engine had been somewhat neglected, partly because they have been subject to less stringent emissions legislation than their automotive counterparts. By performing a detailed investigation ' into the errors and assumptions that have a bearing on the three zone technique, it was possible to challenge some previous assumptions regarding the dual fuel combustion process. Namely, the theory that the pilot bums in two separate initial stages was found to be a deficiency of previous analysis techniques and therefore incorrect. It was found that as the proportion of the gaseous fuel was increased, the combustion process retained similar characteristics and magnitudes of mass burned to diesel until all but the highest equivalence ratios. At this point, the premixed and diffusion burning periods merged, but continued to show a fundamental dependence on the pilot ignition and the combustion processes were never independent of the pilot. The range of equivalence ratios over which the transition between the two patterns occurs is firstly a function of the primary fuel, and secondly a function of the operating conditions (such as in cylinder temperature). It is proposed that the dual fuel combustion process is better described as a diesel combustion process with a modified diffusion burning period that results from the gaseous fuel concentration and type. By using this explanation, it was identified that the emissions characteristics of the engine could be modified through the use of a second fuel. The primary fuel can reduce the initial mass burning rates (to reduce NOx) and simultaneously elevated the diffusion burning rates (to reduce smoke emissions). This provides an alternative, beneficial means by which the classic diesel NOx-Particulate trade-off can be manipulated. Butane was found to be unsuitable for this type of engine, and propane consistently yielded the best performance and emissions trends. Additionally, it was found that the addition of small quantities of methane or propane can result in disproportionately large reductions in smoke and NOx without the penalty of increased carbon monoxide and unburned hydrocarbons.
APA, Harvard, Vancouver, ISO, and other styles
12

FILHO, FERNANDO FERRARI. "EVALUATION OF DIESEL CYCLE ENGINE OPERATING IN THE DUAL FUEL MODE: DIESEL / ETHANOL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19636@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
Este trabalho avaliou o comportamento de um motor do ciclo Diesel, operando no modo original (Diesel puro) e no modo bicombustível (Diesel / etanol), em dois modos de hidratação do álcool (70 e 93 graus INPM). A rotação foi mantida fixa em 1800 rpm. A finalidade foi estudar os parâmetros de desempenho do motor e analisar a liberação de calor pela combustão, como também, o calor trocado com as paredes. Avaliou-se como parâmetros de desempenho, o rendimento térmico, consumo específico de combustível e emissão de poluentes. A fase inicial do trabalho constou de ensaios experimentais realizados no conjunto motor / dinamômetro nos modos mencionados acima. O objetivo foi coletar a variação de pressão no interior do cilindro, consumo de combustível, emissão de gases, temperaturas em pontos estratégicos, entre outros. Em uma segunda etapa foi realizada uma análise dos parâmetros de desempenho e da liberação de calor. Para emissões de poluentes, observou-se uma diminuição de MP em altas taxas de substituição. No entanto, notou-se um aumento elevado de HC. Em baixas cargas e taxas de substituição elevadas houve redução de emissão de NOx. O rendimento térmico apresentou comportamentos similares em 70 e 93 graus INPM. Em altas cargas e altas taxas de substituição houve um sensível aumento do rendimento quando comparado ao modo original. O rendimento foi menor para baixas cargas com altas taxas de substituição, em relação ao modo original. O início da combustão no modo bicombustível foi antecipado em relação ao modo original, nas condições de altas cargas e máximas taxas de substituição. Isto foi devido à liberação de calor que ocorreu mais cedo no modo bicombustível. Ressalta-se que, nas mesmas condições, houve a ocorrência de um maior calor trocado com as paredes do cilindro, em ambos os modos de hidratação (70 – 93 graus INPM), quando comparado ao modo original.
This work aimed to evaluate a Diesel cycle engine operating in the original (only Diesel) and dual-fuel modes (Diesel / ethanol) in two levels of hydration of alcohol (70 and 93 degrees INPM). Speed was kept fixed at 1800 rpm. The purpose was to study the parameters of engine performance and analyze the heat release by combustion and heat exchanged to the cylinder’s walls. For parameters of performance, evaluation of thermal efficiency, specific fuel consumption and emissions were conducted. Initial activities consisted in trial tests on the engine / dynamometer in the two modes as mentioned above. The goal was to collect the variation of indicated cylinder pressure data, as well as fuel consumption, emissions and temperatures at strategic points. Secondly, performance parameters and heat release analysis was performed. For emissions, a decrease in PM was found at higher replacement rates; however, in the same condition a large increase in HC was obtained. At low loads and at higher replacement rates, NOx emissions were reduced. Thermal efficiency showed similar behavior at 70 and 93 degrees INPM. At high loads and at higher replacement rates a significant increase in thermal efficiency compared to the original mode and for low loads with higher replacement rates thermal efficiency was decreased. In high loads and at higher replacement rates conditions, the process of combustion occurred before in the dual fuel mode, due to earlier heat release compared to original mode (only Diesel). In the same conditions an increase of heat exchanged to the cylinder’s wall in both modes of hydration of alcohol (70 and 93 degrees INPM) compared to the original mode was obtained.
APA, Harvard, Vancouver, ISO, and other styles
13

Júnior, Roberto Freitas Britto. "Experimental analysis of a diesel engine operating in diesel-ethanol dual-fuel mode." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3043.

Full text
Abstract:
A significant part of the world economy depends on stationary or vehicular Diesel engines. Such engines are fed mainly by fossil fuels, among these, the standard diesel. The growing interest in renewable energy sources makes the use of ethanol in these engines a real technological demand. From the existing concepts to meet this goal the Diesel-Ethanol in the Dual-Fuel mode has demand for published experimental data. Such concept brings a greater degree of freedom, but implications in technological challenges. It works through a PFI (Port Fuel Injection) system to prepare a pre-mixture of air and ethanol in the intake port which is compressed in the combustion chamber and ignited by pilot injection of diesel. In this work a single cylinder research engine with 100% electronically controlled calibration was used. The engine control parameters were set to maximize diesel substitution rate by ethanol with a limited indicated efficiency loss. Comparisons were made among different working conditions. Initially, the flow structure in the combustion chamber was tested in both quiescent and high swirl modes. Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1. Two injectors were tested, the first one with mass flow of 35 g/s and another of 45 g/s. Regarding pressure diesel injection, 4 levels were investigated namely 800, 1000, 1200 and 1400 bar. The experiments discussed in this work were able to achieve up to 65% of diesel energy substituted by hydrated ethanol energy with an indicated efficiency of 49%. In comparison with the diesel only running condition, the NOx emissions was improved by up to 60%. But the HC, CO and aldehydes emissions had a penalty, showing a trade-off that shall be further investigated with a final design engine in the beginning of product development process.
APA, Harvard, Vancouver, ISO, and other styles
14

Belaid-Saleh, Haïfa. "Etude des régimes de combustion dans le contexte du fonctionnement dual fuel." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2064.

Full text
Abstract:
Le développement de stratégies de combustion innovantes est nécessaire aujourd’hui pour répondre aux réglementations de plus en plus intransigeantes qui fixent les seuils d’émissions polluantes par les véhicules neufs. Parmi ces stratégies, l’approche Dual Fuel a montré un fort potentiel dans la réduction des émissions tout en maintenant des niveaux de rendement élevés. Le concept Dual Fuel est fondé sur la formation d’un mélange homogène d’air et d’un carburant volatile (essence, méthane, éthanol...) allumé par une injection directe d’un carburant à fort cétane (de type gazole) dans la chambre de combustion. Une compréhension détaillée des différents processus de combustion est primordiale pour aider au développement des stratégies Dual Fuel concrètes. Dans ce contexte, le développement d’un modèle adapté, couplé à des mesures expérimentales réalisées sur moteur optique, est indispensable pour optimiser la combustion Dual Fuel. Une étude numérique, fondée sur le couplage d’un modèle de combustion turbulente dédié à la propagation de flamme dans des milieux stratifiés (ECFM3Z) et un modèle de chimie tabulée pour la prédiction de l’auto-inflammation (TKI), a été menée afin d’évaluer la capacité des modèles existants à prédire les différents régimes de combustion qui pourraient exister dans les stratégies Dual Fuel. Des critères de transition ont été ajoutés et évalués afin d’améliorer le couplage des deux modèles et d’assurer la transition entre l’auto-inflammation et la propagation de flamme. D’autre part, l’étude expérimentale sur un moteur à accès optiques a permis d’étudier des variations de richesse, de carburant de prémélange et de taux de dilution et de caractériser de manière fine les mécanismes de la combustion Dual Fuel afin de servir de base de données aux développements de modèles CFD
Advanced combustion strategies are required in response to increasingly stringent worldwide regulations governing exhaust gas emissions in the transport sector. Among these strategies, the Dual Fuel approach has shown potential to reduce engine-out pollutant emissions without penalizing combustion efficiency. The Dual Fuel concept relies on the formation of a homogeneous mixture of air with a highly volatile fuel (gasoline, methane, ethanol...) which is ignited by direct injection of a high-cetane fuel (Diesel fuel) in the combustion chamber. An improved understanding of the underlying physical phenomena and a detailed insight of the predominant combustion regime(s) are required in order to advance the development of the Dual Fuel combustion strategies. In this context, numerical modeling and optical engine measurements are combined to investigate Dual Fuel combustion. A numerical study, based on the coupling between a turbulent combustion model for flame propagation in stratified mixtures (ECFM3Z) and a tabulated kinetics model for auto-ignition (TKI), was conducted to evaluate the capacity of the existing models to cope with the various combustion regimes that might exist in Duel Fuel combustion strategies. Transition criteria were added and evaluated in order to improve the coupling between the two models and to better predict the transitions between auto-ignition and flame propagation. In addition, an experimental investigation, including equivalence ratio, premixed fuel and dilution variations, was performed in an optical engine. The objective was to apply advanced optical diagnostic techniques to thoroughly characterize the Dual Fuel combustion process and thus enhancing CFD model developments
APA, Harvard, Vancouver, ISO, and other styles
15

Kuyper, Johannes. "Experimental Investigation into the Influence of Piston Crevices on Engine-Out Hydrocarbon Emissions from a Diesel Dual Fuel Engine." Thesis, KTH, Maskinkonstruktion (Inst.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184000.

Full text
Abstract:
In today’s society, when the fuel prices are increasing and the climate changes are becoming more and more noticeable, alternative fuels for combustion engines are becoming an important topic for the manufacturers. Two interesting fuels in those perspectives are Biogas and Compressed Natural Gas, CNG. The main constituent of these two fuels is methane. Currently methane is mostly used in spark ignited engines but can also be used in diesel engines since it has a high resistance to knock. An engine concept where methane can be used as fuel in a diesel engine is the Diesel Dual Fuel concept, DDF. In this concept a diesel engine is run with two fuels, diesel and methane, where the methane is injected into the intake runners and the diesel is direct injected into the cylinder. The engine is mainly run on methane and uses a diesel pilot as a liquid spark plug to ignite the homogenous air/methane mixture. The biggest challenge when it comes to emissions for the DDF concept is the HC emissions since the combustion chamber in a diesel engine is not optimized for homogeneous charges, especially noticeable for the piston ring pack crevices. Engine tests are therefore carried out to study the contribution from the piston ring pack crevices to the engine-out HC emissions of a DDF engine. The results show that the flame is not able to burn down into the top land volume and consume the air/fuel mixture there when the standard piston with a top land clearance of 0.6 mm is used. Increasing this clearance to 2.1 mm makes the flame able to burn down into this volume and consume most of the air/fuel mixture there. The contribution to the engine-out HC emissions from the top land volume varies for different lambda values and engine loads. The same trend could be seen for both the light and middle engine loads tested with regards to lambda; however a larger amount of the HC emissions is expected to originate from the top land volume at the higher load. The contribution from the second land volume shows the opposite trend with lambda if compared with the top land volume.
I dagens samhälle, då bränslepriserna ökar och klimatförändringarna blir mer och mer märkbara, börjar alternativa bränslen för förbränningsmotorer bli ett viktigt ämne för fordonstillverkarna. Två intressanta bränslen ur dessa perspektiv är Biogas och Komprimerad naturgas. Huvudbeståndsdelen i dessa bränslen är metan. Metan används för närvarande mest i tändstifts motorer men kan också användas i dieselmotorer då det har en stor motståndskraft mot knack. Ett koncept där metan kan användas som bränsle i en dieselmotor är Diesel Dual Fuel, DDF. Det är ett koncept där en dieselmotor körs på två bränslen, diesel och metan, där metan sprutas in i insugskanalerna och dieseln är direktinsprutad in i cylindern. Motorn körs till största delen på metan och använder en liten dieselinsprutning för att antända luft/metan-blandningen. Ur emissions synpunkt är oförbrända kolväten den största utmaningen för DDF konceptet eftersom en dieselmotors förbränningsrum inte är optimerat för en homogen luft/bränsle-blandning, speciellt märkbart för skrymslet mellan kolv och cylindervägg. Motortester har därför utförts för att undersöka hur skrymslena mellan kolv och cylindervägg bidrar till utsläppen av oförbrända kolväten på en DDF motor. Resultatet visar att flamman inte kan brinna ner mellan kolv och cylinderväg och förbruka luft/bränsle blandningen där då standardkolven med ett avstånd mellan kolv och cylindervägg på 0.6 mm används. En ökning av detta avstånd till 2.1 mm gör dock att flamman kan brinna ner och konsumera luft/bränsle blandningen där. Bidraget från skrymslet ovanför översta kolvringen till utsläppen av oförbrända kolväten varierar med både lambda och last. Samma trend med avseende på lambda kunde observeras för både låg- och mellan-lasten som testats men ett större bidrag från detta skrymsle noterades vid den högre lasten. Bidraget från skrymslet mellan de bägge kompressions ringarna till utsläppen av oförbrända kolväten visar på ett omvänt förhållande för lambda jämfört med skrymslet ovanför den översta kolvringen.
APA, Harvard, Vancouver, ISO, and other styles
16

Kersting, Lee Allan. "Characterizing the operation of a dual-fuel diesel-hydrogen engine near the knock limit." Thesis, North Dakota State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1568051.

Full text
Abstract:

A CAT C6.6 turbocharged diesel engine was operated in dual-fuel diesel-hydrogen mode. Hydrogen was inducted into the intake and replaced a portion of the diesel fuel. Hydrogen was added across multiple engine speeds and loads until reaching the knock limit, identified by a threshold on the rate of in-cylinder pressure rise. In-cylinder pressure and emissions data were recorded and compared to diesel-only operation. Up to 74% H2 substitution for diesel fuel was achieved. Hydrogen addition increased thermal efficiency up to 32.4%, increased peak in-cylinder pressure up to 40.0%, increased the maximum rate of pressure rise up to 281%, advanced injection timing up to 13.6°, increased NOx emissions up to 224%, and reduced CO 2 emissions up to 47.6%. CO and HC emissions were not significantly affected during dual-fuel operation. At 25% load an operating condition was observed with low NOx and nearly 0 CO2 emissions, which however exhibited unstable combustion.

APA, Harvard, Vancouver, ISO, and other styles
17

Johnson, Stephen. "A quasi-dimensional model for performance and emissions predictions in a dual fuel engine." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10975.

Full text
Abstract:
A new quasi-dimensional, multi-zone model has been developed to describe the combustion processes occurring inside a dual fuel engine. A dual fuel engine is a compression ignition engine in which a homogeneous lean premixed charge of gaseous fuel and air is ignited by a pilot fuel spray. The atomisation and preparation of the pilot leads to the formation of multiple ignition centres from which turbulent flame fronts develop. The energy release in a dual fuel engine is therefore a combination of that from the combustion of the pilot fuel spray and lean premixed charge. Hence, the dual fuel combustion process is complex, combining elements of both conventional spark and compression ignition engines. The dual fuel engine is beneficial as it can achieve significant reductions in emissions of carbon dioxide (CO2), as well as reducing emissions of oxides of nitrogen (NOx) and particulate matter (PM).
APA, Harvard, Vancouver, ISO, and other styles
18

Kersting, Lee. "Characterizing the Operation of a Dual-Fuel Diesel-Hydrogen Engine near the Knock Limit." Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27572.

Full text
Abstract:
A CAT C6.6 turbocharged diesel engine was operated in dual-fuel diesel-hydrogen mode. Hydrogen was inducted into the intake and replaced a portion of the diesel fuel. Hydrogen was added across multiple engine speeds and loads until reaching the knock limit, identified by a threshold on the rate of in-cylinder pressure rise. In-cylinder pressure and emissions data were recorded and compared to diesel-only operation. Up to 74% H2 substitution for diesel fuel was achieved. Hydrogen addition increased thermal efficiency up to 32.4%, increased peak in-cylinder pressure up to 40.0%, increased the maximum rate of pressure rise up to 281%, advanced injection timing up to 13.6?, increased NOx emissions up to 224%, and reduced CO2 emissions up to 47.6%. CO and HC emissions were not significantly affected during dual-fuel operation. At 25% load an operating condition was observed with low NOx and nearly 0 CO2 emissions, which however exhibited unstable combustion.
APA, Harvard, Vancouver, ISO, and other styles
19

Reiter, Aaron Jesse. "Combustion and emissions characteristics of a compression-ignition engine using dual ammonia-diesel fuel." [Ames, Iowa : Iowa State University], 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Monsalve, Serrano Javier. "Dual-fuel compression ignition: towards clean, highly efficient combustion." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/75109.

Full text
Abstract:
The more and more stringent emissions regulations, together with the greater fuel economy demanded by vehicle users, impose a clear objective to researchers and engine manufacturers: look for the maximum efficiency with the minimum pollutant emissions levels. The conventional diesel combustion is a highly efficient process, but also leads to high levels of NOx and soot emissions that require using aftertreatment systems to reduce the final levels released to the environment. Since these systems incur in higher costs of acquisition and operation of the engine, the scientific community is working on developing alternative strategies to reduce the generation of these pollutants during the combustion process itself. The literature shows that the new combustion modes based on promoting low temperatures during this process, offer high efficiency and very low NOx and soot levels simultaneously. However, after years of investigation, it can be concluded that these techniques cannot be applied in the whole engine operating range due to, among others, factors like the low control of the combustion process. In recent years, it has been demonstrated that the dual-fuel combustion technique allows to overcome this limitation thanks to the additional degree of freedom provided by the capacity of modulating the fuel reactivity depending on the engine operating conditions. This characteristic, together with the near-zero NOx and soot levels obtained with this technique, has encouraged the scientific community to deeply investigate the dual-fuel combustion. In this sense, former works confirm the advantages previously described, concluding that still exist some limitations to be tackled, as well as some margin for improving the potential of this combustion concept. The general objective of the present Doctoral Thesis is to contribute to the understanding of the dual-fuel combustion mode, with the particular aim of exploring different ways to improve its efficiency. For this purpose, it has been experimentally evaluated different options such as the modification of the engine operating parameters, specific designs of the piston geometry or the use of alternative fuels. With the aim of answering some of the questions found in the literature, the first part of each study has been dedicated to perform a detailed analysis of the influence of each particular strategy on the dual-fuel operation at low load. Later, it has been checked the ability of each option to extend the dual-fuel operating range towards higher engine loads. It is interesting to note that the analysis of some results has been supported by CFD calculations, which have allowed to understand some local phenomena occurring during the dual-fuel combustion process, which cannot be confirmed only from the experimental point of view. Finally, taking into account the knowledge acquired during the different studies performed, the last chapter of results has been devoted to evaluate the ability of the dual-fuel concept to operate over the whole engine map, as well as to identify the possible limitations that this technique presents from the technological point of view.
Las cada vez más restrictivas normativas anticontaminantes, junto con la demanda de motores con menor consumo de combustible por parte de los usuarios, imponen un claro objetivo a investigadores y fabricantes de motores: la búsqueda de la máxima eficiencia con los mínimos niveles de emisiones contaminantes. La combustión diésel convencional ofrece una alta eficiencia, pero a su vez da lugar a elevadas emisiones de NOx y hollín que requieren del uso de sistemas de postratamiento para reducir los niveles finales emitidos al ambiente. Dado que estos sistemas incurren en mayores costes de adquisición y operación del motor, la comunidad científica está trabajando en el desarrollo distintas estrategias para reducir la generación de estos contaminantes durante el propio proceso de combustión. La literatura demuestra que los nuevos modos de combustión basados en promover bajas temperaturas durante este proceso, ofrecen simultáneamente una elevada eficiencia y muy bajos niveles de NOx y hollín. Sin embargo, tras años de investigación, se puede llegar a la conclusión de que estas técnicas no pueden ser aplicadas en todo el rango de operación del motor debido a, entre otros, factores como el escaso control sobre el proceso de combustión. En los últimos años, se ha demostrado que la técnica de combustión dual-fuel permite superar esta limitación gracias al grado de libertad adicional que supone la capacidad de modular la reactividad del combustible en función de las condiciones de operación del motor. Esta característica, junto con los casi nulos niveles de NOx y hollín que proporciona, ha despertado un gran interés sobre la comunidad científica. En este sentido, trabajos precedentes confirman las ventajas que este modo de combustión ofrece, demostrando a su vez que aún existen una serie de limitaciones por abordar, así como cierto margen por explotar para mejorar el potencial de este concepto. La presente Tesis Doctoral plantea como objetivo general el contribuir a la comprensión del modo de combustión dual-fuel, y de manera particular explorar distintas vías con objeto de mejorar su eficiencia. Para ello, se han evaluado de manera experimental diferentes opciones que van desde la modificación de los parámetros de operación del motor, hasta diseños específicos de la geometría del pistón o el uso de combustibles alternativos. Tratando de responder algunas de las cuestiones encontradas en la literatura, en cada uno de los estudios se ha realizado un análisis detallado de la influencia del parámetro en cuestión sobre la operación del motor a baja carga, y a su vez se ha comprobado la capacidad de cada una de estas opciones de extender la operación del motor hacia cargas más elevadas. Cabe destacar que el análisis de ciertos resultados se ha apoyado en cálculos numéricos CFD, los cuales han permitido entender ciertos fenómenos locales que ocurren durante el proceso de combustión dual-fuel, y que no pueden ser confirmados únicamente desde el punto de vista experimental. Finalmente, teniendo en cuenta el conocimiento adquirido en los diferentes estudios realizados, el último capítulo de resultados se ha dedicado a evaluar la capacidad de operación del concepto dual-fuel en todo el rango de funcionamiento del motor, así como a identificar las posibles limitaciones que esta técnica presenta desde el punto de vista tecnológico.
Les cada vegada més restrictives normatives anticontaminants, juntament amb la demanda de motors amb menor consum de combustible per part dels usuaris, imposen un clar objectiu a investigadors i fabricants de motors: la cerca de la màxima eficiència amb els mínims nivells d'emissions contaminants. La combustió dièsel convencional ofereix una alta eficiència, però al seu torn dóna lloc a elevades emissions de NOx i sutge que requereixen de l'ús de sistemes de postractament per a reduir els nivells finals emesos a l'ambient. Aquests sistemes incorren en majors costos d'adquisició i operació del motor, per la qual cosa de forma paral·lela, la comunitat científica està treballant en el desenvolupament de diferents estratègies per a reduir la generació d'aquests contaminants durant el propi procés de combustió. La literatura demostra que les noves tècniques de combustió basades a promoure baixes temperatures durant aquest procés, ofereixen simultàniament una elevada eficiència i molt baixos nivells de NOx i sutge. No obstant açò, després d'anys de recerca, es pot arribar a la conclusió que aquestes tècniques no poden ser aplicades en tot el rang d'operació del motor a causa de, entre uns altres, factors com l'escàs control sobre el procés de combustió. En els últims anys, s'ha demostrat que la tècnica de combustió dual-fuel permet superar aquesta limitació gràcies al grau de llibertat addicional que suposa la capacitat de modular la reactivitat del combustible en funció de les condicions d'operació del motor. Aquesta característica, juntament amb els quasi nuls nivells de NOx i sutge que proporciona, ha despertat un gran interès sobre la comunitat científica. En aquest sentit, treballs precedents confirmen els avantatges que aquesta tècnica de combustió ofereix, demostrant al seu torn que encara existeixen una sèrie de limitacions per abordar, així com cert marge per explotar per a millorar el potencial d'aquest concepte. La present Tesi Doctoral planteja com a objectiu general el contribuir a la comprensió de la tècnica de combustió dual-fuel, i de manera particular explorar diferents vies a fi de millorar la seua eficiència. Per a açò, s'han avaluat de manera experimental diferents opcions que van des de la modificació dels paràmetres d'operació del motor, fins a dissenys específics de la geometria del pistó o l'ús de combustibles alternatius. Tractant de respondre algunes de les qüestions trobades en la literatura, en cadascun dels estudis s'ha realitzat una anàlisi detallada de la influència del paràmetre en qüestió sobre l'operació del motor a baixa càrrega, i al seu torn s'ha comprovat la capacitat de cadascuna d'aquestes opcions d'estendre l'operació del motor cap a càrregues més elevades. Cal destacar que l'anàlisi de certs resultats s'ha recolzat en càlculs numèrics CFD, els quals han permès entendre certs fenòmens locals que ocorren durant el procés de combustió dual-fuel, i que no poden ser confirmats únicament des del punt de vista experimental. Finalment, tenint en compte el coneixement adquirit en els diferents estudis realitzats, l'últim capítol de resultats s'ha dedicat a avaluar la capacitat d'operació del concepte dual-fuel en tot el rang de funcionament del motor, així com a identificar les possibles limitacions que aquesta tècnica presenta des del punt de vista tecnològic.
Monsalve Serrano, J. (2016). Dual-fuel compression ignition: towards clean, highly efficient combustion [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75109
TESIS
APA, Harvard, Vancouver, ISO, and other styles
21

May, Ian Alexander. "An experimental investigation of lean-burn dual-fuel combustion in a heavy duty diesel engine." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16398.

Full text
Abstract:
Natural gas is currently an attractive substitute for diesel fuel in the Heavy-Duty (HD) diesel transportation sector. This is primarily attributed to its cost effectiveness, but also its ability to reduce the amount of CO2 and harmful engine pollutants emitted into the atmosphere. Lean-burn dual-fuel engines substitute natural gas in place of diesel but typically suffer from high engine-out methane (CH4) emissions, particularly under low load operation. In response to this issue, this work set out to improve upon the efficiency and emissions of a lean-burn dual-fuel combustion system in an HD diesel/natural gas engine. Thermodynamic experimental engine testing was performed at various steady-state operating points in order to identify the most effective methods and technologies for improving emissions and efficiency. Low Temperature Combustion (LTC) along with several valvetrain and injection strategies were evaluated for benefits, with special attention paid to low load operating conditions. LTC was proven to be a useful method for decreasing methane emissions while simultaneously improving engine efficiency. The benefits of LTC were a function of load with the greatest advantages experienced under medium load operation. Additionally, the low load strategies tested were determined to be effective techniques for reducing methane emissions and could possibly extend the dual-fuel operating regime to lighter load conditions. Overall, no operating condition tested throughout the engine map resulted in a brake engine-out methane emissions level of less than 0.5 g/kWh at gas substitutions greater than approximately 75%. It is suggested that the limits of this particular lean-burn dual-fuel design were reached, and that it would likely require improvements to either the combustion system or exhaust after-treatment if Euro VI emissions levels for methane were to be achieved.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Haofan. "Experimental investigation of gasoline-dimethyl ether dual fuel CAI combustion with internal EGR." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/6357.

Full text
Abstract:
A new dual fuel Controlled Auto-Ignition (CAI) combustion concept was proposed and researched for lower exhaust emissions and better fuel economy. The concept takes the advantage of the complementary physical and chemical properties of high octane number gasoline and high cetane number Di-Methyl Ether (DME) to organize the combustion process. Homogeneous gasoline/air mixture is utilized as the main combustible charge, which is realised by a low-cost Port Fuel Injection (PFI) system. Pressurised DME is directly injected into cylinder via a commercial Gasoline Direct Injection (GDI) injector. Flexible DME injection strategies are employed to realise the controlled auto ignition of the premixed charge. The engine is operated at Wide Open Throttle (WOT) in the entire operating region in order to minimize the intake pumping loss. Engine load is controlled by varing the amount of internal Exhaust Gas Recirculation (iEGR) which is achieved and adjusted by Positive Valve Overlap (PVO) and/or exhaust back pressure, and exhaust rebreathing method. The premixed mixture can be of either stoichiometric air/fuel ratio or fuel lean mixture and is heated and diluted by recycled exhaust gases. The use of internal EGR is considered as a very effective method to initiate CAI combustion due to its heating effect and moderation of the heat release rate by its dilution effect. In addition, the new combustion concept is compared to conventional SI combustion. The results indicate that the new combustion concept has potential for high efficiency, low emissions, enlargement of the engine operational region and flexible control of CAI combustion.
APA, Harvard, Vancouver, ISO, and other styles
23

ACCURSO, FRANCESCO. "Development of a Phenomenological Combustion Model for Large Bore Dual Fuel Engines." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2972101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sohail, Aamir. "An experimental investigation of dual-injection strategies on diesel-methane dual-fuel low temperature combustion in a Single Cylinder Research Engine." Thesis, Mississippi State University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1596101.

Full text
Abstract:

The present manuscript discusses the performance and emission benefits due to two diesel injections in diesel-ignited methane dual fuel Low Temperature Combustion (LTC). A Single Cylinder Research Engine (SCRE) adapted for diesel-ignited methane dual fuelling was operated at 1500 rev/min and 5 bar BMEP with 1.5 bar intake manifold pressure. The first injection was fixed at 310 CAD. A 2nd injection sweep timing was performed to determine the best 2nd injection timing (as 375 CAD) at a fixed Percentage Energy Substitution (PES 75%). The motivation to use a second late injection ATDC was to oxidize Unburnt Hydrocarbons (HC) generated from the dual fuel combustion of first injection. Finally, an injection pressure sweep (550-1300 bar) helped achieve simultaneous reduction of HC (56%) and CO (43%) emissions accompanied with increased IFCE (10%) and combustion efficiency (12%) w.r.t. the baseline single injection (at 310 CAD) of dual fuel LTC.

APA, Harvard, Vancouver, ISO, and other styles
25

Belizário, Adenilson Cristiano. "Avaliação da confiabilidade do motor diesel com a adição de sistemas de injeção de gás na câmara de combustão." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-24092012-171716/.

Full text
Abstract:
Visando a redução de poluentes emitidos pelos motores de combustão interna com ignição por compressão, que operam conforme o ciclo diesel, foram desenvolvidos nos últimos anos dispositivos para a operação destes motores com novos combustíveis, que além da redução de poluentes barateariam o custo de operação, devido à oportunidade de utilização de alguns combustíveis com boa disponibilidade. No presente estudo analisa-se a operação do motor diesel utilizando gás natural como combustível. Neste caso utiliza-se o óleo diesel apenas como combustível piloto, que será responsável pela ignição do segundo combustível, o gás natural. Em diversas publicações constata-se o ganho ambiental e econômico desta aplicação, porém nada é comentado em relação à alteração de índices de confiabilidade e surgimento de novos modos de falha. Neste trabalho verifica-se através de ferramentas de análise de confiabilidade, tais como a análise do tipo FMEA e Árvore de falhas, quais os principais modos de falha que serão inseridos no motor de combustão interna do tipo diesel quando este passa a operar como bi-combustível, com gás natural. Para tanto, necessita-se subdividir o motor diesel em subsistemas mostrando sua estruturação em árvores funcionais e integrando o kit diesel gás neste sistema. A partir da análise de confiabilidade verifica-se a probabilidade de ocorrência de novos modos de falha, que necessitarão da elaboração de novos planos de manutenção ou mesmo alterações no projeto do subsistema de injeção de gás natural.
In order to reduce pollutants emissions from internal combustion engines with compression bend ignition, designed to operate as the Diesel cycle, it has been developed in recent years devices for the addition of new fuels, which in addition to reducing pollutants could lower the cost of operation, due to the possibility of use of some fuels with good availability. In this case it is used only the diesel oil as the pilot flame, which is responsible for the ignition of the second fuel, the natural gas. Many publications discuss the environmental and the economic gain with the use of natural gas as fuel application, however nothing is said about the change of reliability indexes and the appearance of new failure modes in the engine. In this study through system reliability analysis tools such as Faillure Mode Effects and Analisys and Fault tree analysis it is analysed, which are the main failure modes that are inserted into the internal combustion engine when it comes to operate as dual fuel. For that analyses it is necessary to split the engine into subsystems showing its functional trees and integrating diesel gas kit in this system. New failure modes appear with greater severity than the existing in the traditional diesel engine system, leading to new design and maintenance practices. The end user, according to his need, will have one more parameter to choose whether to adopt a Diesel Gas system.
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Yu. "A Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine Combustion and Emissions Using CFD Model." Thesis, West Virginia University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10845305.

Full text
Abstract:

Natural gas (NG)-diesel dual fuel engines have been highlighted for their fuel flexibility and high thermal efficiency comparable to diesel engines. However, the addition of NG to compression ignition diesel engines was reported to elongate ignition delay and to increase the emissions of carbon monoxide (CO), unburned methane (CH4), and nitrogen dioxide (NO2). Past research on dual fuel engines has focused on the experimental research on the engine performance, combustion process, and exhaust emissions. The research on detailed mechanism dominating the impact of CH4 on formation of CO and NO2 in cylinder, and the mechanism for CH 4 to survive the combustion process and slip through the cylinder is limited. The examinations of these mechanisms require the simulation of dual fuel engine combustion using a CFD model coupled with chemical kinetic mechanism.

This research numerically investigates the combustion process and exhaust emissions from two NG-diesel dual fuel engines using a CFD model coupled with a reduced primary reference fuel (PRF) chemistry. The CFD model used is Converge-SAGE model with a maximum of 300000 grid points. The fuel chemistry used is a reduced PRF mechanism with 45 species and 142 reactions including a reduced NOx mechanism with 4 species and 12 reactions. The CFD model with reduced PRF chemistry has been validated against experimental data measured in a single-cylinder compression-ignition engine over a wide range of CH4 substitution ratio. A post-processing tool has been developed to calculate, analyze, and visualize the instantaneous rate of production (ROP) of key species in each cell with the known temperature, pressure, and species concentration exported by CFD code. The simulation results are further post-processed to numerically investigate the combustion process and the formation mechanism of CO, and NO2 in a dual fuel engine. The mechanism for CH4 to survive the main combustion process and post-combustion oxidation process is numerically examined.

The research on NO2 formation identified NO+HO2→NO 2+OH as the key reaction dominating the increased formation of NO 2 in dual fuel engines. The HO2 necessary for the formation of NO2 emitted by the engine is produced through the post-oxidation of CH4 that survived the main combustion process. The CO emitted from the NG-diesel dual fuel engine is formed through the oxidation of CH 4 during the late combustion process and post-combustion CH4 oxidation. The CH4 that survived the main combustion and post-combustion oxidation process is mainly distributed in region far from the spray plume of the pilot fuel and its combustion products.

This research also examined approaches capable of significantly reducing the emissions of CH4 from a dual fuel engine. The preliminary results concluded that CH4 emissions can be significantly reduced through optimizing injection timing, and the application of two-pulse fuel injection strategy. Adjusting injector fuel spray angle can also significantly reduce CH4 emissions which should be considered in developing dedicated dual fuel engine.

APA, Harvard, Vancouver, ISO, and other styles
27

SCARCELLI, RICCARDO. "Lean-burn operation for natural gas/air mixtures: the dual-fuel engines." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/468.

Full text
Abstract:
La ricerca nel campo dei motori a combustione interna è sempre più rivolta ad identificare una soluzione alternativa all’utilizzo dei combustibili derivati dal petrolio, per ragioni di carattere ambientale, politico ed economico. Il gas naturale (NG) è un combustibile ideale per motori a combustione interna, essendo caratterizzato da basso impatto ambientale e consumi ridotti rispetto ai combustibili convenzionali (benzina e gasolio). Inoltre esso è particolarmente adatto ad essere utilizzato in motori ad elevato rapporto di compressione volumetrico, ed è caratterizzato da un ampio campo di infiammabilità. Quest’ultimo aspetto promuove la combustione magra di miscele di aria e NG, ottenendo un ulteriore incremento di rendimento ed un’ulteriore diminuzione dei consumi. I motori dual-fuel NG/diesel permettono di estendere il limite magro d’infiammabilità rispetto ai motori ad accensione comandata alimentati a NG, ed allo stesso tempo consentono di ridurre il trade-off NOX-PM di cui soffrono i motori diesel. Tale tecnologia consiste nell’introduzione del NG come combustibile principale in un motore diesel. Una certa quantità di gasolio viene ancora iniettata, ed agisce come sorgente d’accensione per la miscela di aria e NG. La facilità di conversione rende la tecnologia dual-fuel particolarmente allettante come retrofit di motori diesel già esistenti che in futuro si troverebbero a non soddisfare i sempre più stringenti limiti sulle emissioni inquinanti. Nel presente lavoro, la combustione dual-fuel, con la sua inerente complessità, viene analizzata seguendo un approccio misto numerico-sperimentale. L’attività sperimentale ha come obiettivo l’analisi dei vantaggi e dei problemi connessi con la conversione di un motore diesel heavy-duty al funzionamento dual-fuel, sulla base delle prestazioni e delle emissioni inquinanti. L’attività numerica è caratterizza da un approccio misto 1-D/3-D, ed è stata inizialmente condotta per la corretta comprensione del complesso meccanismo di combustione in modalità dual-fuel. L’analisi multi-dimensionale (3-D) dettagliata del sistema cilindro–pistone è stata successivamente effettuata per la corretta rappresentazione dei fenomeni termo-fluidodinamici evolventi in camera di combustione. Una tale strategia permette la completa descrizione del comportamento dell’intero sistema motore e della combustione dual-fuel nel dettaglio.
The research activity on internal combustion engines is increasingly cast to find an alternative solution to reduce the wide utilization of petroleum fuels like diesel oil and gasoline, for environmental, political and economic concerns. Natural gas (NG) is an ideal fuel to be operated in internal combustion engines, since its characteristics allow for much lower environmental impact and reduced fuel consumption with respect the conventional fuels. It also is particularly suitable to be operated under high volumetric compression ratio engines, thus providing higher efficiency, and moreover it is characterized by a wide flammability range. This latter aspect promotes the employment of a lean burn strategy, thus further increasing the engine efficiency and reducing the exhaust emissions. The dual-fuel natural gas/diesel concept allows extending the lean flammability limit of NG with respect to SI-NG operations and simultaneously reducing the NOX-PM trade-off affecting diesel combustion. Such a technology consists in introducing NG as main fuel in a conventional diesel engine. A certain amount of diesel pilot injection is preserved to act as the ignition source for the air/NG mixture. The easiness of dual-fuel conversion makes such technology rather inviting especially as a retrofit for the existing diesel vehicles, which could not meet the more and more stringent emission regulations in the future. In the present study, the dual-fuel combustion process with its inherent complexity is investigated both from an experimental and a numerical point of view. The experimental activity has the main target to analyze the problems connected with the conversion of a heavy-duty diesel engine to dual-fuel operation, and to put into evidence the influence of the main engine parameters on performance and pollutants formation. The numerical activity, characterized by a mixed 1-D/3-D approach, has been carried out with the initial target of a correct understanding of the complex dual-fuel combustion mechanism. A detailed multi-dimensional simulation of the whole working cycle of the engine has been subsequently performed, to provide for the correct representation of the fluid-dynamic effect involved in dual-fuel operations. Such an approach allows for the complete description of the engine overall behavior and the dual-fuel combustion in detail.
APA, Harvard, Vancouver, ISO, and other styles
28

Christodoulou, Fanos. "Hydrogen, nitrogen and syngas enriched diesel combustion." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9109.

Full text
Abstract:
On-board hydrogen and syngas production is considered as a transition solution from fossil fuel to hydrogen powered vehicles until problems associated with hydrogen infrastructure, distribution and storage are resolved. A hydrogen- or syngas-rich stream, which substitutes part of the main hydrocarbon fuel, can be produced by supplying diesel fuel in a fuel-reforming reactor, integrated within the exhaust pipe of a diesel engine. The primary aim of this project was to investigate the effects of intake air enrichment with product gas on the performance, combustion and emissions of a diesel engine. The novelty of this study was the utilisation of the dilution effect of the reformate, combined with replacement of part of the hydrocarbon fuel in the engine cylinder by either hydrogen or syngas. The experiments were performed using a fully instrumented, prototype 2.0 litre Ford HSDI diesel engine. The engine was tested in four different operating conditions, representative for light- and medium-duty diesel engines. The product gas was simulated by bottled gases, the composition of which resembled that of typical diesel reformer product gas. In each operating condition, the percentage of the bottled gases and the start of diesel injection were varied in order to find the optimum operating points. The results showed that when the intake air was enriched with hydrogen, smoke and CO emissions decreased at the expense of NOx. Supply of nitrogen-rich combustion air into the engine resulted in a reduction in NOx emissions; nevertheless, this technique had a detrimental effect on smoke and CO emissions. Under low-speed low-load operation, enrichment of the intake air with a mixture of hydrogen and nitrogen led to simultaneous reductions in NOx, smoke and CO emissions. Introduction of a mixture of syngas and nitrogen into the engine resulted in simultaneous reductions in NOx and smoke emissions over a wide range of the engine operating window. Admission of bottled gases into the engine had a negative impact on brake thermal efficiency. Although there are many papers in the literature dealing with the effects of intake air enrichment with separate hydrogen, syngas and nitrogen, no studies were found examining how a mixture composed of hydrogen and nitrogen or syngas and nitrogen would affect a diesel engine. Apart from making a significant contribution to existing knowledge, it is 3 believed that this research work will benefit the development of an engine-reformer system since the product gas is mainly composed of either a mixture of hydrogen and nitrogen or a mixture of syngas and nitrogen.
APA, Harvard, Vancouver, ISO, and other styles
29

EGUSQUIZA, JULIO CESAR CUISANO. "EXPERIMENTAL INVESTIGATION OF A DIESEL CYCLE ENGINE OPERATING ON DUAL-FUEL MODE: DIESEL / ETHANOL AND DIESEL / GAS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17103@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
No presente trabalho, ensaios experimentais de um motor do ciclo Diesel consumindo etanol hidratado ou gás natural em substituição parcial ao óleo diesel, foram realizados. Os objetivos principais foram verificar as influências dos combustíveis alternativos e avaliar as técnicas do avanço da injeção do diesel e da restrição parcial do ar de admissão, em relação aos parâmetros característicos da combustão, desempenho e emissões. Com base nos dados do diagrama pressão-ângulo de virabrequim, foi possível analisar alguns parâmetros característicos da combustão, tais como o início da combustão, a máxima taxa de elevação de pressão e o pico de pressão. Os parâmetros do desempenho e emissões do motor foram analisados através do rendimento térmico e as concentrações de monóxido de carbono, hidrocarbonetos, material particulado e óxidos de nitrogênio. Os resultados obtidos mostraram que as técnicas avaliadas no modo bicombustível junto com as elevadas taxas de substituição do óleo diesel favoreceram a melhor queima dos combustíveis alternativos, refletindo-se favoravelmente em menores emissões de CO e MP, além de um pequeno aumento no rendimento térmico do motor. No entanto, houve também um acréscimo nas emissões de NOX e, no caso específico do avanço da injeção, foi notado um maior ruído gerado pelo motor.
In this report, experimental tests of a Diesel cycle engine running with hydrous ethanol or natural gas with partial substitution for diesel fuel were performed. The main objectives were to verify the influence of alternative fuels and evaluate the advancing of diesel injection timing and the air partial restriction, regarding the characteristic parameters of combustion, performance and emissions. Based on data from the pressure-crank angle diagram, it was possible to analyze some characteristic parameters of combustion, such as the start of combustion, the maximum rate of pressure rise and peak pressure. The parameters of the engine performance and emissions were analyzed through the thermal efficiency and the concentrations of carbon monoxide, hydrocarbons, particulate matter and nitrogen oxides. The results showed that the techniques evaluated in dual fuel mode with higher rates of substitution of diesel fuel favored a better burning of the alternative fuels, reflecting favorably in lower emissions of CO and PM, and also in a small increase in the engine thermal efficiency. However, there was also an increase in NOX emissions and, in the specific case of the advanced injection timing, it was noted a louder noise generated by the engine.
APA, Harvard, Vancouver, ISO, and other styles
30

Bernardes, Pedrozo Vinícius. "An experimental study of ethanol-diesel dual-fuel combustion for high efficiency and clean heavy-duty engines." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15850.

Full text
Abstract:
Higher atmospheric concentration of greenhouse gases (GHG) such as carbon dioxide and methane has contributed to an increase in Earth's mean surface air temperature and caused climate changes. This largely reflects the increase in global energy consumption, which is heavily dependent on oil, natural gas, and coal. If not controlled, the combustion of these fossil fuels can also produce high levels of nitrogen oxides (NOx) and soot emissions, which adversely affect the air quality. New and extremely challenging fuel efficiency and exhaust emissions regulations are driving the development and optimisation of powertrain technologies as well as the use of low carbon fuels to cost-effectively meet stringent requirements and minimise the transport sector's GHG emissions. In this framework, the dual-fuel combustion has been shown as an effective means to maximise the utilisation of renewable liquid fuels such as ethanol in conventional diesel engines while reducing the levels of NOx and soot emissions. This research has developed strategies to optimise the use of ethanol as a substitute for diesel fuel and improve the effectiveness of dual-fuel combustion in terms of emissions, efficiency, and engine operational cost. Experimental investigations were performed on a single cylinder heavy-duty diesel engine equipped with a high pressure common rail injection system, cooled external exhaust gas recirculation, and a variable valve actuation system. A port fuel injection system was designed and installed, enabling dual-fuel operation with ethanol energy fractions up to 0.83. At low engine loads, in-cylinder control strategies such as the use of a higher residual gas fraction via an intake valve re-opening increased the combustion efficiency (from 87.7% to 95.9%) and the exhaust gas temperature (from 468 K to 531 K). A trade-off between operational cost and NOx reduction capability was assessed at medium loads, where the dual-fuel engine performance was less likely to be affected by combustion inefficiencies and in-cylinder pressure limitations. At high load conditions, a Miller cycle strategy via late intake valve closing decreased the in-cylinder gas temperature during the compression stroke, delaying the autoignition of the ethanol fuel and reducing the levels of in-cylinder pressure rise rate. This allowed for the use of high ethanol energy fractions of up to 0.79. Finally, the overall benefits and limitations of optimised ethanol-diesel dual-fuel combustion were compared against those of conventional diesel combustion. Higher net indicated efficiency (by up to 4.4%) combined with reductions in NOx (by up to 90%) and GHG (by up to 57%) emissions can help generate a viable business case of dual-fuel combustion as a technology for future high efficiency and clean heavy-duty engines.
APA, Harvard, Vancouver, ISO, and other styles
31

Aksu, Cagdas. "Performance Analysis Of A Compression Ignition Internal Combustion Engine Using Superheated Ethanol Vapor." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613255/index.pdf.

Full text
Abstract:
The aim of this study is to experimentally measure performance characteristics of a compression ignition (CI) internal combustion engine using superheated ethanol vapor. The engine is a 1.3L inline 4 cylinder direct injection (DI) turbocharged compression ignition (CI) engine. While the engine will be fed with superheated ethanol as homogeneous fuel-air mixture through intake manifold, the amount of diesel fuel that the engine requires to run at idle will also be supplied in order to initiate combustion. Ethanol will be superheated using a new patented double heat exchanger has been manufactured by Prof. Dr. Demir Bayka, Dr. Anil Karel and Deniz Ç
akar. The results will indicate if the suggested concept can be applicable.
APA, Harvard, Vancouver, ISO, and other styles
32

Boronat, Colomer Vicente. "Dual-Fuel Dual-Mode combustion strategy to achieve high thermal efficiency, low NOx and smoke emissions in compression ignition engines." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/113413.

Full text
Abstract:
Elevada eficiencia térmica y mínimas emisiones contaminantes impuestas por las restrictivas normativas anticontaminación en motores alternativos representan el principal objetivos de los fabricantes de motores. La estrategia de combustión diésel convencional es ampliamente utilizada en el mundo gracias a su excelente economía en el consumo de carburante. Esta estrategia permite operar con mezclas pobres de combustible y aire proporcionando elevada eficiencia térmica. Además, este tipo de combustión puede ser aplicada desde motores tanto para vehículos ligeros como en motores marinos. Sin embargo, este proceso de combustión conlleva a la generación de elevadas emisiones de NOx y emisiones de partículas (comúnmente llamado hollín en los diésel), siendo imposible reducir ambos contaminantes de forma simultánea. Por tanto, los fabricantes han incorporado sistemas de post-tratamiento con el objetivo de cumplir con las normativas de emisiones, cuya intención es la de proveer emisiones más limpias y elevada eficiencia. Por el contrario, este tipo de sistemas para mitigar las emisiones contaminantes incrementan la complejidad del motor dado el complejo proceso llevado a cabo durante el post-tratamiento y una aumento en los costes tanto de producción como operativos a lo largo del ciclo de vida del motor. La comunidad científica continua desarrollando soluciones alternativas a la combustión diésel convencional manteniendo los beneficios de este proceso de combustión mientras que las emisiones son reducidas (principalmente NOx y hollín). La comunidad científica ha encontrado en las estrategias de combustión de baja temperatura un proceso de combustión capaz de proporcionar elevada eficiencia térmica y emisiones ultra bajas de NOx y humo. En este sentido, la revisión bibliográfica dice que estos tipos de combustión permiten la reducción simultánea de ambas emisiones, rompiendo así el tradicional "trade-off" existente en la combustión diésel convencional. Sobre todas las estrategias, la que muestra un potencial superior es la estrategia conocida como combustión dominada por la reactividad del combustible. Este proceso de combustión se caracteriza por emplear dos combustibles, siendo capaz de solucionar los principales problemas de las estrategias de baja temperatura tales como el fasado de la combustión. Sin embargo, esta estrategia de combustión también presenta algunos inconvenientes como el elevado nivel de monóxido de carbono e hidrocarburos inquemados a baja carga y elevado gradiente de presión y presión en cámara a elevada carga que limitan el rango de operación. El objetivo general de la presente investigación es proveer de una estrategia de combustión "dual-fuel" capaz de operar sobre todo el rango de operación de un motor proporcionando igual o mejores eficiencia térmica que el diésel convencional y emisiones ultra bajas de NOx y humos. Adicionalmente, esta investigación implica una exploración delas emisiones de las partículas del concepto de combustión ya que el número de partículas se encuentra actualmente regulado por la normativa anticontaminante. El proceso de combustión que responde a este objetivo es "Dual-Mode Dual-Fuel". Este concepto de combustión emplea dos combustibles y cambia de combustión premezclada a baja carga a combustión de naturaleza difusiva a plena carga. Con el deseo de explorar las capacidades de la estrategia de combustión, se han empleado dos configuraciones de "hardware" y se ha realizado un estudio de la distribución por tamaños de las partículas. Finalmente, considerando los principales resultados de la investigación, el último capítulo pretende resumir las principales bondades del concepto de combustión así como sus limitaciones y trabajos futuros.
Elevada eficiència tèrmica i mínimes emissions contaminants impostes per les normatives anticontaminants en motores alternatius representen el principal objectiu dels fabricants de motors. La estratègia de combustió diésel convencional es àmpliament utilitzada per tot el mon gracies al excel·lent consum de carburant. Esta estratègia permet operar el motor amb dosatges pobres que resulten en elevada eficiència tèrmica. A més, aquest tipus de combustió pot ser aplicada tant a els motor mes lleugers con als motor per aplicacions marines. No obstant això, aquest procés de combustió implica la generació de elevats nivells de emissió de NOx i sutja, que no es poden reduir simultàniament. Per tant, els fabricants han incorporat sistemes de post-tractament amb el objectiu de acomplir les normatives anticontaminació, que pretenen obtindre motors en emissions mes netes i mes eficients. Per el contrari, aquest tipus de sistemes per a reduir les emissions incrementen la complexitat del motor i els costos tant de producció com operatius al llarg del cicle de vida del motor. La comunitat científica continua desenvolupant solucions alternatives a la combustió dièsel mantenint els beneficis d¿aquest tipus de combustió però reduint les emissions (principalment NOx i sutja). La comunitat científica ha trobat a les estratègies de combustió de baixa temperatura un procés de combustió que te elevada eficiència tèrmica i extremadament baixes emissions de NOx y partícules. En aquest sentit, la revisió bibliogràfica constata que aquests tipus de combustions permeten la reducció simultània dels contaminants NOx i sutja, trencant el tradicional "trade-off" existent a la combustió dièsel. De entre totes les estratègies proposades de baixa temperatura, la estratègia combustió dominada per la reactivitat del combustible presenta mes potencial que les altres. Aquest procés de combustió es caracteritza per utilitzar dos combustibles, lo que li permet solventar els principals problemes que han aparegut al llarg de la investigació de les estratègies de baixa temperatura com el control de la combustió. No obstant, aquest concepte de combustió també presenta algunes limitacions com el excessiu nivell de monòxid de carbó e inquemats a baixa càrrega i el elevat gradient de pressió i elevada pressió en càmera a elevada càrrega que limiten el rang de operació del motor. El objectiu de la investigació es proposar un concepte de combustió "dual-fuel" que puga operar en tot el rang de operació de un motor proporcionant el mateix o millorant la eficiència tèrmica que el dièsel amb emissions ultra baixes de NOx y partícules. A més, aquesta investigació també implica realitzar una exploració de les partícules emitides per el concepte ja que actualment està regulat per les normatives anticontaminants. El procés de combustió que compleix el objectiu es diu "Dual-Mode Dual-Fuel". Aquest concepte de combustió utilitza dos combustibles de diferent reactivitat y modifica la combustió de totalment premesclada a baixa càrrega a combustió de natura difusiva a plena càrrega. Amb el desig de explorar les capacitats del concepte, s¿han arribat a provar dos configuracions de pistons diferent per a adequar la relació de compressió i també un anàlisi per tamanys de les partícules. Finalment, considerant els principals resultats obtinguts, el últim capítol pretén resumir les principals avantatges del concepte ací com les principals limitacions y , per tant, els treballs futurs.
High thermal efficiency coupled to minimum pollutants emissions imposed by the stringent standard emissions limitations in reciprocating engines represent the main target of the engine manufacturers industry. Conventional diesel combustion strategy is widely used worldwide due to its excellent fuel economy. This combustion strategy allows operating under lean mixtures of fuel and air that provide high thermal efficiency. In addition, this type of combustion can be applied from light-duty engines to large bore marine engines. However, the combustion process leads to high NOx and particle matter emissions, being impossible to reduce both pollutants simultaneously. Hence, manufactures have incorporated aftertreatment systems in order to meet the imposed standard emissions limitations, which are aimed to provide cleaner emissions and high efficiency. By contrast, these systems required for the emissions mitigation result in a very complex processes and an increase in the engine production and operational costs. The research community continues developing alternative solutions to the conventional diesel combustion concept keeping the benefits of this combustion process while the emissions are reduced (mainly focused on NOx and soot). Research community have found in the low temperature combustion strategies the combustion process able to provide excellent high thermal efficiency and ultra-low NOx and smoke emissions. In this sense, the literature review states that this types of combustion processes allow the simultaneous reduction of NOx and smoke, breaking the traditional trade-off found in diesel engines. Amongst others, the most promising strategy is the reactivity controlled compression ignition. This combustion process is characterized by using two fuels and is able to solve the main challenges of the low temperature combustion processes such as combustion phasing control. Nonetheless, the reactivity controlled strategy also presents some challenges such as excessive carbon monoxide and unburned hydrocarbons during low load operation and high pressure rise rate and in-cylinder pressure that limit the engine range operation. The general objective of this investigation is to provide a dual-fuel strategy able to operate over the whole range providing similar or better thermal efficiency that the conventional diesel combustion and ultra-low values of NOx and smoke. In addition, the investigation also explores the particle emissions of the concept since it is regulated by the standard emissions. The combustion process that responds to the target provided at the general objective is the Dual-Fuel Dual-Mode concept. This concept uses two fuels and switches from a dual-fuel fully premixed strategy (based on the RCCI concept) during low load operation to a diffusive nature during high load operation. In order to explore the capabilities of the concept, two hardware configurations are used and a particle size distribution exploration is performed. Finally, considering the main findings of the investigation, the last chapter is aimed to provide the benefits of the combustion process developed as well as the main limitations or future works of the concept.
Boronat Colomer, V. (2018). Dual-Fuel Dual-Mode combustion strategy to achieve high thermal efficiency, low NOx and smoke emissions in compression ignition engines [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113413
TESIS
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Benlin. "Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0012/NQ59622.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Plumley, Michael J. "Design and prototype of dual loop lubricant system to improve engine fuel economy, emissions, and oil drain interval." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97842.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 181-193).
Regulations aimed at improving fuel economy and reducing harmful emissions from internal combustion engines place constraints on lubricant formulations necessary for controlling wear and reducing friction. Viscosity reduction results in fuel economy improvement, with benefits of up to three percent reported in some studies. Such reductions are limited by engine durability constraints. Recent limits on oil additives, driven by emissions aftertreatment requirements, impose additional design tradeoffs. The benefit of segregating lubrication systems, in light of modern formulation constraints, is investigated through modeling and experiment. Many findings are applicable to spark and compression ignition engines, with an emphasis placed on diesel engines, given the implementation of the first heavy duty diesel fuel economy regulations. Nearly all engines used today employ a lubrication system with a pump delivering an oil to all engine regions. Axiomatic design concepts are applied to describe the associated design tradeoffs. Two dual loop prototypes were developed, incorporating independent oil systems for the engine valve train and power cylinder, decoupling many lubricant functional requirements. Oil analysis and friction measurement were used to quantify performance. A combination of high viscosity lubricant in the valve train, with low viscosity in the power cylinder, increased fuel economy while maintaining wear protection. Effective protection of subsystems from contamination and oil degradation, particularly the elimination of soot in the valve train, was demonstrated. Detailed friction and oil composition modeling was used to investigate opportunities for further friction and wear reduction. Techniques for investigating oil composition changes along the liner in modern friction models are developed. Differences in lubricant functional requirements along the liner are highlighted. Model results indicate that vaporization along the liner increases lubricant viscosity near piston top dead center, providing a potential wear reduction benefit.
by Michael J. Plumley.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
35

Ghomashi, Hossein. "Modelling the combustion in a dual fuel HCCI engine : investigation of knock, compression ratio, equivalence ratio and timing in a Homogeneous Charge Compression Ignition (HCCI) engine with natural gas and diesel fuels using modelling and simulation." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/7344.

Full text
Abstract:
This thesis is about modelling of the combustion and emissions of dual fuel HCCI engines for design of “engine combustion system”. For modelling the combustion first the laminar flamelet model and a hybrid Lagrangian / Eulerian method are developed and implemented to provide a framework for incorporating detailed chemical kinetics. This model can be applied to an engine for the validation of the chemical kinetic mechanism. The chemical kinetics, reaction rates and their equations lead to a certain formula for which the coefficients can be obtained from different sources, such as NASA polynomials [1]. This is followed by study of the simulation results and significant findings. Finally, for investigation of the knock phenomenon some characteristics such as compression ratio, fuel equivalence ratio, spark timing and their effects on the performance of an engine are examined and discussed. The OH radical concentration (which is the main factor for production of knock) is evaluated with regard to adjustment of the above mentioned characteristic parameters. In the second part of this work the specification of the sample engine is given and the results obtained from simulation are compared with experimental results for this sample engine, in order to validate the method applied in AVL Fire software. This method is used to investigate and optimize the effects of parameters such as inlet temperature, fuels ratio, diesel fuel injection timing, engine RPM and EGR on combustion in a dual fuel HCCI engine. For modelling the dual fuel HCCI engine AVL FIRE software is applied to simulate the combustion and study the optimization of a combustion chamber design. The findings for the dual fuel HCCI engine show that the mixture of methane and diesel fuel has a great influence on an engine's power and emissions. Inlet air temperature has also a significant role in the start of combustion so that inlet temperature is a factor in auto-ignition. With an increase of methane fuel, the burning process will be more rapid and oxidation becomes more complete. As a result, the amounts of CO and HC emissions decrease remarkably. With an increase of premixed ratio beyond a certain amount, NOX emissions decrease. With pressure increases markedly and at high RPM, knock phenomenon is observed in HCCI combustion.
APA, Harvard, Vancouver, ISO, and other styles
36

Rosa, Josimar Souza. "Estudo de um motor ciclo diesel monocilíndrico bi-combustível." Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/3459.

Full text
Abstract:
Submitted by Maicon Juliano Schmidt (maicons) on 2015-05-07T16:35:35Z No. of bitstreams: 1 Josimar Souza Rosa.pdf: 2316699 bytes, checksum: 10b8be8bf5285234719e629c53ebeb82 (MD5)
Made available in DSpace on 2015-05-07T16:35:35Z (GMT). No. of bitstreams: 1 Josimar Souza Rosa.pdf: 2316699 bytes, checksum: 10b8be8bf5285234719e629c53ebeb82 (MD5) Previous issue date: 2014-03-21
Nenhuma
Este trabalho buscou analisar o funcionamento de um motor de combustão interna (ciclo Diesel) operando com misturas parciais de óleo diesel com gás natural veicular, e óleo de soja com gás natural veicular. Os ensaios foram realizados em um motor Agrale modelo M90, monocilíndrico, acoplado a um alternador, tendo como carga um banco de resistências. A análise realizada contemplou o desempenho em termos de consumo de combustível, potência e emissões gasosas de óxidos de nitrogênio, dióxidos de enxofre, monóxido de carbono, entre outros gases, bem como a análise da opacidade da fumaça. Os resultados mostraram que é viável a utilização de gás natural em motores ciclo Diesel sem remoção do sistema de injeção de diesel original, representando uma considerável redução nas emissões específicas dos óxidos de nitrogênio, sem perda de potência, porém resultando em combustão incompleta em altos percentuais de substituição de combustível líquido por gasoso. De maneira geral o melhor resultado em relação à eficiência foi possível com percentual de substituição de 43,7% de diesel por gás natural, no qual o conjunto motor gerador apresentou rendimento aproximado de 33,17%. A opacidade da fumaça emitida pelo motor foi reduzida significativamente quando funcionou em modo bi-combustível tanto com diesel e gás natural como óleo de soja e gás natural.
This study aims to analyze the operation of an internal combustion engine (diesel cycle) with partial mixtures of diesel oil and natural gas, and oil vegetable soybean and natural gas. The tests were carry in an engine Agrale model M90, monocilynder, coupled to alternator, and which charged a bank of resistors load. The analyses include performance fuel consumption, power and gas emissions of nitrogen oxides, sulfur dioxides, carbon monoxide, and other gases, as well the analysis of the smoke opacity. Results showed that it is feasible to use natural gas in diesel cycle engines without removing the original diesel injection system, generating a considerable reduction in specific emissions of nitrogen oxides, without loss of Power, but resulting in incomplete combustion at high percentages replacement of liquid fuel for natural gas. Generally, the Best result for efficiency was possible with replacement percentage of 43,7% of diesel per natural gas, when the generation setting showed efficiency equal at 33,17%. The smoke opacity was reduced significantly when operated in dual fuel both diesel and natural gas as soybean oil and natural gas.
APA, Harvard, Vancouver, ISO, and other styles
37

Aklouche, Fatma Zohra. "Etude caractéristique et développement de la combustion des moteurs Diesel en mode Dual-Fuel : optimisation de l'injection du combustible pilote." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0072/document.

Full text
Abstract:
La dégradation de l’environnement ainsi que l’épuisement progressif des énergies fossiles devient très inquiétant et incite les états à définir des limites d’émission polluantes plus strictes. Ceci a conduit les constructeurs automobiles à poursuivre leurs recherches dans le développement de conception propre et efficace des moteurs en utilisant des combustibles alternatifs dans les moteurs à combustion interne.Dans le présent travail, on s’intéresse à l’étude des moteurs fonctionnant en mode DF afin d’améliorer ses performances tout en minimisant les émissions polluantes, en particulier les HC et les CO. Pour ce faire des études expérimentales ont été menées. Une réduction de 77% des émissions de HC a été observée en passant d’une richesse de 0,35 à 0,7. Par ailleurs, Il a été noté aussi qu’une diminution de 20% à 50% des émissions de CO avec une amélioration de 30% du rendement peut être visualisée en variant l’avance à l’injection de 4,5 °V à 6 °V. Concernant la mise en place de la pré-injection, une baisse de 30% des émissions de NOx a été observée avec un gain de 12% à 30% de rendement par rapport à une seule injection. En dernier terme, un modèle thermodynamique à une zone a été développé afin de prédire la température et la pression dans le cylindre. Une bonne concordance a été notée entre les deux résultats avec une erreur moyenne relative inférieure à 5%
Currently, the environmental degradation due to pollutant emissions and the gradual depletion of fossil fuels, becoming very worrying, are prompting European directives to set pollutant emission limits. These have led manufacturers to continue research in the development of clean and efficient engine designs using alternative fuels in internal combustion engines.In this work, we focus on the study of engines operating in dual-fuel mode to improve its performance while minimizing pollutant emissions, particularly HC and CO. For this, experimental studies were conducted. A reduction of about 77% in the HC emissions was observed as the equivalence ratio was varied from 0.35 to 0.7. Regarding the effect of injection timing, it was noted that the CO emissions decreased about 20% to 50% with an improvement in the brake thermal efficiency by 30% upon varying the injection advance from 4,5 °CA to 6 °CA. On the other hand, the introduction of pre-injection strategy led to a decrease by 30% in NOx emissions with an amelioration of brake thermal efficiency of 12% to 30% compared to a single injection. Lastly, a single zone thermodynamic model was developed to predict the in-cylinder temperature and pressure. A good agreement was noted between the predicted and experimental results. The average relative error was less than 5%
APA, Harvard, Vancouver, ISO, and other styles
38

LEGROTTAGLIE, FRANCESCO. "SISTEMI DI PROPULSIONE E DI GENERAZIONE DELL'ENERGIA AD ELEVATA EFFICIENZA E RISPETTOSI DELL'AMBIENTE." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. http://hdl.handle.net/11380/1277159.

Full text
Abstract:
Il clima e l’ambiente stanno subendo notevoli cambiamenti verso condizioni estreme a causa del calore non riflesso oltre l’atmosfera terrestre, con conseguenze ambientali oramai evidenti a tutti. Le politica dell’Unione Europea include tra gli obiettivi del futuro piani energetici ed ambientali per contenere queste anomalie nel più breve tempo possibile. I motori a combustione interna a ciclo Diesel hanno ottima efficienza generale ed affidabilità, ma se alimentati in modo tradizionale con il gasolio emettono inquinanti e gas ad effetto serra. E’ possibile sostituire questo combustibile di origine fossile con biodiesel, o parzialmente mediante la combustione in modalità dual-fuel con miscele gassose per una decisa riduzione dell’impatto sull’atmosfera. L’obiettivo è continuare a sfruttare la robustezza e la flessibilità raggiunta con i motori ad accensione per compressione in vari settori del trasporto pesante o marittimo, piuttosto che per la generazione combinata di energia. In questa tesi è stata studiata la combustione DF ed RCCI (Reactivity Controlled Compression Ignition) nella quale una parte di gasolio, combustibile di origine fossile e ad alta reattività, viene sostituito da un combustibile a bassa reattività da origine non necessariamente fossile, iniettato in maniera indiretta nel collettore di aspirazione e che forma una carica premiscelata omogenea e magra; una piccola quantità di combustibile ad alta reattività è iniettata direttamente nel cilindro per l’accensione del combustibile. Le analisi sono state svolte mediante simulazioni CFD 3D del processo di combustione che sono state preliminarmente validate sulla base di dati sperimentali ricavati da un motore Diesel modificato per funzionare in modalità Dual Fuel, testato presso la sala prova motori del Dipartimento. Sono stati studiati diversi combustibili a bassa reattività tra cui benzina, gas naturale, biogas e miscele di gas naturale e idrogeno. Il gas naturale ed il biogas permettono costi di gestione inferiori ed opportunità sul contenimento delle emissioni allo scarico. Inoltre, il biogas è una fonte di energia rinnovabile e può essere prodotto localmente, aspetti che nell’attuale momento storico hanno una importanza fondamentale. Sia le prove sperimentali che le simulazioni hanno evidenziato la possibilità di sostituire elevate quantità di gasolio (oltre l’80%) con gas naturale o biogas, mantenendo o aumentando l’efficienza del motore. Solamente ai bassi carichi, l’elevato rapporto aria combustibile della carica premiscelata rende critica la combustione Dual Fuel. E’ stata quindi investigata la possibilità di miscelare idrogeno al gas naturale (fino al 50% in volume) al fine di migliorare la qualità della combustione. Questo ha permesso di migliorare la combustione ai bassi carichi, estendendone la zona di funzionamento in modalità Dual Fuel e di riducendo le emissioni ai carichi medio/alti. Sul biogas è stato fatto, inoltre, un approfondimento specifico per un’applicazione cogenerativa. Il biogas di origine vegetale, ed autoprodotto in loco mediante fermentazione anaerobica, è stato simulato in combustione DF in diverse quote parti di anidride carbonica, fino ad un 50%, ossia frazioni corrispondenti a reali composizioni di questo gas. Per questa variabilità non sono garantite sempre le medesime prestazioni ed occorrono opportune calibrazioni di anticipo di iniezione. E’ stato studiando il caso reale di soddisfacimento del fabbisogno energetico di un’azienda agricola, mediante autoproduzione di energia combinata elettrica e termica da motore endotermico a ciclo diesel in modalità DF. Per questa applicazione sono stati considerati aspetti prestazionali, di emissioni allo scarico, oltre che aspetti economici di fattibilità e rientro dell’investimento.
Climate and environment are undergoing significant changes to extreme conditions due to the heat not reflected beyond the Earth’s atmosphere, with environmental consequences now obvious to everyone. European Union policies include energy and environmental plans to contain these anomalies as soon as possible. Diesel internal combustion engines have excellent general efficiency and reliability, but if they are powered in a traditional way with diesel oil they emit pollutants and greenhouse gases. It’s possible to replace this fossil fuel with biodiesel, or partially by burning it in dual-fuel mode with gaseous mixtures to significantly reduce pollutant emissions. The aim is to continue to exploit the robustness and flexibility achieved with compression ignition engines in various sectors of heavy transport or maritime sector, rather than for combined energy generation. In this thesis combustion DF (dual fuel) and RCCI (Reactivity Controlled Compression Ignition) have been investigated in which a part of diesel oil, fuel of fossil origin and high reactivity, is replaced by a fuel with low reactivity from origin not necessarily fossil (for example: biogas, hydrogen ), indirectly injected into the intake manifold and forming a homogeneous and lean premixed charge; a small amount of high reactivity fuel is injected directly into cylinder ignite the charge. The analyses were carried out using 3D CFD simulations of the combustion process which were validated preliminarily on the basis of experimental data obtained from a modified Diesel engine operating In dual fuel mode. The experimental campaign has been carried out at the test bed of Unimore Departement. Various low reactivity fuels including gasoline, natural gas, biogas and mixtures of natural gas and hydrogen have been investigated. Natural gas and biogas ensure lower operating costs and can leads to reduce exhaust emissions. Furthermore, biogas is a renewable source of energy and can be produced locally, aspects that are of fundamental importance in this historical moment. Both experimental tests and simulations have shown the possibility of replacing high quantities of diesel oil (over 80%) with natural gas or biogas, maintaining or increasing the engine efficiency. Only at low load conditions, the high fuel air ratio of the premixed charge makes dual fuel combustion critical. The possibility of mixing hydrogen with natural gas (up to 50% by volume) was then investigated in order to improve the quality of combustion. This has allowed to improve combustion at low loads, extending the operating zone in dual fuel mode and reducing emissions at medium/high loads. On biogas, moreover, a specific deepening has been done for a cogenerative application. The biogas of plant origin, and self-produced on site by anaerobic fermentation, has been simulated in dual fuel combustion in different parts of carbon dioxide, up to a 50%, fractions corresponding to real compositions of this gas. For this variability, the same performances are not always guaranteed and appropriate injection timing tunings are required. The real case of meeting the energy needs of an agricultural holding has been studied, by means of self-handling of combined electric and thermal energy from diesel cycle endothermic engine in dual fuel mode. For this application were considered performance aspects, exhaust emissions, as well as economic aspects of feasibility and return of the investment.
APA, Harvard, Vancouver, ISO, and other styles
39

Sehili, Youcef. "Contribution à la modélisation pour l'optimisation des performances et des émissions polluantes d'un moteur diesel fonctionnant en mode dual fuel." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0419.

Full text
Abstract:
Les moteurs à combustion interne jouent un rôle crucial dans notre société moderne, alimentant une variété d'applications allant des transports aux générateurs d'énergie. Face aux défis croissants en matière d'efficacité, d'émissions et de durabilité, une compréhension approfondie et une modélisation précise de la combustion sont essentielles. Cette thèse se consacre à la modélisation de la combustion dans les moteurs à combustion interne en se concentrant sur le mode dual fuel. L'objectif est de contribuer de manière significative à la compréhension, à la modélisation et à l'optimisation de la combustion dans ces moteurs. Les contributions incluent l'amélioration des modèles existants, la validation expérimentale, la caractérisation des performances des moteurs dans divers modes de combustion, ainsi que la proposition de stratégies de modélisation et d'optimisation pour réduire les émissions et améliorer l'efficacité énergétique. La thèse présente plusieurs axes d'exploitation basés sur divers outils et approches. Un modèle prédictif 0D a été développé pour un moteur dual fuel fonctionnant avec un mélange de gaz naturel et d'hydrogène comme carburant primaire. Ensuite, la thèse aborde la modélisation des problèmes limitant le fonctionnement du moteur dual fuel, notamment le cliquetis et la surchauffe des injecteurs. La décarbonation de ces moteurs est ensuite mise en œuvre via l'utilisation de combustibles alternatifs tels que l'ammoniac et le méthanol, en se basant sur des simulations 3D. Enfin, des méta-modèles innovants ont été développés à des fins d'optimisation des moteurs, incluant une nouvelle approche de modélisation multi-fidélité et une optimisation multi-objectifs. Les résultats de cette thèse apportent des avancées significatives dans la modélisation et l'optimisation des moteurs à combustion interne fonctionnant en mode dual fuel, proposant des solutions potentielles pour améliorer l'efficacité énergétique et réduire les émissions, répondant ainsi aux défis environnementaux et énergétiques actuels et futurs
Internal combustion engines play a crucial role in our modern society, powering a variety of applications ranging from transportation to power generators. Given the growing challenges related to efficiency, emissions, and sustainability, a deep understanding and precise modeling of combustion are essential. This thesis is devoted to modeling dual fuel engines. The aim is to make significant contributions to the understanding, modeling, and optimization of combustion in these engines. Contributions include the improvement of existing models, experimental validation, characterization of engine performance in various combustion modes, and the proposal of modeling and optimization strategies to reduce emissions and improve energy efficiency. The thesis presents several lines of exploitation based on various tools and approaches. A 0D predictive model was developed for dual fuel engine operating with a mixture of natural gas and hydrogen as the primary fuel. Subsequently, the thesis addresses the modeling of issues limiting the operation of the dual fuel engine, such as knocking and injector overheating. The decarbonization of dual fuel engines is then implemented using alternative fuels such as ammonia and methanol, based on 3D simulations. Finally, innovative meta-models have been developed for engine optimization, including a new multi-fidelity modeling approach and multi-objective optimization. The thesis results provide significant advancements in the modeling and optimization of internal combustion engines operating in dual fuel mode, proposing potential solutions to improve energy efficiency and reduce emissions, thereby addressing current and future environmental and energy challenges
APA, Harvard, Vancouver, ISO, and other styles
40

SAVIOLI, TOMMASO. "Analisi numerica e sperimentale di processi di combustione non convenzionali nei motori a combustione interna." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. http://hdl.handle.net/11380/1277158.

Full text
Abstract:
Oggigiorno le emissioni inquinanti rappresentano il vincolo più importante nello sviluppo dei motori a combustione interna. Il riscaldamento globale in continuo aumento è causato principalmente dalle emissioni di gas serra, principalmente dalla C02. I motori a combustione interna devono necessariamente aumentare l’efficienza e, allo stesso tempo, migliorare le emissioni inquinanti per poter ottemperare ai limiti imposti dalle leggi. L’alta efficienza, l’affidabilità, e la flessibilità richiesta nei moderni veicoli per trasporto persone specialmente nei motori diesel rende tali propulsori adottabili su utilizzi quasi stazionari ( e.g. aeromotive, autotrasporto, generatori di energia elettrica) mediante l’utilizzo di combustibili alternativi miscelati con Diesel. Il costo di tali propulsori che è ovviamente più alto degli odierni motori industriali utilizzati per la produzione di energia non determina un grande ostacolo, in quanto la re-ingegnerizzazione di tali propulsori per implementare il funzionamento dual fuel sarebbe limitata, ma permetterebbe di aumentare efficienza e prestazioni. L’obiettivo di questo lavoro di tesi è quello di esplorare il potenziale di un moderno motore diesel alimentato con differenti miscele di combustibili alternativi (Metano e Benzina) pre-miscelati nella aspirazione . Questo processo di combustione viene chiamato RCCI ( Reactive Controlled Compression Ignition) e permette incrementare il rendimento globale e ridurre le emissioni inquinanti.In particolare le emissioni di CO2 possono diminuire con l’utilizzo di questa tecnologia. In questo contesto è stato preso in considerazione un motore due tempi per aerotrazione; questa tipologia di propulsore non ha limitazioni nella realizzazione della geometria della camera di combustione, a differenza dei quattro tempi, inoltre le minori pressioni in fase di combustione rendono questi motori maggiormente adattabili alla combustione RCCI. Il presente lavoro è concentrato sulla validazione numerico sperimentale supportando i calcoli CFD di combustione mediante l’utilizzo di una sala prova utilizzando un moderno motore diesel installato sul banco prova dell’Univestità di Modena ed equipaggiato con un sistema si analisi della pressione in camera di combustione; i calcoli CFD sono stati effettuati utilizzando una versione modificata di Kiva 3v. Il motore due tempi è stato studiato con una campagna di calcoli CFD per studiare il potenziale della combustione RCCI applicata a questi propulsori. Questi differenti processi di combustione possono avere significativi vantaggi in termini di efficienza globale del motore e di emissioni inquinanti, questi risultati pero possono essere raggiunti solamente con un attento processo di calibrazione motore e di una importante campagna sperimentale di calcoli.
Nowadays pollutant emission represent the main topic in internal combustion engines development. Global warming is increased due to the high emissions of greenhouse gases, in particular Co2 emissions. Internal combustion engines must increase global efficiency and, at the same time, decrease pollutant emissions in order to be compliant to future legislation constraints. The high efficiency, reliability and flexibility of modern passenger car Diesel engines makes these power units quite attractive for steady many quasi-steady application ( e.g. aeromotive, truck ,heavy duty, generators) totally or partially running on fuels blends or different combustion process. The engine cost, which is obviously higher than that of current industrial engines, may not be a big obstacle, provided that the re-engineering work in order to implement dual fuel operation is limited and that performance and efficiency are enhanced. The goal of this work is to explore the potential of a current state of the art turbocharged Diesel engine running on both Diesel Fuel and dual fuel combustion with the use of a premixed charge of Methane or Gasoline. This particular combustion process called RCCI ( Reactive Controlled Compression Ignition) can improve engine global efficiency and reduce pollutant emissions. In particular CO2 emissions decreases because of the different nature of the fuel. In this contest an analysis is made also in a two stroke engine for aircraft application. This kind of engine can be quite attractive for the less constraints in combustion chamber design, instead of four stroke; furthermore low combustion pressures lead to fit better RCCI concepts. The present thesis is focused in experimental and numerical validation supporting CFD combustion calculation with experimental analysis in a modern Diesel Engine by using a test bed equipped with an indicating system for experimental campaign and a custom version of CFD 3D software Kiva 3V. Two stroke engine has been study by several cfd calculation campaign in order to investigate two stroke potential in RCCI application. These different combustion process can have several advantages in terms of global efficiency and pollutant emission, but these results can be achieved only with an accurate combustion process calibration and several CFD combustion calculation.
APA, Harvard, Vancouver, ISO, and other styles
41

MOUTELLA, FELIPE LEAL DA COSTA. "NUMERICAL SIMULATION OF DUAL-FUEL DIESEL-NATURAL GAS ENGINES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15407@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
A adaptação de um simulador numérico para a simulação da operação bicombustível Diesel-gás em motores com ignição por compressão foi realizada. O código-fonte em questão foi desenvolvido ao longo dos últimos anos pelo IFP, e uma modificação ao modelo da auto-ignição nele contido foi concluída neste estudo. As diversas etapas necessárias para a adaptação são apresentadas. Considerações foram feitas em relação à literatura existente para o assunto, e as hipóteses realizadas foram verificadas numericamente sempre que possível. Uma equação que relaciona os números de octanas do Diesel e do gás natural com a qualidade da auto-ignição de sua combinação resultante é proposta. Foi construída uma extensa base de dados necessária ao funcionamento do modelo, contendo as taxas de reação em função dos parâmetros físicos da mistura. Por fim, foi feita uma análise qualitativa de simulações bicombustível para um motor Diesel.
The adaptation of a numerical simulator for the dual fuel Diesel-gas combustion in compression ignition engines was accomplished. The referred source code has been developed for the past years by the IFP, and a modification of its auto-ignition model was concluded during this study. The various steps needed for this adaptation are presented. All hypotheses were numerically verified when possible. A relation between auto-ignition quality and the combination of the octane numbers of Diesel and natural gas is proposed. A comprehensive reaction rates database required by the model was constructed. Finally, a qualitative analysis of dual fuel simulations in a Diesel engine was conducted.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhao, Gui Quan. "Design, control and experimental testing of intelligent variable dual-fuel automotive engines." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

MOZO, MIGUEL ANGEL LEON. "OPTIMIZATION OF DUAL FUEL OPERATION IN INTERNAL COMBUSTION ENGINES USING ARTIFICIAL INTELLIGENCE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14548@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
O objetivo deste trabalho é predizer e otimizar o desempenho de motores funcionando no modo bicombustível, diesel-gás natural, fazendo uso da inteligência artificial. Pretende-se determinar a taxa de substituição ótima do combustível original diesel pelo gás natural que minimize custos de operação (combustíveis) e emissões de poluentes, tais como: monóxido de carbono, CO, hidrocarbonetos, HC, e óxidos de nitrogênio, NOx, priorizando-se também a eficiência térmica. Os dados analisados foram obtidos de testes anteriormente realizados. O procedimento envolve treinamento, validação e teste (utilizando redes neurais). Com os dados analisados foram treinadas diferentes redes neurais 06 para a aprendizagem e predição, as quais vão prever mapas de novos valores baseando-se nos dados experimentais já apreendidos. Finalmente, e continuando com o processo de otimização (técnica de Algoritmos Genéticos), é determinada a melhor taxa de substituição de diesel-gás natural, com as menores taxas de emissões dentro dos mapas gerados. Os resultados indicam uma boa concordância entre os dados experimentais e os previstos pela rede neural. O processo de otimização utilizado determina os pontos de trabalho adequados para cada caso analisado.
The purpose of this study is to predict and optimize the internal combustion engine performance using diesel-natural gas fuel using the artificial intelligence. The ultimate goal is to determine the optimal substitution rate of natural gas to minimize the costs of operation and pollutants emissions such as carbon monoxide CO, hydrocarbons HC and nitrogen oxides NOx, considering the values of efficiency. The analyzed data are obtained from tests performed earlier. The procedure involves training, validation and test (using neural networks). Once these data were analyzed with different trained neural networks for learning and prediction, which are maps of the predicted values based on experimental data have been seized. Finally, and continuing with the process of optimization (technique of Genetic Algorithms), is given the best substitution rate of and lower emissions in the maps generated. The results indicate a good agreement between data and neural network, the process of optimization using certain items of work appropriate for each case analyzed.
APA, Harvard, Vancouver, ISO, and other styles
44

Kamieniak-Rodziewicz, Joanna. "Development of new catalysts for methane oxidation in dual-fuel HGV engines." Thesis, Manchester Metropolitan University, 2017. http://e-space.mmu.ac.uk/621254/.

Full text
Abstract:
1.4 billion tonnes of cargo is transported in the UK every year, using 1,445,000 heavy goods vehicles (HGVs) over a collective distance of 19 billion km and these figures are likely to increase in the future. For example, the number of trucks is expected to rise by 75% by 2040, and the demand for transport fuels will also grow rapidly. In view of that, natural gas has become subject to big investments for new businesses lines, such as dual-fuel engines. This type of engine typically utilises diesel as a primary fuel with the substitutions of natural gas in order to reduce running costs, as well as for environmental benefits. However, the main downside of the utilisation of natural gas is that it has a higher combustion enthalpy per unit mass, when compared to other conventional fuels. Also, it is not fully burned in the engine, thus results in increased methane emissions in the exhaust. The aim of this project is, therefore, to develop new catalysts to manage emissions of methane to meet the requirements established by the Euro VI regulations. This thesis reports the synthesis and full characterisation of hydroxyapatite (HAP) as the support for a range of catalysts, using several methods and templates to improve its porosity. Moreover, carbon nanorods were employed for the first time as a hard-template in the synthesis of HAP, obtaining high BET surface areas that corresponded to 242.2± 2.3 m2g-1. Then, the thermal, chemical and mechanical stability of HAP was investigated by reproducing possible environmental conditions, which the catalyst would be exposed to in real exhausts from HGV engines. The main findings were that mesoporous HAP is fully stable to any change of pH and any mechanical disturbance, and only started to dehydroxylate at temperatures above 650oC, which is, nonetheless, higher than the engine operating temperature. In consequence, HAP was confirmed as an extremely powerful catalyst support. Additionally, new methods for doping HAP with Pd and Ni metals were explored in order to improve the metal distribution on the support and, hence its catalytic activity. Ultrasound was utilised to assist conventional ion exchange (IE) and incipient wetness impregnation (IW) methodologies. The results for IW revealed that the ultrasound breaks down metal clusters and subsequently improves their distribution, when compared to the standard IW protocol, and in the case of IE, even though the distribution remains stable, the utilisation of ultrasound significantly accelerated the process from 3 days to 3 hours. Furthermore, pretreatment of HAP with different pH before doping with Pd using the IW protocol considerably enhanced the metal distribution when compared to the conventional IW procedure, and remained the high metal distribution when IE took place in a different pH buffer solution instead of neutral water. All synthesised and characterised samples were tested towards dry reforming of methane (DRM) and oxidation of methane, reproducing the oxygen lean and rich conditions found in an exhaust of a HGV, respectively. Products of the reactions were analysed using an in-house built catalysis rig equipped with GC-TCD. For DRM, the most active catalyst impressively exceeded the commercially available catalyst tested under same conditions; converting 100% at a temperature of 250oC, and still achieving 80% conversion after 88 hours continuous reaction. On the other hand, it was found that the oxidation of methane in the presence of oxygen species proceeds through a redox cycle between reduced metal and metal oxide. Based upon the catalytic profiles of previously synthesised catalysts, the metal oxide was more active and revealed more stable conversions when compared to the reduced metal. The results obtained, therefore, suggest that the adsorbed lattice oxygen plays a key role in the catalysis reaction. Lastly, coking process was also studied via TGA as a preliminary deactivation process of the catalysts. It was found that all Pd and Ni based catalysts were resistant to the formation of carbon on their surface.
APA, Harvard, Vancouver, ISO, and other styles
45

Alkadee, Dareen. "Techniques de réduction et de traitement des émissions polluantes dans une machine thermique." Phd thesis, Conservatoire national des arts et metiers - CNAM, 2011. http://tel.archives-ouvertes.fr/tel-01005123.

Full text
Abstract:
Cette thèse de doctorat, a consisté, dans une première partie, à introduire d'une part, la notion de l'analyse du cycle de vie " ACV " et celle des biocarburants. D'autre part, à présenter l'intérêt d'appliquer une ACV sur des biocarburants afin de valoriser leurs bilans énergétiques et analyser leurs impacts environnementaux face aux carburants conventionnels. Dans une deuxième partie, nous avons comparé, d'un point de vue énergétique et environnemental, 3 scénarios de production d'électricité : 2 scénarios de cogénération (turbine à vapeur et ORC) pour la production d'énergie électrique et thermique à partir de biomasse, et un scénario de cogénération par moteur diesel. Ces scénarios sont comparés à l'aide de deux méthodes orientées " analyse des dommages ": Eco-indicateur 99 (E) et IMPACT2002+Dans une troisième partie, on a abordé la valorisation du biogaz sous forme de carburant dans des moteurs "dual fuel" pour des engins agricoles dans le but de déterminer l'impact environnemental lié à l'utilisation de ce carburant alternatif au diesel par rapport aux autres biocarburants. Les méthodes Eco-indicateur 99 (E) et CML ont été utilisées ici. On a pu ainsi identifier les principaux polluants générés à chaque étape du cycle de vie de l'agrocarburant et les étapes qui ont les plus grands impacts environnementaux et on a identifié, selon nos critères et par rapport au contexte, le scénario énergétique le plus compatible avec le principe de développement durable.
APA, Harvard, Vancouver, ISO, and other styles
46

Kang, Jeongho. "Study on Combustion Improvement in Natural Gas fueled PCCI and Dual Fuel Engines." Kyoto University, 2013. http://hdl.handle.net/2433/180451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

ILARDI, DAVIDE. "Data-driven solutions to enhance planning, operation and design tools in Industry 4.0 context." Doctoral thesis, Università degli studi di Genova, 2023. https://hdl.handle.net/11567/1104513.

Full text
Abstract:
This thesis proposes three different data-driven solutions to be combined to state-of-the-art solvers and tools in order to primarily enhance their computational performances. The problem of efficiently designing the open sea floating platforms on which wind turbines can be mount on will be tackled, as well as the tuning of a data-driven engine's monitoring tool for maritime transportation. Finally, the activities of SAT and ASP solvers will be thoroughly studied and a deep learning architecture will be proposed to enhance the heuristics-based solving approach adopted by such software. The covered domains are different and the same is true for their respective targets. Nonetheless, the proposed Artificial Intelligence and Machine Learning algorithms are shared as well as the overall picture: promote Industrial AI and meet the constraints imposed by Industry 4.0 vision. The lesser presence of human-in-the-loop, a data-driven approach to discover causalities otherwise ignored, a special attention to the environmental impact of industries' emissions, a real and efficient exploitation of the Big Data available today are just a subset of the latter. Hence, from a broader perspective, the experiments carried out within this thesis are driven towards the aforementioned targets and the resulting outcomes are satisfactory enough to potentially convince the research community and industrialists that they are not just "visions" but they can be actually put into practice. However, it is still an introduction to the topic and the developed models are at what can be defined a "pilot" stage. Nonetheless, the results are promising and they pave the way towards further improvements and the consolidation of the dictates of Industry 4.0.
APA, Harvard, Vancouver, ISO, and other styles
48

Petrakides, Sotiris. "On the combustion of premixed natural gas/gasoline dual fuel blends in SI engines." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23547.

Full text
Abstract:
The continuous update of challenging emission legislations has renewed the interest for the use of alternative fuels. The low carbon content, the knocking resistance, and the abundance reserves, have classified natural gas as one of the most promising alternative fuels. The major constituent of natural gas is methane. Historically, the slow burning velocity of methane has been a major concern for its utilisation in energy efficient combustion applications. As emphasized in a limited body of experimental literature, a binary blend of methane and gasoline has the potential to accelerate the combustion process in an SI engine, resulting in a faster combustion even to that of gasoline. The mechanism of such effects remains unclear. This is partially owned to the inadequate prior scientific understanding of the fundamental combustion parameters, laminar burning velocity (Su0) and Markstein length (Lb), of a gasoline-natural gas Dual Fuel (DF) blend. The value of Lb characterises the sensitivity of the flame to stretch. The flame stretch is induced by aerodynamic straining and/or flame curvature. The current research study has therefore being concerned on understanding the combustion mechanism of premixed gasoline - natural gas DF blends both on a fundamental as well as practical SI engine level. The understanding on the contribution of Su0 and Lb to the velocity of a stretched laminar propagating flame has been extended through numerical analysis. A conceptual analysis of the laminar as compared to the SI engine combustion allowed further insights on the effect of turbulence to the mass burning rate of the base fuels. On a fundamental level, the research contribution is made through the quantification of the response of Su0 and Lb with the ratio of methane to PRF95 (95%volliq iso-octane and 5%volliq n-heptane) in a DF blend. Methane has been used as a surrogate for natural gas and PRF95 as a surrogate for gasoline. Constant volume laminar combustion experiments have been conducted in a cylindrical vessel at equivalence ratios of 0.8, 1, 1.2, initial pressures of 2.5, 5, 10 Bar, and a constant temperature of 373 K. Methane was added to PRF95 in three different energy ratios 25%, 50% and 75%. Spherically expanding flames visualised through schlieren photography were used to derive the values of Lb and Su0. It has been concluded that for pressures relevant to SI engine operation ( > 5bar) and stoichiometric to lean Air Fuel Ratios (AFRs), there is a positive synergy for blending methane to PRF95 due to the convergence of Lb of the blended fuel towards that of pure gas and Su0 towards that of pure liquid. In an SI engine environment, the research contribution is made through the characterisation and scientific understanding of the mechanism of DF combustion, and the importance of flame-stretch interactions at various engine operating conditions. Optical diagnostics have been integrated with in-cylinder pressure analysis to investigate the mechanism of flame velocity and stability with the addition of natural gas to gasoline in a DF blend, under a sweep of engine load (Manifold Absolute Pressure = 0.44, 0.51. 0.61 Bar), speed (1250, 2000, 2750 RPM) and equivalence ratio (0.8, 0.83, 1, 1.25). Consisted with the constant volume experiments, natural gas was added to gasoline in energy ratios of 25%, 50% and 75%. It has been concluded that within the flamelet combustion regime the effect of Lb is dominating the lean burn combustion process both from a flame stability and velocity prospective. The effect of Su0 on the combustion process gradually increases as the AFR shifts from stoichiometric to fuel rich values. For stoichiometric to fuel lean mixtures, the effect of turbulence on the increase of the mass burning rate is on average 13% higher for natural gas as compared to gasoline. The higher turbulence sensitivity of natural gas is attributed to its lower Lb value.
APA, Harvard, Vancouver, ISO, and other styles
49

Makkar, Mahesh Kumar. "The effect of quality of gaseous fuels on the performance and combustion of dual-fuel diesel engines." Thesis, University of Surrey, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mbarawa, MM. "A correlation for estimation of ignition delay of dual fuel combustion based on constant volume combustion vessel experiments." The SA Mechanical Engineer, 2003. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001053.

Full text
Abstract:
One method of using alternativefuels in diesel engines is by adopting amixed combustion process called dualfu elling w h er e alt ernativ e fu eI s uc h as natural gas (Ir{ G) is induc e d into the cylinder as a primary fuel with air and is subsequently isnited with a pilot injection of dieselfuel. The ignition delay in a dualfuel (DF) engine is differentfrom that in a diesel engine because the primaryfuelalters the properties of the charge, r e duc e o xy g e n av ailable and under go e s pr e -ignitio n r e ac tio n s durin g c o mp r e s s io n. V ario u s c o nclu sio n s of DF ignition delay have beenreachedusing different engines. In the presentwork a constantvolume combustionvessel (CVCV) has beenusedto study the ignition delay of aDF combustionpFocess. E xp erim e nt s hav e b e e n p e rform e d to inv e s tigat e th e i gniti o n d e lay p e rio d at dffi r e nt initial t e mp e r atur e s andpressures. The results obtainedwere usedto modify the Hu and Milton'ss DF ignition delay correlation. The proposed coruelation predicts a delay periodfor a wide range of initialtemperatures andpressures. The trends exhibitedby the correlation are consistentwith DF ignition delay engine tests datafrom other researchersl'2. In particular, it explains why some reported tests results show that ignition delay is always rising while others show that it decreases temporarily before rising againto very highvalues. The rising of ignition delay occurs withlow pilot diesel quantities and the latter with high one s.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography