To see the other types of publications on this topic, follow the link: Dual‐ion batteries.

Journal articles on the topic 'Dual‐ion batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Dual‐ion batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hu, Zhe, Qiannan Liu, Kai Zhang, et al. "All Carbon Dual Ion Batteries." ACS Applied Materials & Interfaces 10, no. 42 (2018): 35978–83. http://dx.doi.org/10.1021/acsami.8b11824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bellani, Sebastiano, Faxing Wang, Gianluca Longoni, et al. "WS2–Graphite Dual-Ion Batteries." Nano Letters 18, no. 11 (2018): 7155–64. http://dx.doi.org/10.1021/acs.nanolett.8b03227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sui, Yiming, Chaofeng Liu, Robert C. Masse, et al. "Dual-ion batteries: The emerging alternative rechargeable batteries." Energy Storage Materials 25 (March 2020): 1–32. http://dx.doi.org/10.1016/j.ensm.2019.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Jing, Yan Zhou, Xu Zhang, et al. "Germanium-based high-performance dual-ion batteries." Nanoscale 12, no. 1 (2020): 79–84. http://dx.doi.org/10.1039/c9nr08783d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rodríguez-Pérez, Ismael A., Zelang Jian, Pieter K. Waldenmaier, et al. "A Hydrocarbon Cathode for Dual-Ion Batteries." ACS Energy Letters 1, no. 4 (2016): 719–23. http://dx.doi.org/10.1021/acsenergylett.6b00300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rodríguez-Pérez, Ismael A., and Xiulei Ji. "Anion Hosting Cathodes in Dual-Ion Batteries." ACS Energy Letters 2, no. 8 (2017): 1762–70. http://dx.doi.org/10.1021/acsenergylett.7b00321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yao, Hu-Rong, Ya You, Ya-Xia Yin, Li-Jun Wan, and Yu-Guo Guo. "Rechargeable dual-metal-ion batteries for advanced energy storage." Physical Chemistry Chemical Physics 18, no. 14 (2016): 9326–33. http://dx.doi.org/10.1039/c6cp00586a.

Full text
Abstract:
Possible configurations of hybrid-ion batteries based on dual-metal-ions are summarized: these could be promising rechargeable battery systems as they combine the respective advantages of each single-metal-ion.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Meng, and Yongbing Tang. "Dual-Ion Batteries: A Review on the Features and Progress of Dual-Ion Batteries (Adv. Energy Mater. 19/2018)." Advanced Energy Materials 8, no. 19 (2018): 1870088. http://dx.doi.org/10.1002/aenm.201870088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saini, Hariom, Sandeep Das, and Biswarup Pathak. "BCN monolayer for high capacity Al-based dual-ion batteries." Materials Advances 1, no. 7 (2020): 2418–25. http://dx.doi.org/10.1039/d0ma00501k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Lei, Yuhao Huang, Hui Fan, and Hongyu Wang. "Flame-Retardant Electrolyte Solution for Dual-Ion Batteries." ACS Applied Energy Materials 2, no. 2 (2019): 1363–70. http://dx.doi.org/10.1021/acsaem.8b01942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ji, Bifa, Wenjiao Yao, and Yongbing Tang. "High-performance rechargeable zinc-based dual-ion batteries." Sustainable Energy & Fuels 4, no. 1 (2020): 101–7. http://dx.doi.org/10.1039/c9se00744j.

Full text
Abstract:
All the reported two kinds of nonaqueous zinc-based battery systems present good electrochemical performance and have good potential for large-scale energy storage with good safety and environmental friendliness.
APA, Harvard, Vancouver, ISO, and other styles
12

Hao, Junnan, Xiaolong Li, Xiaohe Song, and Zaiping Guo. "Recent progress and perspectives on dual-ion batteries." EnergyChem 1, no. 1 (2019): 100004. http://dx.doi.org/10.1016/j.enchem.2019.100004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chan, Cheuk Ying, Pui-Kit Lee, Zhihao Xu, and Denis Y. W. Yu. "Designing high-power graphite-based dual-ion batteries." Electrochimica Acta 263 (February 2018): 34–39. http://dx.doi.org/10.1016/j.electacta.2018.01.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Lei, Hui Fan, and Hongyu Wang. "Methyl acetate–based solutions for dual–ion batteries." Electrochimica Acta 342 (May 2020): 135992. http://dx.doi.org/10.1016/j.electacta.2020.135992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Zhipeng, Yunsong Wang, Yijun Chen, et al. "Dual Network Sponge for Compressible Lithium‐Ion Batteries." Small 17, no. 26 (2021): 2100911. http://dx.doi.org/10.1002/smll.202100911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Obrezkov, Filipp, and Keith J. Stevenson. "Novel Polyamine-Based Cathodes for Dual-Ion Batteries." ECS Meeting Abstracts MA2021-01, no. 1 (2021): 51. http://dx.doi.org/10.1149/ma2021-01151mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kayakool, Fathima Ali, Binitha Gangaja, Shantikumar Nair, and Dhamodaran Santhanagopalan. "Li-based all‑carbon dual-ion batteries using graphite recycled from spent Li-ion batteries." Sustainable Materials and Technologies 28 (July 2021): e00262. http://dx.doi.org/10.1016/j.susmat.2021.e00262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xu, Qilei, Rui Ding, Wei Shi, et al. "Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries." Journal of Materials Chemistry A 7, no. 14 (2019): 8315–26. http://dx.doi.org/10.1039/c9ta00493a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jiang, Ping, Hezhu Shao, Liang Chen, Jiwen Feng, and Zhaoping Liu. "Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries." Journal of Materials Chemistry A 5, no. 32 (2017): 16740–47. http://dx.doi.org/10.1039/c7ta04172a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wrogemann, Jens Matthies, Sven Künne, Andreas Heckmann, et al. "Dual‐Ion Batteries: Development of Safe and Sustainable Dual‐Ion Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes (Adv. Energy Mater. 8/2020)." Advanced Energy Materials 10, no. 8 (2020): 2070033. http://dx.doi.org/10.1002/aenm.202070033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, Ju-Myung, Chanhoon Kim, Seungmin Yoo, et al. "Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes." Journal of Materials Chemistry A 3, no. 20 (2015): 10687–92. http://dx.doi.org/10.1039/c5ta02445e.

Full text
Abstract:
We demonstrated an agarose-biofunctionalized, dual-electrospun heteronanofiber mat as a new class of chemically active (specifically, metal-ion chelating) separator membranes for high-performance Li-ion batteries.
APA, Harvard, Vancouver, ISO, and other styles
22

Huang, Yuxi, Rui Ding, Qilei Xu, et al. "A conversion and pseudocapacitance-featuring cost-effective perovskite fluoride KCuF3 for advanced lithium-ion capacitors and lithium-dual-ion batteries." Dalton Transactions 50, no. 25 (2021): 8671–75. http://dx.doi.org/10.1039/d1dt00904d.

Full text
Abstract:
A cost-effective perovskite fluoride KCuF<sub>3</sub> material has been introduced as an advanced anode for lithium-ion capacitors (LICs) and lithium-dual-ion batteries (Li-DIBs), showing a conversion mechanism and pseudocapacitive kinetics for Li ion storage.
APA, Harvard, Vancouver, ISO, and other styles
23

Luo, Yuqing, Yijian Tang, Shasha Zheng, Yan Yan, Huaiguo Xue, and Huan Pang. "Dual anode materials for lithium- and sodium-ion batteries." Journal of Materials Chemistry A 6, no. 10 (2018): 4236–59. http://dx.doi.org/10.1039/c8ta00107c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wu, Haoyang, Mingli Qin, Wei Wang, et al. "Ultrafast synthesis of amorphous VOxembedded into 3D strutted amorphous carbon frameworks–short-range order in dual-amorphous composites boosts lithium storage." Journal of Materials Chemistry A 6, no. 16 (2018): 7053–61. http://dx.doi.org/10.1039/c8ta00654g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rodríguez‐Pérez, Ismael A., Lu Zhang, Jens Matthies Wrogemann, et al. "Aqueous Dual‐Ion Batteries: Enabling Natural Graphite in High‐Voltage Aqueous Graphite || Zn Metal Dual‐Ion Batteries (Adv. Energy Mater. 41/2020)." Advanced Energy Materials 10, no. 41 (2020): 2070169. http://dx.doi.org/10.1002/aenm.202070169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hwang, Jinkwang, Rika Hagiwara, Hiroshi Shinokubo, and Ji-Young Shin. "Dual-ion charge–discharge behaviors of Na–NiNc and NiNc–NiNc batteries." Materials Advances 2, no. 7 (2021): 2263–66. http://dx.doi.org/10.1039/d1ma00007a.

Full text
Abstract:
Dual-ion Na–organic batteries were provided with anti-aromatic NiNc, exposing inherent charge–discharge behavior with high discharge capacity, high durability, and high Coulombic efficiency with high-density currents.
APA, Harvard, Vancouver, ISO, and other styles
27

Mu, Tong, Jiguang Zhang, Rui Shi, et al. "Ultrahigh rate capability and long cycling stability of dual-ion batteries enabled by TiO2 microspheres with abundant oxygen vacancies." Chemical Communications 56, no. 58 (2020): 8039–42. http://dx.doi.org/10.1039/d0cc03099f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Manna, Surya Sekhar, Preeti Bhauriyal, and Biswarup Pathak. "Identifying suitable ionic liquid electrolytes for Al dual-ion batteries: role of electrochemical window, conductivity and voltage." Materials Advances 1, no. 5 (2020): 1354–63. http://dx.doi.org/10.1039/d0ma00292e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nam, Sanghee, Pitchai Thangasamy, Saewoong Oh, Manmatha Mahato, Nikhil Koratkar, and Il-Kwon Oh. "A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability." Nanoscale 12, no. 40 (2020): 20868–74. http://dx.doi.org/10.1039/d0nr05478j.

Full text
Abstract:
Herein, we report vanadium carbide (V<sub>8</sub>C<sub>7</sub>) nanowires (NWs) axially grown on carbon cloths (CCs) as a dual-ion accepting cathode for both lithium (LIBs) and sodium-ion batteries (SIBs).
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Liang, Jiashun Liang, Xiaoyu Zhang, et al. "An effective dual-modification strategy to enhance the performance of LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries." Nanoscale 13, no. 8 (2021): 4670–77. http://dx.doi.org/10.1039/d0nr09010g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Duraisamy, Shanmughasundaram, Tirupathi Rao Penki, and Munichandraiah Nookala. "Hierarchically porous Li1.2Mn0.6Ni0.2O2as a high capacity and high rate capability positive electrode material." New Journal of Chemistry 40, no. 2 (2016): 1312–22. http://dx.doi.org/10.1039/c5nj02423d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Xiaoyan, Shaofeng Wang, Kaixiang Shen, Shenggong He, Xianhua Hou, and Fuming Chen. "Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries." Journal of Materials Chemistry A 8, no. 7 (2020): 4007–16. http://dx.doi.org/10.1039/c9ta11246d.

Full text
Abstract:
Phosphorus-doped hollow carbon nanorods with high electronic conductivity can maintain excellent structural stability and endow outstanding electrochemical performance in sodium-based dual-ion batteries.
APA, Harvard, Vancouver, ISO, and other styles
33

Fan, Wenjie, Hao Zhang, Huanlei Wang, et al. "Dual-doped hierarchical porous carbon derived from biomass for advanced supercapacitors and lithium ion batteries." RSC Advances 9, no. 56 (2019): 32382–94. http://dx.doi.org/10.1039/c9ra06914c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Xie, Fangxi, Lei Zhang, Yan Jiao, Anthony Vasileff, Dongliang Chao, and Shi-Zhang Qiao. "Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation." Journal of Materials Chemistry A 8, no. 31 (2020): 15829–33. http://dx.doi.org/10.1039/d0ta00967a.

Full text
Abstract:
Dual-shell structured sodium titanate cubes with oxygen vacancies are rationally designed and synthesized. Various state-of-the-art approaches offer understandings of its enhanced ion kinetics as an anode for sodium-ion battery..
APA, Harvard, Vancouver, ISO, and other styles
35

Yan, Tong, Rui Ding, Danfeng Ying, et al. "An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries." Journal of Materials Chemistry A 7, no. 40 (2019): 22884–88. http://dx.doi.org/10.1039/c9ta09233a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Li, Chao, Xiaohong Wang, Jiayu Li, and Hongyu Wang. "FePO4 as an anode material to obtain high-performance sodium-based dual-ion batteries." Chemical Communications 54, no. 34 (2018): 4349–52. http://dx.doi.org/10.1039/c7cc09714j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhu, Haili, Fan Zhang, Jinrui Li, and Yongbing Tang. "Dual-Ion Batteries: Penne-Like MoS2 /Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery (Small 13/2018)." Small 14, no. 13 (2018): 1870055. http://dx.doi.org/10.1002/smll.201870055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Shuai, Xiang Xiao, Chaopeng Fu, Jiguo Tu, Yuanyuan Tan, and Shuqiang Jiao. "Room temperature solid state dual-ion batteries based on gel electrolytes." Journal of Materials Chemistry A 6, no. 10 (2018): 4313–23. http://dx.doi.org/10.1039/c8ta00221e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Beltrop, K., S. Beuker, A. Heckmann, M. Winter, and T. Placke. "Alternative electrochemical energy storage: potassium-based dual-graphite batteries." Energy & Environmental Science 10, no. 10 (2017): 2090–94. http://dx.doi.org/10.1039/c7ee01535f.

Full text
Abstract:
In this contribution, we report for the first time a novel potassium ion-based dual-graphite battery concept (K-DGB), applying graphite as the electrode material for both the anode and cathode, in combination with an ionic liquid electrolyte.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhu, Xinxin, Dan Liu, Dong Zheng, et al. "Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes." Journal of Materials Chemistry A 6, no. 27 (2018): 13294–301. http://dx.doi.org/10.1039/c8ta03444c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kravchyk, Kostiantyn V., and Maksym V. Kovalenko. "The Pitfalls in Nonaqueous Electrochemistry of Al‐Ion and Al Dual‐Ion Batteries." Advanced Energy Materials 10, no. 45 (2020): 2002151. http://dx.doi.org/10.1002/aenm.202002151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Song, Weixin, Xiaobo Ji, Zhengping Wu, et al. "Multifunctional dual Na3V2(PO4)2F3cathode for both lithium-ion and sodium-ion batteries." RSC Adv. 4, no. 22 (2014): 11375–83. http://dx.doi.org/10.1039/c3ra47878e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Ziheng, Yang Ni, Maxim Avdeev, Wang Hay Kan, and Guang He. "Dual-ion intercalation to enable high-capacity VOPO4 cathodes for Na-ion batteries." Electrochimica Acta 365 (January 2021): 137376. http://dx.doi.org/10.1016/j.electacta.2020.137376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Essehli, R., I. Belharouak, H. Ben Yahia, et al. "Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries." Dalton Transactions 44, no. 17 (2015): 7881–86. http://dx.doi.org/10.1039/c5dt00971e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Whitacre, J. F., K. Zaghib, W. C. West, and B. V. Ratnakumar. "Dual active material composite cathode structures for Li-ion batteries." Journal of Power Sources 177, no. 2 (2008): 528–36. http://dx.doi.org/10.1016/j.jpowsour.2007.11.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rodríguez-Pérez, Ismael A., Clement Bommier, Duncan D. Fuller, Daniel P. Leonard, Andrew G. Williams, and Xiulei Ji. "Toward Higher Capacities of Hydrocarbon Cathodes in Dual-Ion Batteries." ACS Applied Materials & Interfaces 10, no. 50 (2018): 43311–15. http://dx.doi.org/10.1021/acsami.8b17105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhou, Xiaolong, Qirong Liu, Chunlei Jiang, et al. "Strategies towards Low‐Cost Dual‐Ion Batteries with High Performance." Angewandte Chemie International Edition 59, no. 10 (2019): 3802–32. http://dx.doi.org/10.1002/anie.201814294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rasheev, Hristo, Radostina Stoyanova, and Alia Tadjer. "Dual‐Metal Electrolytes for Hybrid‐Ion Batteries: Synergism or Antagonism?" ChemPhysChem 22, no. 11 (2021): 1110–23. http://dx.doi.org/10.1002/cphc.202100066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cheng, Yingwen, Yuyan Shao, Ji-Guang Zhang, Vincent L. Sprenkle, Jun Liu, and Guosheng Li. "High performance batteries based on hybrid magnesium and lithium chemistry." Chem. Commun. 50, no. 68 (2014): 9644–46. http://dx.doi.org/10.1039/c4cc03620d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kim, Yunok, Woosung Choi, Ok-Hee Kim, et al. "Dual lithium storage of Pt electrode: alloying and reversible surface layer." Journal of Materials Chemistry A 9, no. 34 (2021): 18377–84. http://dx.doi.org/10.1039/d1ta04379j.

Full text
Abstract:
As the importance of additional capacity beyond the theoretical limitation of lithium-ion batteries has been recognized, extensive research into effectively utilizing the extra lithium accommodation is being conducted.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!