Journal articles on the topic 'Dual‐ion batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dual‐ion batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hu, Zhe, Qiannan Liu, Kai Zhang, et al. "All Carbon Dual Ion Batteries." ACS Applied Materials & Interfaces 10, no. 42 (2018): 35978–83. http://dx.doi.org/10.1021/acsami.8b11824.
Full textBellani, Sebastiano, Faxing Wang, Gianluca Longoni, et al. "WS2–Graphite Dual-Ion Batteries." Nano Letters 18, no. 11 (2018): 7155–64. http://dx.doi.org/10.1021/acs.nanolett.8b03227.
Full textSui, Yiming, Chaofeng Liu, Robert C. Masse, et al. "Dual-ion batteries: The emerging alternative rechargeable batteries." Energy Storage Materials 25 (March 2020): 1–32. http://dx.doi.org/10.1016/j.ensm.2019.11.003.
Full textZhou, Jing, Yan Zhou, Xu Zhang, et al. "Germanium-based high-performance dual-ion batteries." Nanoscale 12, no. 1 (2020): 79–84. http://dx.doi.org/10.1039/c9nr08783d.
Full textRodríguez-Pérez, Ismael A., Zelang Jian, Pieter K. Waldenmaier, et al. "A Hydrocarbon Cathode for Dual-Ion Batteries." ACS Energy Letters 1, no. 4 (2016): 719–23. http://dx.doi.org/10.1021/acsenergylett.6b00300.
Full textRodríguez-Pérez, Ismael A., and Xiulei Ji. "Anion Hosting Cathodes in Dual-Ion Batteries." ACS Energy Letters 2, no. 8 (2017): 1762–70. http://dx.doi.org/10.1021/acsenergylett.7b00321.
Full textYao, Hu-Rong, Ya You, Ya-Xia Yin, Li-Jun Wan, and Yu-Guo Guo. "Rechargeable dual-metal-ion batteries for advanced energy storage." Physical Chemistry Chemical Physics 18, no. 14 (2016): 9326–33. http://dx.doi.org/10.1039/c6cp00586a.
Full textWang, Meng, and Yongbing Tang. "Dual-Ion Batteries: A Review on the Features and Progress of Dual-Ion Batteries (Adv. Energy Mater. 19/2018)." Advanced Energy Materials 8, no. 19 (2018): 1870088. http://dx.doi.org/10.1002/aenm.201870088.
Full textSaini, Hariom, Sandeep Das, and Biswarup Pathak. "BCN monolayer for high capacity Al-based dual-ion batteries." Materials Advances 1, no. 7 (2020): 2418–25. http://dx.doi.org/10.1039/d0ma00501k.
Full textZhang, Lei, Yuhao Huang, Hui Fan, and Hongyu Wang. "Flame-Retardant Electrolyte Solution for Dual-Ion Batteries." ACS Applied Energy Materials 2, no. 2 (2019): 1363–70. http://dx.doi.org/10.1021/acsaem.8b01942.
Full textJi, Bifa, Wenjiao Yao, and Yongbing Tang. "High-performance rechargeable zinc-based dual-ion batteries." Sustainable Energy & Fuels 4, no. 1 (2020): 101–7. http://dx.doi.org/10.1039/c9se00744j.
Full textHao, Junnan, Xiaolong Li, Xiaohe Song, and Zaiping Guo. "Recent progress and perspectives on dual-ion batteries." EnergyChem 1, no. 1 (2019): 100004. http://dx.doi.org/10.1016/j.enchem.2019.100004.
Full textChan, Cheuk Ying, Pui-Kit Lee, Zhihao Xu, and Denis Y. W. Yu. "Designing high-power graphite-based dual-ion batteries." Electrochimica Acta 263 (February 2018): 34–39. http://dx.doi.org/10.1016/j.electacta.2018.01.036.
Full textZhang, Lei, Hui Fan, and Hongyu Wang. "Methyl acetate–based solutions for dual–ion batteries." Electrochimica Acta 342 (May 2020): 135992. http://dx.doi.org/10.1016/j.electacta.2020.135992.
Full textWang, Zhipeng, Yunsong Wang, Yijun Chen, et al. "Dual Network Sponge for Compressible Lithium‐Ion Batteries." Small 17, no. 26 (2021): 2100911. http://dx.doi.org/10.1002/smll.202100911.
Full textObrezkov, Filipp, and Keith J. Stevenson. "Novel Polyamine-Based Cathodes for Dual-Ion Batteries." ECS Meeting Abstracts MA2021-01, no. 1 (2021): 51. http://dx.doi.org/10.1149/ma2021-01151mtgabs.
Full textKayakool, Fathima Ali, Binitha Gangaja, Shantikumar Nair, and Dhamodaran Santhanagopalan. "Li-based all‑carbon dual-ion batteries using graphite recycled from spent Li-ion batteries." Sustainable Materials and Technologies 28 (July 2021): e00262. http://dx.doi.org/10.1016/j.susmat.2021.e00262.
Full textXu, Qilei, Rui Ding, Wei Shi, et al. "Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries." Journal of Materials Chemistry A 7, no. 14 (2019): 8315–26. http://dx.doi.org/10.1039/c9ta00493a.
Full textJiang, Ping, Hezhu Shao, Liang Chen, Jiwen Feng, and Zhaoping Liu. "Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries." Journal of Materials Chemistry A 5, no. 32 (2017): 16740–47. http://dx.doi.org/10.1039/c7ta04172a.
Full textWrogemann, Jens Matthies, Sven Künne, Andreas Heckmann, et al. "Dual‐Ion Batteries: Development of Safe and Sustainable Dual‐Ion Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes (Adv. Energy Mater. 8/2020)." Advanced Energy Materials 10, no. 8 (2020): 2070033. http://dx.doi.org/10.1002/aenm.202070033.
Full textKim, Ju-Myung, Chanhoon Kim, Seungmin Yoo, et al. "Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes." Journal of Materials Chemistry A 3, no. 20 (2015): 10687–92. http://dx.doi.org/10.1039/c5ta02445e.
Full textHuang, Yuxi, Rui Ding, Qilei Xu, et al. "A conversion and pseudocapacitance-featuring cost-effective perovskite fluoride KCuF3 for advanced lithium-ion capacitors and lithium-dual-ion batteries." Dalton Transactions 50, no. 25 (2021): 8671–75. http://dx.doi.org/10.1039/d1dt00904d.
Full textLuo, Yuqing, Yijian Tang, Shasha Zheng, Yan Yan, Huaiguo Xue, and Huan Pang. "Dual anode materials for lithium- and sodium-ion batteries." Journal of Materials Chemistry A 6, no. 10 (2018): 4236–59. http://dx.doi.org/10.1039/c8ta00107c.
Full textWu, Haoyang, Mingli Qin, Wei Wang, et al. "Ultrafast synthesis of amorphous VOxembedded into 3D strutted amorphous carbon frameworks–short-range order in dual-amorphous composites boosts lithium storage." Journal of Materials Chemistry A 6, no. 16 (2018): 7053–61. http://dx.doi.org/10.1039/c8ta00654g.
Full textRodríguez‐Pérez, Ismael A., Lu Zhang, Jens Matthies Wrogemann, et al. "Aqueous Dual‐Ion Batteries: Enabling Natural Graphite in High‐Voltage Aqueous Graphite || Zn Metal Dual‐Ion Batteries (Adv. Energy Mater. 41/2020)." Advanced Energy Materials 10, no. 41 (2020): 2070169. http://dx.doi.org/10.1002/aenm.202070169.
Full textHwang, Jinkwang, Rika Hagiwara, Hiroshi Shinokubo, and Ji-Young Shin. "Dual-ion charge–discharge behaviors of Na–NiNc and NiNc–NiNc batteries." Materials Advances 2, no. 7 (2021): 2263–66. http://dx.doi.org/10.1039/d1ma00007a.
Full textMu, Tong, Jiguang Zhang, Rui Shi, et al. "Ultrahigh rate capability and long cycling stability of dual-ion batteries enabled by TiO2 microspheres with abundant oxygen vacancies." Chemical Communications 56, no. 58 (2020): 8039–42. http://dx.doi.org/10.1039/d0cc03099f.
Full textManna, Surya Sekhar, Preeti Bhauriyal, and Biswarup Pathak. "Identifying suitable ionic liquid electrolytes for Al dual-ion batteries: role of electrochemical window, conductivity and voltage." Materials Advances 1, no. 5 (2020): 1354–63. http://dx.doi.org/10.1039/d0ma00292e.
Full textNam, Sanghee, Pitchai Thangasamy, Saewoong Oh, Manmatha Mahato, Nikhil Koratkar, and Il-Kwon Oh. "A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability." Nanoscale 12, no. 40 (2020): 20868–74. http://dx.doi.org/10.1039/d0nr05478j.
Full textWang, Liang, Jiashun Liang, Xiaoyu Zhang, et al. "An effective dual-modification strategy to enhance the performance of LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries." Nanoscale 13, no. 8 (2021): 4670–77. http://dx.doi.org/10.1039/d0nr09010g.
Full textDuraisamy, Shanmughasundaram, Tirupathi Rao Penki, and Munichandraiah Nookala. "Hierarchically porous Li1.2Mn0.6Ni0.2O2as a high capacity and high rate capability positive electrode material." New Journal of Chemistry 40, no. 2 (2016): 1312–22. http://dx.doi.org/10.1039/c5nj02423d.
Full textWang, Xiaoyan, Shaofeng Wang, Kaixiang Shen, Shenggong He, Xianhua Hou, and Fuming Chen. "Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries." Journal of Materials Chemistry A 8, no. 7 (2020): 4007–16. http://dx.doi.org/10.1039/c9ta11246d.
Full textFan, Wenjie, Hao Zhang, Huanlei Wang, et al. "Dual-doped hierarchical porous carbon derived from biomass for advanced supercapacitors and lithium ion batteries." RSC Advances 9, no. 56 (2019): 32382–94. http://dx.doi.org/10.1039/c9ra06914c.
Full textXie, Fangxi, Lei Zhang, Yan Jiao, Anthony Vasileff, Dongliang Chao, and Shi-Zhang Qiao. "Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation." Journal of Materials Chemistry A 8, no. 31 (2020): 15829–33. http://dx.doi.org/10.1039/d0ta00967a.
Full textYan, Tong, Rui Ding, Danfeng Ying, et al. "An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries." Journal of Materials Chemistry A 7, no. 40 (2019): 22884–88. http://dx.doi.org/10.1039/c9ta09233a.
Full textLi, Chao, Xiaohong Wang, Jiayu Li, and Hongyu Wang. "FePO4 as an anode material to obtain high-performance sodium-based dual-ion batteries." Chemical Communications 54, no. 34 (2018): 4349–52. http://dx.doi.org/10.1039/c7cc09714j.
Full textZhu, Haili, Fan Zhang, Jinrui Li, and Yongbing Tang. "Dual-Ion Batteries: Penne-Like MoS2 /Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery (Small 13/2018)." Small 14, no. 13 (2018): 1870055. http://dx.doi.org/10.1002/smll.201870055.
Full textWang, Shuai, Xiang Xiao, Chaopeng Fu, Jiguo Tu, Yuanyuan Tan, and Shuqiang Jiao. "Room temperature solid state dual-ion batteries based on gel electrolytes." Journal of Materials Chemistry A 6, no. 10 (2018): 4313–23. http://dx.doi.org/10.1039/c8ta00221e.
Full textBeltrop, K., S. Beuker, A. Heckmann, M. Winter, and T. Placke. "Alternative electrochemical energy storage: potassium-based dual-graphite batteries." Energy & Environmental Science 10, no. 10 (2017): 2090–94. http://dx.doi.org/10.1039/c7ee01535f.
Full textZhu, Xinxin, Dan Liu, Dong Zheng, et al. "Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes." Journal of Materials Chemistry A 6, no. 27 (2018): 13294–301. http://dx.doi.org/10.1039/c8ta03444c.
Full textKravchyk, Kostiantyn V., and Maksym V. Kovalenko. "The Pitfalls in Nonaqueous Electrochemistry of Al‐Ion and Al Dual‐Ion Batteries." Advanced Energy Materials 10, no. 45 (2020): 2002151. http://dx.doi.org/10.1002/aenm.202002151.
Full textSong, Weixin, Xiaobo Ji, Zhengping Wu, et al. "Multifunctional dual Na3V2(PO4)2F3cathode for both lithium-ion and sodium-ion batteries." RSC Adv. 4, no. 22 (2014): 11375–83. http://dx.doi.org/10.1039/c3ra47878e.
Full textZhang, Ziheng, Yang Ni, Maxim Avdeev, Wang Hay Kan, and Guang He. "Dual-ion intercalation to enable high-capacity VOPO4 cathodes for Na-ion batteries." Electrochimica Acta 365 (January 2021): 137376. http://dx.doi.org/10.1016/j.electacta.2020.137376.
Full textEssehli, R., I. Belharouak, H. Ben Yahia, et al. "Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries." Dalton Transactions 44, no. 17 (2015): 7881–86. http://dx.doi.org/10.1039/c5dt00971e.
Full textWhitacre, J. F., K. Zaghib, W. C. West, and B. V. Ratnakumar. "Dual active material composite cathode structures for Li-ion batteries." Journal of Power Sources 177, no. 2 (2008): 528–36. http://dx.doi.org/10.1016/j.jpowsour.2007.11.076.
Full textRodríguez-Pérez, Ismael A., Clement Bommier, Duncan D. Fuller, Daniel P. Leonard, Andrew G. Williams, and Xiulei Ji. "Toward Higher Capacities of Hydrocarbon Cathodes in Dual-Ion Batteries." ACS Applied Materials & Interfaces 10, no. 50 (2018): 43311–15. http://dx.doi.org/10.1021/acsami.8b17105.
Full textZhou, Xiaolong, Qirong Liu, Chunlei Jiang, et al. "Strategies towards Low‐Cost Dual‐Ion Batteries with High Performance." Angewandte Chemie International Edition 59, no. 10 (2019): 3802–32. http://dx.doi.org/10.1002/anie.201814294.
Full textRasheev, Hristo, Radostina Stoyanova, and Alia Tadjer. "Dual‐Metal Electrolytes for Hybrid‐Ion Batteries: Synergism or Antagonism?" ChemPhysChem 22, no. 11 (2021): 1110–23. http://dx.doi.org/10.1002/cphc.202100066.
Full textCheng, Yingwen, Yuyan Shao, Ji-Guang Zhang, Vincent L. Sprenkle, Jun Liu, and Guosheng Li. "High performance batteries based on hybrid magnesium and lithium chemistry." Chem. Commun. 50, no. 68 (2014): 9644–46. http://dx.doi.org/10.1039/c4cc03620d.
Full textKim, Yunok, Woosung Choi, Ok-Hee Kim, et al. "Dual lithium storage of Pt electrode: alloying and reversible surface layer." Journal of Materials Chemistry A 9, no. 34 (2021): 18377–84. http://dx.doi.org/10.1039/d1ta04379j.
Full text