Academic literature on the topic 'Dualité de Verdier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dualité de Verdier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dualité de Verdier"
Fimmel', T. "Simplicial analogue of Verdier duality." Russian Mathematical Surveys 49, no. 2 (April 30, 1994): 155–56. http://dx.doi.org/10.1070/rm1994v049n02abeh002219.
Full textSchneider, Peter. "Verdier duality on the building." Journal für die reine und angewandte Mathematik (Crelles Journal) 1998, no. 494 (January 15, 1998): 205–18. http://dx.doi.org/10.1515/crll.1998.008.
Full textSpie�, Michael. "Artin-Verdier duality for arithmetic surfaces." Mathematische Annalen 305, no. 1 (May 1996): 705–92. http://dx.doi.org/10.1007/bf01444246.
Full textLazarev, A., and A. A. Voronov. "Graph homology: Koszul and Verdier duality." Advances in Mathematics 218, no. 6 (August 2008): 1878–94. http://dx.doi.org/10.1016/j.aim.2008.03.022.
Full textМанин, Юрий Иванович, and Yurii Ivanovich Manin. "Grothendieck - Verdier duality patterns in quantum algebra." Известия Российской академии наук. Серия математическая 81, no. 4 (2017): 158–66. http://dx.doi.org/10.4213/im8620.
Full textManin, Yu I. "Grothendieck-Verdier duality patterns in quantum algebra." Izvestiya: Mathematics 81, no. 4 (August 31, 2017): 818–26. http://dx.doi.org/10.1070/im8620.
Full textEdmundo, Mário, and Luca Prelli. "Poincaré - Verdier duality in o-minimal structures." Annales de l’institut Fourier 60, no. 4 (2010): 1259–88. http://dx.doi.org/10.5802/aif.2554.
Full textYanagawa, Kohji. "Stanley-Reisner rings, sheaves, and Poincaré-Verdier duality." Mathematical Research Letters 10, no. 5 (2003): 635–50. http://dx.doi.org/10.4310/mrl.2003.v10.n5.a7.
Full textJoshua, Roy. "Generalised Verdier duality for presheaves of spectra—I." Journal of Pure and Applied Algebra 70, no. 3 (March 1991): 273–89. http://dx.doi.org/10.1016/0022-4049(91)90074-c.
Full textYu, Hao. "The equivalence between Feynman transform and Verdier duality." Journal of Homotopy and Related Structures 16, no. 3 (July 23, 2021): 427–49. http://dx.doi.org/10.1007/s40062-021-00286-4.
Full textDissertations / Theses on the topic "Dualité de Verdier"
Ayoub, Joseph. "Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique." Paris 7, 2006. http://www.theses.fr/2006PA077069.
Full textThe goal of the thesis is to do for motives what was done for etale cohomology in SGA 4 and SGA 7. Unfortunately, this Project is extremely difficult and put of reach of actual techniques. This is due to the fact that the motives we are using lives in a trianqulated category rather than an abelian one. Nevertheless, we were able to obtain the motivic analogue of many results of SGA 4 and SGA 7. We have constructed the remaininq operations. We proved the base change theorems, the constructability and cohomological dimension theorems, We established Verdier duality. We computed the nearby cycles in the semi-stable reduction situation and proved the unipotence of the monodrorny operator. What we didn't do: Artin theorern on the cohomological dimension of an affine scheme the global theory of vanishing cycles, etc
Books on the topic "Dualité de Verdier"
Huybrechts, D. Derived Categories of Coherent Sheaves. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0003.
Full textCataldo, Mark Andrea de, Luca Migliorini Lectures 4–5, and Mark Andrea de Cataldo. The Hodge Theory of Maps. Edited by Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dũng Tráng. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0006.
Full textBook chapters on the topic "Dualité de Verdier"
Maxim, Laurenţiu G. "Poincaré–Verdier Duality." In Graduate Texts in Mathematics, 81–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27644-7_5.
Full textDimca, Alexandru. "Poincaré-Verdier Duality." In Sheaves in Topology, 59–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18868-8_3.
Full textKashiwara, Masaki, and Pierre Schapira. "Poincaré-Verdier duality and Fourier-Sato transformation." In Grundlehren der mathematischen Wissenschaften, 139–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02661-8_5.
Full text