Academic literature on the topic 'Dualité de Verdier'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dualité de Verdier.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dualité de Verdier"

1

Fimmel', T. "Simplicial analogue of Verdier duality." Russian Mathematical Surveys 49, no. 2 (April 30, 1994): 155–56. http://dx.doi.org/10.1070/rm1994v049n02abeh002219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schneider, Peter. "Verdier duality on the building." Journal für die reine und angewandte Mathematik (Crelles Journal) 1998, no. 494 (January 15, 1998): 205–18. http://dx.doi.org/10.1515/crll.1998.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spie�, Michael. "Artin-Verdier duality for arithmetic surfaces." Mathematische Annalen 305, no. 1 (May 1996): 705–92. http://dx.doi.org/10.1007/bf01444246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lazarev, A., and A. A. Voronov. "Graph homology: Koszul and Verdier duality." Advances in Mathematics 218, no. 6 (August 2008): 1878–94. http://dx.doi.org/10.1016/j.aim.2008.03.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Манин, Юрий Иванович, and Yurii Ivanovich Manin. "Grothendieck - Verdier duality patterns in quantum algebra." Известия Российской академии наук. Серия математическая 81, no. 4 (2017): 158–66. http://dx.doi.org/10.4213/im8620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manin, Yu I. "Grothendieck-Verdier duality patterns in quantum algebra." Izvestiya: Mathematics 81, no. 4 (August 31, 2017): 818–26. http://dx.doi.org/10.1070/im8620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Edmundo, Mário, and Luca Prelli. "Poincaré - Verdier duality in o-minimal structures." Annales de l’institut Fourier 60, no. 4 (2010): 1259–88. http://dx.doi.org/10.5802/aif.2554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yanagawa, Kohji. "Stanley-Reisner rings, sheaves, and Poincaré-Verdier duality." Mathematical Research Letters 10, no. 5 (2003): 635–50. http://dx.doi.org/10.4310/mrl.2003.v10.n5.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Joshua, Roy. "Generalised Verdier duality for presheaves of spectra—I." Journal of Pure and Applied Algebra 70, no. 3 (March 1991): 273–89. http://dx.doi.org/10.1016/0022-4049(91)90074-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Hao. "The equivalence between Feynman transform and Verdier duality." Journal of Homotopy and Related Structures 16, no. 3 (July 23, 2021): 427–49. http://dx.doi.org/10.1007/s40062-021-00286-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dualité de Verdier"

1

Ayoub, Joseph. "Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique." Paris 7, 2006. http://www.theses.fr/2006PA077069.

Full text
Abstract:
Le but de la thèse est de reprendre pour les motifs ce qui a été fait pour la cohomologie étale dans les SGA 4 et SGA 7. Malheureusement, ce projet est extrêmement difficile et hors de portée des techniques actuelles. Ceci est dû au fait que les motifs utilisés sont considérés dans un cadre triangulé et pas abélien. Toutefois, nous avons obtenu l'analogue rnotivique de beaucoup de résultats de SGA 4 et SGA 7. Nous avons construit les opérations qui manquaient. Nous avons prouvé les théorèmes de changements de base, les théorèmes de constructibilité et de dimension cohomotogigue. Nous avons établi la dualité de Verdier. Nous avons calculé les cycles proches dans le cas de réduction semi-stable et montré l'unipotence de l'opérateur de monodromie. Ce que nous n'avons pas fait: c'est le théorème d'Artin sur la dimension cohomoloqique d'un schéma affine, ia théorie globale des cycles évanescents. Etc
The goal of the thesis is to do for motives what was done for etale cohomology in SGA 4 and SGA 7. Unfortunately, this Project is extremely difficult and put of reach of actual techniques. This is due to the fact that the motives we are using lives in a trianqulated category rather than an abelian one. Nevertheless, we were able to obtain the motivic analogue of many results of SGA 4 and SGA 7. We have constructed the remaininq operations. We proved the base change theorems, the constructability and cohomological dimension theorems, We established Verdier duality. We computed the nearby cycles in the semi-stable reduction situation and proved the unipotence of the monodrorny operator. What we didn't do: Artin theorern on the cohomological dimension of an affine scheme the global theory of vanishing cycles, etc
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Dualité de Verdier"

1

Huybrechts, D. Derived Categories of Coherent Sheaves. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0003.

Full text
Abstract:
The discussion of the previous chapter is applied to the derived category of the abelian category of coherent sheaves. The Serre functor is introduced, and particular spanning classes are constructed. The usual geometric functors, direct and inverse image, tensor product, and global sections, are derived and extended to functors between derived categories. The compatibilities between them are reviewed. The final section focuses on the Grothendieck-Verdier duality.
APA, Harvard, Vancouver, ISO, and other styles
2

Cataldo, Mark Andrea de, Luca Migliorini Lectures 4–5, and Mark Andrea de Cataldo. The Hodge Theory of Maps. Edited by Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dũng Tráng. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0006.

Full text
Abstract:
This chapter showcases two further lectures on the Hodge theory of maps, and they are mostly composed of exercises. The first lecture details a minimalist approach to sheaf cohomology, and then turns to the intersection cohomology complex, which is limited to the definition and calculation of the intersection complex Isubscript X of a variety of dimension d with one isolated singularity. Finally, this lecture discusses the Verdier duality. The second lecture sets out the Decomposition theorem, which is the deepest known fact concerning the homology of algebraic varieties. It then considers the relative hard Lefschetz and the hard Lefschetz for intersection cohomology groups.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dualité de Verdier"

1

Maxim, Laurenţiu G. "Poincaré–Verdier Duality." In Graduate Texts in Mathematics, 81–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27644-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dimca, Alexandru. "Poincaré-Verdier Duality." In Sheaves in Topology, 59–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18868-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kashiwara, Masaki, and Pierre Schapira. "Poincaré-Verdier duality and Fourier-Sato transformation." In Grundlehren der mathematischen Wissenschaften, 139–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02661-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography