To see the other types of publications on this topic, follow the link: Duplex stainless steels (DSS).

Dissertations / Theses on the topic 'Duplex stainless steels (DSS)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Duplex stainless steels (DSS).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Arikan, Mehmet Emin. "Determination Of Susceptibility To Intergranular Corrosion Of Uns 31803 Type Duplex Stainless Steel By Electrochemical Reactivation Technique." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609886/index.pdf.

Full text
Abstract:
In the present work the effect of isothermal ageing treatment on the microstructure and on the localized corrosion resistance of a duplex stainless steel (DSS) was investigated. Specimens taken from a hot rolled cylindrical duplex stainless bar with 22% Cr grade were solution annealed at 1050°
C and then sensitization heat treatments were conducted at 650, 725 and 800°
C with duration ranging from 100 to 31622 min. The microstructural changes were examined by the light optical microscopy (LOM) and scanning electron microscopy (SEM). XRD technique and EDS analysis were used for microstructural evolution. Double Loop Electrochemical Potentiodynamic Reactivation (DLEPR) and standard weight loss immersion acid tests were performed in order to determine the degree of sensitization (DOS) to intergranular corrosion. The surfaces remained after the DLEPR test and the weight loss immersion test were also examined to observe the attack locations and their relationship with the chromium depleted zones. The degree of sensitization is measured by determining the ratio of the maximum current generated by the reactivation (reverse) scan to that of the anodic (forward) scan, (Ir/Ia) x 100. Ir is very small (less than 10-5 A/cm2) for solution annealed samples at 1050°
C for 1 hr and those aged at 650°
C for 100 and 316 min after the solution heat treatment, with the Ir/Ia ratios of 0.027634%, 0.033428% and 0.058928% respectively. Hence these samples were considered as unsensitized and their microstructure was composed of primary ferrite and austenite. However, Ir increased to values as high as 10-2 A/cm2 and even approached Ia for all samples aged for other temperatures and times, associated with high Ir/Ia ratios. The increased degree of sensitization can be attributed to stronger effect of chromium and molybdenum depleted areas. The microstructure was composed of primary ferrite and austenite including also sigma phase and the secondary austenite that would be responsible for the localized chromium impoverishment. The time required for sensitization was shorter in samples aged at higher temperatures. Accordingly ageing times of 1000 min at 725°
C and of 316 min at 800°
C were sufficient, whereas times longer than 10000 min was needed to achieve a sensitized structure at 650°
C.
APA, Harvard, Vancouver, ISO, and other styles
2

Giard, Baptiste, and Sofia Karlsson. "Machine learning for the prediction of duplex stainless steel mechanical properties : Hardness evolution under low temperature aging." Thesis, KTH, Materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298415.

Full text
Abstract:
Duplex stainless steels, DSS are stainless steels that consist of the two phases austenite and ferrite.  The DSS have superb properties and are widely used in industries such as nuclear power and in pressure vessels, pipes and in pipelines.  The use of DSS are limited due to embrittlement which occurs at temperatures from 250 to 550 oC. This imposes a general limited service temperature of 250 oC. The mechanism mainly responsible for the embrittlement is a phase separation occurring in the ferrite phase. Furthermore, there is a direct link between the phase separation and the mechanical properties:  the ferrite hardness increases whereas the toughness decreases under low temperature aging.  In this thesis, the low-temperature embrittlement of duplex stainless  steels  was  studied  through  machine learning  modelling  and  experimental hardness-  and  microscopy measurements.   The  resulting  model  describes  the  data with an accuracy, R-squared = 0.94.  In combination with the experimental results, nickel  was identified  as  an  important  parameter  for  the  hardness  evolution.   This work aims to provide a fundamental study for understanding the importance of alloying elements on the phase separation in DSS, and provides a new methodology via a combination of machine learning and key experiments for the material design.
Duplexa rostfria stål är rostfria stål som består av de båda faserna ferrit och austenit. De har extraordinära egenskaper och används brett inom industrin, t ex. i kärnkraftverk och  i  tryckkärl  och  pipelines.  Användningen av  duplexa  rostfria stål  är  begränsad p.g.a.  försprödning som uppstår i legeringarna vid temperaturer mellan 250-550 oC, vilket  medför  att  den  tillåtna  temperaturen  vid  användning  begränsas  till  under 250 oC.  Den  främsta  orsaken  till  försprödningen  är  en  fasseparation  i  den  ferrita fasen under åldring vid låg temperatur.  Vidare leder fasseparationen till mekaniska förändringar i ferritfasen: hårdheten  ökar  medan  segheten  minskar.   I  den här  rapporten  undersöks försprödningen  av  duplexa  rostfria  stål  vid  åldring  med hjälp av datormodellering med maskininlärning samt av experimentella hårdhets- och mikroskopiska  mätningar.   Modellen  hade  en  noggrannhet  (determinationsko- efficienten,  R2)  på  0.94.   Resultatet  från  modellen  visade  tillsammans  med de  experimentella  resultaten  att  nickel  är  ett  legeringsämne  som  har  stor betydelse  för hårdhetsökningen.  Detta  arbete  syftar  till  att  utgöra  en grundläggande  studie  för att förstå påverkan från olika legeringsämnen på fasseparationer i DSS, och bidrar med en ny metodik för materialdesign som kombinerar maskininlärning och utvaldaexperiment.
EIT RawMaterial Project ENDUREIT
APA, Harvard, Vancouver, ISO, and other styles
3

Baumhauer, Christophe. "Influence du niobium sur la microstructure et les propriétés d'usage des aciers inoxydables austéno-ferritiques (duplex)." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENI087/document.

Full text
Abstract:
Les aciers inoxydables sont employés dans des secteurs d’activitéspour lesquels les caractéristiques mécaniques et la résistance à lacorrosion sont primordiaux. Les nuances austéno-ferritiques sansmolybdène (lean-duplex), ont une résistance à la corrosion et despropriétés mécaniques supérieures aux aciers inoxydables austénitiques.Cependant, leur usinabilité est inférieure à celle de leur homologueausténitique. Pour améliorer cette propriété des éléments peuvent êtreajoutés dans les nuances, tel que le niobium. L’objectif de cette étude estd’améliorer l’usinabilité des lean-duplex sans dégrader les autrespropriétés. Différentes teneurs en niobium ont été ajoutées dans un1.4362 pour comprendre comment cet élément affecte la microstructure,la résilience, et la résistance à la corrosion par piqûres. Ces résultatsvont permettre de définir une teneur en niobium optimale. Pour finir, desessais d’usinabilité et de résilience ont été effectués sur des couléesindustrielles de 1.4362 avec et sans niobium après divers traitementsthermiques pour comprendre l’influence d’un ajout de niobium sur cesdeux propriétés
Stainless steels are used in some industries requiring mechanicalproperties and corrosion resistance. Lean duplex have higher corrosionresistance and mechanical properties than the austenitic stainless steels.However, their machinability is below that of the corresponding austeniticstainless steels. To improve it, some elements can be added in thegrade, like niobium. The aim of this study is to increase machinability oflean duplex grades without degrading their other properties. Differentcontents of niobium were tested in a 1.4362 to understand how thiselement affects the microstructure, the toughness and the pittingcorrosion resistance. With these results optimum niobium content isdefined. Turning and toughness experiments were done on industrial1.4362 grades with and without niobium and with different heatstreatments in order to understand how niobium can influence theseproperties
APA, Harvard, Vancouver, ISO, and other styles
4

Garfias-Mesias, Luis Francisco. "Pitting corrosion of duplex stainless steels." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, Guilhem. "Hot workability of duplex stainless steels." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00721764.

Full text
Abstract:
Les aciers inoxydables austéno-ferritiques présentent une microstructure biphasée dans laquelle se mêlent austénite et ferrite. Leurs caractéristiques mécaniques élevées ainsi que leur bonne tenue en corrosion en font un candidat sérieux pour remplacer les aciers inoxydables austénitiques. Malheureusement, la faible forgeabilité de ces alliages rend la fabrication de tôles particulièrement critique. En effet, le phénomène de " crique de rive " est fréquemment rencontré au cours des étapes du laminage à chaud. Par conséquent, cela nécessite des opérations supplémentaires comme le découpage des rives, ce qui aboutit à une augmentation des coûts de production. Les différents facteurs influençant la ductilité à chaud de ces aciers sont passés en revue afin d'identifier quels sont les zones d'ombres. La synthèse bibliographique révèle deux zones d'ombres : d'une part, le manque d'un essai de ductilité à chaud permettant de discriminer différentes microstructures en terme de résistance à la propagation de fissure à haute température ; et d'autre part l'absence de données quantitative concernant la partition de la déformation entre la ferrite et l'austénite lors des étapes de mise en forme à chaud. Le concept de travail essentiel de rupture a été appliqué à hautes températures. Il a été démontré que cette méthode est fiable et discriminante pour quantifier la résistance à la propagation de fissure à haute température. Elle permet également de générer un paramètre physique pertinent pour optimiser les microstructures par rapport à un mode de mise en forme donné. La technique conventionnelle de micro-grilles a été adaptée de manière à cartographier à haute température les déformations à l'échelle de la microstructure. Cette technique fournit en plus des résultats qualitatifs concernant les mécanismes de déformations, des données quantitatives à propos de la partition de la déformation entre la ferrite et l'austénite. Ces données peuvent être utilisées afin de valider les modèles qui prédisent le comportement à chaud des aciers duplex pendant les premières étapes du laminage à chaud. Les deux outils developpés au cours de cette étude permettent de donner des solutions pour éviter le phénomène de " crique de rives ".
APA, Harvard, Vancouver, ISO, and other styles
6

Soylu, B. "Phase tranformations in duplex stainless steels." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharafi, Shahriar. "Microstructure of super-duplex stainless steels." Thesis, University of Cambridge, 1993. https://www.repository.cam.ac.uk/handle/1810/221879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lechartier, Audrey. "Influence de la transformation martensitique induite par la déformation sur le comportement mécanique d’aciers inoxydables duplex." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI107/document.

Full text
Abstract:
Les aciers inoxydables duplex présentent une combinaison intéressante entre des propriétés mécaniques élevées, une faible conductivité thermique et un coût relativement faible. Ils sont couramment employés dans le domaine du bâtiment comme rond à béton, application qui requière notamment une résistance élevée (Rm > 950 MPa) et une ductilité importante (A% > 15). Cette thèse a pour objectif d’améliorer le compromis résistance / allongement, en développant de nouvelles nuances duplex présentant une transformation martensitique induite par la plasticité (effet TRIP) aux caractéristiques contrôlées. L’optimisation de ce compromis a nécessité en particulier une compréhension détaillée des mécanismes de transformation et de déformation plastique associés à chaque phase : la ferrite (BCC), l’austénite (FCC) et la martensite (BCC).L’influence de la transformation martensitique sur le comportement mécanique est étudiée pour quatre alliages duplex de stabilité variable de la phase austénitique en fonction de leur composition chimique. L’influence d’une microstructure multiphasée sur la cinétique de transformation est déterminée grâce à l’élaboration de trois nuances modèles représentant respectivement une nuance duplex et es deux compositions représentatives de ses constituants austénite et ferrite. L’utilisation de plusieurs techniques de caractérisation à différentes échelles a permis de décrire à la fois les mécanismes de transformation de phase et leur cinétique en fonction de la déformation, donnant ainsi accès à leur influence sur le comportement mécanique. L’étude des champs cinématiques a mis en évidence l’impact de la phase martensitique sur la répartition des déformations dans la microstructure multi-phasée. Finalement l’utilisation d’un modèle mécanique prenant en compte explicitement la transformation martensitique a permis de reproduire le comportement mécanique d’un alliage duplex
Duplex stainless steels offer an attractive combination of high mechanical properties, low thermalconductivity and a relatively low cost. They are increasingly used as structural materials such as inthe construction sector as concrete reinforcement bars, where both high strength (Rm > 900 MPa)and high elongation to failure (A% > 15 %) are required. This thesis aims at improving the strength/ elongation compromise by developing new duplex stainless steel compositions experiencing a wellcontrolledmartensitic transformation induced by plasticity (TRIP effect). The optimisation of thiscompromise has required a good understanding of the transformation mechanisms and of plasticdeformation associated with each phase : ferrite (BCC), austenite (FCC) and martensite (BCC).The influence of martensitic transformation on mechanical behavior has been studied in four duplexgrades of variable austenite stability as a function of their chemical composition. The influence ofmultiphase microstructure on martensitic transformation kinetics has been determined by makingthree alloys respectively representative of a duplex grade and its two constituents (austenite andferrite). Using multiple characterization techniques at different scales has allowed determiningboth the transformation mechanisms and its kinetics as a function of strain, giving thus accessto the influence of transformation on the mechanical behavior. The study of kinematic fields hashighlighted the impact of the martensitic phase on the distribution of deformations. Finally, theuse of a mechanical model taking explicitly into account the phase transformation has allowed theduplication of the mechanical behavior of a duplex stainless steel
APA, Harvard, Vancouver, ISO, and other styles
9

Sieurin, Henrik. "Fracture toughness properties of duplex stainless steels." Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mohammed, Farej Ahmed. "Stress corrosion cracking in duplex stainless steels." Thesis, University of Manchester, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Yoon-Jun. "Phase Transformations in Cast Duplex Stainless Steels." Ames, Iowa : Oak Ridge, Tenn. : Ames Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/837274-V0QAJQ/webviewable/.

Full text
Abstract:
Thesis (Ph.D.); Submitted to Iowa State Univ., Ames, IA (US); 19 Dec 2004.
Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2322" Yoon-Jun Kim. US Department of Energy 12/19/2004. Report is also available in paper and microfiche from NTIS.
APA, Harvard, Vancouver, ISO, and other styles
12

Alsarraf, Jalal. "Hydrogen embrittlement susceptibility of super duplex stainless steels." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/4562.

Full text
Abstract:
This thesis describes the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex stainless steels and presents a model to predict the rate at which embrittlement occurs. Super duplex stainless steel has an austenite and ferrite microstructure with an average fraction of each phase of approximately 50%. An investigation was carried out on the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex stainless steels. Tensile specimens of super duplex stainless steel were pre-charged with hydrogen for two weeks in 3.5% NaCl solution at 50º C at a range of applied potentials to simulate the conditions that exist when subsea oilfield components are cathodically protected in seawater. The pre-charged specimens were then tested in a slow strain rate tensile test and their susceptibility to hydrogen embrittlement was assessed by the failure time, reduction in cross-sectional area and examination of the fracture surface. The ferrite and austenite in the duplex microstructures were identified by analysing their Cr, Ni, Mo and N contents in an electron microscope, as these elements partition in different concentrations in the two phases. It was shown that hydrogen embrittlement occurred in the ferrite phase, whereas the austenite failed in a ductile manner. An embrittled region existed around the circumference of each fracture surface and the depth of this embrittlement depended on the hydrogen charging time and the potential at which the charging had been carried out. The depth of embrittlement was shown to correlate with the rate of hydrogen diffusion in the alloy, which was measured electrochemically using hydrogen permeation and galvanostatic methods. A two-dimensional diffusion model was used to calculate the hydrogen distribution profiles for each experimental condition and the model could be employed to provide predictions of expected failure times in stressed engineering components.
APA, Harvard, Vancouver, ISO, and other styles
13

Cohen, Laura Jane Rachel. "Some effects of hydrogen on duplex stainless steels." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Moverare, Johan J. "Microstresses and anisotropic mechanical behaviour of duplex stainless steels /." Linköping : Univ, 2001. http://www.bibl.liu.se/liupubl/disp/disp2001/tek699s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Salinas-Bravo, Victor Manuel. "Pitting and stress corrosion cracking of duplex stainless steels." Thesis, University of Manchester, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jepson, Mark A. E. "Oxidation of austenitic and duplex stainless steels during primary processing." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mayaki, Muyiwa Christopher. "Aspects of fatigue crack propagation behaviour of duplex stainless steels." Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bhattacharya, Ananya. "Stress corrosion cracking of duplex stainless steels in caustic solutions." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26491.

Full text
Abstract:
Thesis (Ph.D)--Materials Science and Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Singh, Preet M.; Committee Member: Carter, W. Brent; Committee Member: Gokhale, Arun, M.; Committee Member: Neu, Richard; Committee Member: Sanders, Thomas H., Jr.. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
19

Liang, Xingzhong. "Microstructure evolution and hydrogen embrittlement in super duplex stainless steels." Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/42527.

Full text
Abstract:
Super duplex stainless steel has a wide range of applications in chemical transport and processing facilities, especially in subsea oil and gas pipelines. A desirable combination of corrosion resistance and mechanical properties can be delivered by a balanced duplex microstructure. However, the microstructure of steel can be altered during processing, which can result in degradation of mechanical properties and corrosion resistance. In offshore environment, cathodic protection is widely used to improve corrosion resistance of gas and oil transportation pipelines. However, the application of cathodic protection can trigger the evolution of atomic hydrogen, which can adversely affect the macroscopic mechanical properties. Solute hydrogen induces premature failure, which is known as hydrogen embrittlement. In this project, microstructure evolution in super duplex stainless steel was first investigated. A new Cr2N precipitation mechanism has been proposed that a nano size lamellar M23C6 facilitates Cr2N rods precipitation in super duplex stainless steel. To study Cr2N precipitates in super duplex stainless steel weldment, transmission Kikuchi diffraction (TKD) was used to measure the geometrically necessary dislocation distribution (GND) around Cr2N. The TKD-GND results suggest a high GND density can be measured in nano-sized regions adjacent to Cr2N. The effect of hydrogen charging on dislocation multiplication in super duplex stainless steel was investigated and it is found that dislocation density multiplies by about one order of magnitude in steels with under 5% pre-strain, but dislocation density remains the same in steel with pre-strain at 10% and above. EBSD was used to study the effect of hydrogen on crack propagation. Hydrogen assists crack propagation through ferrite but can be trapped by both ferrite and austenite. It is found that austenite traps cracks by emitting dislocations or forming secondary grain boundaries ahead of crack tips, while in ferrite grains, the grain boundaries can impede crack propagation. The above findings provide new insight into microstructure evolution and hydrogen induced failure in super duplex stainless steel.
APA, Harvard, Vancouver, ISO, and other styles
20

Masters, G. L. "Crevice corrosion of austenitic and duplex stainless steels in seawater." Thesis, Cranfield University, 1994. http://dspace.lib.cranfield.ac.uk/handle/1826/11288.

Full text
Abstract:
Duplex stainless steels are finding increasing use in seawater applications, but are prone to attack by crevice corrosion. A mechanism of deaeration and acidification is thought to produce locally aggressive conditions within the crevice. A variety of experimental techniques were therefore used to investigate the crevice corrosion resistance of some commercial duplex stainless steels in seawater and other, more aggressive Cr-containing environments. The established marine grade 316L austenitic stainless steel was used for reference purposes. The investigations provided both quantitative data regarding alloy performance, and qualitative observations regarding the attack mechanism. The crevice corrosion resistance of the duplex stainless steels was shown to be superior to that of 316L, and to increase with (Cr + N) content. Electrochemical polarisation scans demonstrated the importance of dissolved 02 in the seawater in maintaining a protective passive film on these alloys. Active peak current density, a measure of the severity of attack, was shown to increase with decreasing pH. In a simulated crevice solution, the duplex alloys were shown to exhibit both a narrower active range and lower peak current density than 316L. Potentiostatic tests showed weight loss to be an order of magnitude lower for the duplex alloys. Measured weight losses were in agreement with those predicted from polarisation data. The technique suggested that cathodic protection potentials as noble as -600 mV (SCE) may be sufficient to protect duplex stainless steels in seawater. Metallographic observation and electron beam analysis showed that the attack mode is potential dependent, with ferrite and austenite preferentially attacked at more active and noble potentials respectively. Real time tests showed that the internal crevice pH of austenitic stainless steel could fall to as low as 1.3. The rise in corrosion current was found to be a reliable indicator of attack, and was consistent with measured weight loss. Potential shifts were found to be relatively insensitive indicators of breakdown.
APA, Harvard, Vancouver, ISO, and other styles
21

Pilhagen, Johan. "The fracture mechanisms in duplex stainless steels at sub-zero temperatures." Doctoral thesis, KTH, Materialteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133677.

Full text
Abstract:
The aim of the thesis was to study the susceptibility for brittle failures and the fracture process of duplex stainless steels at sub-zero temperatures (°C). In the first part of the thesis plates of hot-rolled duplex stainless steel with various thicknesses were used to study the influence of delamination (also known as splits) on the fracture toughness. The methods used were impact and fracture toughness testing. Light optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture surfaces. It was concluded that the delaminations caused a loss of constraint along the crack front which resulted in a stable fracture process despite the presence of cleavage cracks. These delaminations occurred when cleavage cracks are constrained by the elongated austenite lamellae. The pop-in phenomenon which is frequently observed in duplex stainless steels during fracture toughness testing was shown to occur due to these delaminations. The susceptibility for pop-in behaviour during testing increased with decreasing plate thickness. The toughness anisotropy was also explained by the delamination phenomenon.In the second part of the thesis duplex stainless steel weld metals from lean duplex and super duplex were investigated. For the lean duplex weldments with different nickel contents, tensile, impact and fracture toughness testing were conducted from room temperature to sub-zero temperatures. The result showed that increased nickel content decreased the susceptibility for critical cleavage initiation at sub-zero temperatures. The super duplex stainless steel weldment was post weld heat treated. The fracture sequence at low temperature was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture. Energy-dispersive X-ray spectroscopy investigation of the weld metals showed that substitutional element partitioning is small in the weld metal. However, for the post weld heat treated weldments element partitioning occurred which resulted in decreased nickel content in the ferrite.

QC 20131108

APA, Harvard, Vancouver, ISO, and other styles
22

Smuk, Olena. "Microstructure and properties of modern P/M super duplex stainless steels." Doctoral thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tofique, Muhammad Waqas. "Very high cycle fatigue of duplex stainless steels and stress intensity calculations." Licentiate thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-34591.

Full text
Abstract:
Very high cycle fatigue (VHCF) is generally considered as the domain of fatigue lifetime beyond 10 million (107) load cycles. Few examples of structural components which are subjected to 107-109 load cycles during their service life are engine parts, turbine disks, railway axles and load-carrying parts of automobiles. Therefore, the safe and reliable operation of these components depends on the knowledge of their fatigue strength and the prevalent damage/failure mechanisms. Moreover, the fatigue life of materials in the VHCF regime is controlled by the fatigue crack initiation and early growth stage of short cracks. This study was focussed on the evaluation of fatigue properties of duplex stainless steels in the VHCF regime using the ultrasonic fatigue testing equipment. The ultrasonic fatigue tests were conducted on the cold rolled duplex stainless strip steel and hot rolled duplex stainless steel grades. Two different geometries of ultrasonic fatigue test specimens were tested. Considerable attention was devoted to the evaluation of fatigue crack initiation and growth mechanisms using the high resolution scanning electron microscopy. The fatigue crack initiation was found to be surface initiated phenomena in all the tested grades, albeit different in each case. The second part of this thesis work was the development of a distributed dislocation dipole technique for the analysis of multiple straight, kinked and branched cracks in an elastic half plane. Cracks with dimensions much smaller than the overall size of the domain were considered. The main goal of the development of this technique was the evaluation of stress intensity factor at each crack tip. The comparison of results from the stress intensity factor evaluation by the developed procedure and the well-established Finite Element Method software ABAQUS showed difference of less than 1% for Jacobi polynomial expansion of sixth order in the dipole density representation.

Article III was still in manuscript form at the time of the defense.


Very high cycle fatigue of stainless steels
APA, Harvard, Vancouver, ISO, and other styles
24

Kömi, J. (Jukka). "Hot ductility of austenitic and duplex stainless steels under hot rolling conditions." Doctoral thesis, University of Oulu, 2001. http://urn.fi/urn:isbn:9514265602.

Full text
Abstract:
Abstract The effects of restoration and certain elements, nitrogen, sulphur, calcium and Misch metal, on the hot ductility of austenitic, high-alloyed austenitic and duplex stainless steels have been investigated by means of hot rolling, hot tensile, hot bending and stress relaxation tests. The results of these different testing methods indicated that hot rolling experiments using stepped specimens is the most effective way to investigate the relationship between the softening and cracking phenomena under hot rolling conditions. For as-cast, high-alloyed and duplex stainless steels with a low impurity level, the cracking tendency was observed to increase with increasing pass strain and temperature, being minimal for the small strain of 0.1. No cracking occurred in these steels when rolled in the wrought condition. It could be concluded that the cracking problems are only exhibited by the cast structure with the hot ductility of even partially recrystallised steel being perfectly adequate. However, the recrystallisation kinetics of the high-alloyed austenitic stainless steels, determined by stress relaxation and double-pass rolling tests, were found to be so slow that only partial softening can be expected to occur between roughing passes under normal rolling conditions. In the duplex steel, the restoration is fairly fast so that complete softening can occur within typical interpass times in hot rolling, while certain changes in the phase structure take place as well. Sulphur was found to be an extremely harmful element in duplex stainless steel with regard to their hot ductility so that severe cracking can take place with sulphur content above 30 ppm. However, the effect of sulphur can be eliminated by reducing its content and by calcium or Misch metal treatments that significantly increase the number and decrease the average size of the inclusions. It seems that the desulphurisation capacity of an element is the most important property for assessing its usefulness in reducing the detrimental influence of sulphur. The hot ductility of type 316L stainless steel determined by tensile tests was found to be better for nitrogen content of 0.05 wt-% than 0.02%, while in double-hit tensile tests the hot ductility values were identical. The mechanism whereby nitrogen affects hot ductility remains unclear but a retarding effect on static recrystallisation was observed.
APA, Harvard, Vancouver, ISO, and other styles
25

Sriram, Rajagopal. "Corrosion fatigue and pitting behaviour of duplex stainless steels in chloride solutions." Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/29295.

Full text
Abstract:
The pitting and corrosion fatigue (CF) behaviour of two commercial duplex stainless steels (SS), one cast and other wrought, were studied in chloride solutions. One solution was a simple chloride (1M NaCl) and the other was a synthetic white water containing a lower concentration of chloride, together with oxidized sulphur species (thiosulphate). Differences in composition between the ferrite and austenite phases were determined by micro-analytical techniques. The pitting studies showed that the pitting potentials and the preferential pitting of the ferrite or austenite phases were dependent upon partitioning of the elements Cr,Mo and N between the two phases. Alloying considerations leading to improved pitting resistance were discussed and it was concluded that the beneficial effects of alloyed nitrogen were due to surface enrichment of N atoms. Potentiostatically controlled CF tests were combined with studies of repassivation kinetics to determine the mechanism of CF crack propagation. The crack tip chemistry was maintained under well characterized conditions by using high frequency fatigue testing to produce good mixing between the crack solution and bulk solution. Supplementary experiments confirmed that such mixing was achieved. Near-threshold CF propagation rates were studied with compact tension specimens as a function of cyclic stress intensity, ΔK, and electrochemical potential. The propagation of cracks was measured by optical microscopy and a back face strain gauge. Repassivation kinetics were studied as a function of potential by using potentiostatically controlled rapid scratch tests and monitoring anodic current transients with a fast response oscilloscope. The experiments showed that near-threshold fatigue crack propagation (FCP) rates in 1M NaCl were influenced by the applied potential. The FCP rates were faster at very cathodic potentials (-1.2Vsce) and very anodic potentials (+0.3 Vsce). At intermediate potentials (-0.4 Vsce) crack propagation rates were slower. However, there was little effect of potential on FCP in synthetic white water. The rapid scratch tests showed that the anodic potential where the fastest FCP rates were observed coincided with the potential at which the peak transient current density was highest and the repassivation rate was most rapid. Fractographic observations showed that at potentials where hydrogen evolution was not possible, the fracture surface features were independent of potential. At cathodic potentials where hydrogen evolution was possible, more interfacial fracture regions were seen. Cracking was completely transgranular at anodic potentials and opposing fracture surfaces contained fine scale (~2000A) interlocking ridges. It was concluded that FCP at anodic potentials was consistent with a restricted slip reversibility (RSR) model of cracking, where potential affects the rate of oxidation of freshly exposed surface which, in turn, controls the degree of slip reversibility at the crack tip. At cathodic potentials, where hydrogen is evolved during fatigue, it was concluded that hydrogen transport and embrittlement processes can increase the rate of fatigue crack propagation.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
26

Martins, Alessandra Souza. "Estudo comparativo da resistÃncia à corrosÃo dos aÃos inoxidÃveis super duplex ASTM A890 / A890M grau 5A e 6A." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12591.

Full text
Abstract:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
Uma liga metÃlica que vem apresentando um desempenho satisfatÃrio em ambientes de maior agressividade à o aÃo inoxidÃvel super duplex. Esse tipo de aÃo possui boas propriedades de resistÃncia mecÃnica, resistÃncia à corrosÃo e tenacidade ao impacto. Mesmo apresentando desempenho satisfatÃrio, esses aÃos podem apresentar problemas de corrosÃo quando sofrem algum tratamento tÃrmico devido à precipitaÃÃo de uma fase deletÃria chamada de alfa linha (â), a qual precipita em temperaturas entre 300 ⁰C e 550 ⁰C e pode ocasionar uma diminuiÃÃo da resistÃncia à corrosÃo e tenacidade do material. Portanto, o objetivo deste trabalho à avaliar a resistÃncia à corrosÃo dos aÃos inoxidÃveis super duplex fundidos de grau 5A e 6A apÃs sofrerem tratamento tÃrmico a 475 ⁰C. O grau 6A se difere do 5A pela presenÃa de cobre e tungstÃnio na sua composiÃÃo quÃmica. A resistÃncia à corrosÃo dos corpos de prova foi avaliada por meio das seguintes tÃcnicas eletroquÃmicas: monitoramento do potencial de circuito aberto, polarizaÃÃo anÃdica, polarizaÃÃo cÃclica, espectroscopia de impedÃncia eletroquÃmica e temperatura crÃtica de pite. Foi realizada a caraterizaÃÃo microestrutural dos materiais, onde foi possÃvel observar sua estrutura bifÃsica composta por uma matriz ferrÃtica e ilhas de austenita em proporÃÃes coerentes. O ensaio de dureza Brinell mostrou que a dureza aumenta nas primeiras horas de tratamento tÃrmico e, depois, hà uma diminuiÃÃo nessa taxa de aumento da dureza. Os resultados eletroquÃmicos indicaram que, para os dois tipos de aÃo estudados, as amostras com 10 horas de tratamento tÃrmico apresentaram uma maior resistÃncia à corrosÃo.
APA, Harvard, Vancouver, ISO, and other styles
27

LUENGAS, LILIA OLAYA. "PHYSICAL SIMULATION AND CHARACTERIZATION OF HEAT AFFECTED ZONE (HAZ) IN DUPLEX STAINLESS STEELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32940@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE DOUTORADO SANDUÍCHE NO EXTERIOR
Os aços inoxidáveis duplex (AID) possuem uma estrutura mista de Delta-ferrita e Gamma-austenita em frações de volume aproximadamente iguais e combinam muitas das propriedades benéficas das duas fases, a ferrita fornece alta resistência mecânica e resistência à corrosão, enquanto que a austenita aumenta a ductilidade e a resistência à corrosão uniforme. Uma vantagem dos AID é a resistência à trincas de solidificação, que está associado à soldagem. Pela combinação de propriedades, esses aços são amplamente utilizados na indústria de equipamentos químicos, petróleo e gás, plantas de dessalinização, controle de poluição, usinas elétricas e, mais recentemente, em aplicações off-shore como na extração de petróleo em águas profundas. No entanto, a exposição destes aços a temperaturas elevadas entre 600 graus celsius e 1000 graus celsius, que ocorre durante a soldagem por fusão resulta na precipitação de diferentes compostos, sendo os mais frequentemente encontrados a fase sigma, a fase x, os nitretos de cromo e os carbonetos que reduzem tanto a resistência mecânica quanto a resistência a corrosão. Este trabalho teve como objetivo simular fisicamente as microestruturas da zona termicamente afetada (ZTA) dos AIDs UNS S32304, S32205 e S32750. De modo a obter diferentes ZTAs foi utilizado o simulador termo-mecânico Gleeble, por meio deste simulador foram aplicados vários aportes de calor que permitiram avaliar a evolução microestrutural e as propriedades mecânicas destas zonas. As temperaturas utilizadas nas simulações físicas foram determinadas por meio do software Thermo-Calc assegurando assim as faixas de transformações microestruturais. A temperatura de pico utilizada foi de 1350 graus celsius por 2 segundos; seguida de resfriamento em acordo com o modelo Rykalin-2D, onde um grupo de amostras sofreu resfriamento até alcançar a temperatura de 500 graus celsius seguido de uma têmpera em água e um outro grupo até 250 graus celsius seguido de uma têmpera. Este procedimento foi adotado de modo a identificar a influência dos aportes de calor e as taxas de resfriamento na frações volumétricas das fases obtidas. Foi observado um aumento da fração volumétrica da austenita, assim como um aumento do tamanho de grão da ferrita e um crescimento nos grãos da austenita, em função do aumento do aporte de calor durante as simulações físicas das ZTAs. Estas variações microestruturais ocasionaram o decréscimo da resistência mecânica nos três AID avaliados quando comparados ao respectivo metal de base.
The duplex stainless steels (DSS) have a structure that consist of approximately equivalent amounts of delta-austenita and gamma-ferrite, exhibit excellent properties combinations of both phases. DSS combine the high strength and resistance to stress corrosion cracking come from ferrite, whereas the austenite phase influences ductility and uniform corrosion resistance. The advantage of DSS is solidification cracking resistance; it is associated to welding processes. The application of DSS have being increasingly used as structural material in various industrial sectors, such as chemical, petrochemical, pulp and paper, power generation, desalination, oil and gas, for the constructions in marine and chemical industries and most recently for manufacturing components used in off-shore oil platforms for oil extraction in deep water. However, the exposure of these steels to high temperatures between 600 celsius degrees and 1000 celsius degrees, which occurs during fusion welding results in different compounds precipitation, the most frequently encountered being the sigma phase, the X phase, the chromium nitrides and carbides which reduce both mechanical strength and corrosion resistance. The aim of this work was to simulate physically the Heat Affected Zone (HAZ) microstructures in DSS UNS S32304, S32205 and S32750. In order to obtain different HAZ the Gleeble system was used. Several heat inputs were applied through this simulator, which allowed evaluate the microstructural evolution and the mechanical properties of these zones. The temperatures used in physical simulations were determined by Thermo-Calc Software, this supplied the microstructural transformations temperature ranges. The peak temperature used was 1350 celsius degrees for 2 seconds; followed by cooling in accordance with the Rykalin-2D model; one sample set was cooled to 500 celsius degrees followed by water quenching, and the second sample set was cooled to 250 celsius degrees followed by quenching. This procedure was adopted in order to identify the effect of the final temperature on the phases volume fraction obtained. An increase in the austenite volume fraction, as well as an increase in the ferrite grain size and a widening in the austenite grains, due to the increase of the heat input during the physical simulations of the ZTAs was observed. These microstructural variations caused the tensile strength and Yield strength decreasing in HAZ of DSS evaluated when these zones were compared to the respective base metal.
APA, Harvard, Vancouver, ISO, and other styles
28

Varol, Ilhan. "Microstructure/property relationships in the weld heat-affected zone of duplex stainless steels /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487777170406281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lai, Libang. "Low temperature embrittlement of duplex stainless steels : A study of alloying elements’ effect." Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289565.

Full text
Abstract:
Duplex stainless steels (DSSs), consisting of an equal amount of ferrite and austenite phases, have wide applications in e.g. vehicles, chemical engineering as well as nuclear plant  because  of  the  combination  of  excellent  mechanical properties  and  corrosion resistance.  However,  low  temperature  embrittlement has  existed  for  a  few  decades restricting the application of DSSs over about 250 ºC. When the service temperature ranges from around 250 to 500 °C, DSSs would become brittle because of the phase separation in the ferrite  phase. The phase separation is the  main reason  for the  low temperature embrittlement, and the kinetic of this phase separation achieves the fastest rate at about 475°C, so it is also termed as ‘475°C embrittlement’. Plenty of research has been performed in this field, but the problem remains. The mechanism of phase separation is due to the existence of a miscibility gap in the iron  chromium  binary  system,  and  previous  research  has  reported  some alloying elements can have the potency to delay the phase separation and the goal of my thesis is to investigate the influence of different alloying elements and select one which could be a plausible one to retard phase separation, and subsequently try to mitigate the low temperature embrittlement problem of DSSs. This  work  includes  the  literature survey  of  different  alloying  elements  which could influence   the   microstructure   and   mechanical   properties   of   DSSs   in general. Subsequently the thermodynamic calculation was performed to identify the effect of the  selected  alloying  elements  addition  on  phase  formation during  heat  treatment. Vanadium was selected to be a potentially suitable alloying element to be added into DSSs and experimental investigations were performed on the heat treatment process and the effect of V alloying. The main conclusions of the proposed thesis can be drawn as follow: The elemental addition  of Al,  Si, V,  Nb  and Ti  are  calculated  by Thermo-Calc,  they are  all  ferrite stabilisers and V addition seems most likely to be effective due its combination with the  interstitial  elements  C  and  N.  In  the  experimental  part, vanadium  additions combined with intermediate temperature solution treatment could be effective to retard the age hardening effect and the impact toughness test has a consistent tendency. Also, according to Thermo-Calc calculations and experimental results, the more interstitial elements that combine with V and precipitate from the ferrite phase the better was the performance of the duplex stainless steels.
Duplexa rostfria stål (DSS), bestående av lika stor mängd ferrit- och austenit, har bredtillämpning inom t.ex. fordon, kemiteknik samt kraftverk på grund av kombinationen av utmärkta mekaniska egenskaper och korrosionsbeständighet. Försprödning vid låg temperatur   begränsar emellertid tillämpningen   av   DSS   över   250   °C.   När driftstemperaturen varierar från cirka 250 till 500 ° C så kan DSS bli spröda på grund av   fasseparation   i   ferritfasen.   Fasseparationen   är   den    främsta   orsaken   till lågtemperaturförstöring, och kinetiken för denna fasseparation uppnår den snabbaste hastigheten  vid  cirka  475  °C,  så  den  kallas  också  '475  °C-försprödning'.  Mycket forskning har utförts inom detta område, men problemet kvarstår. Mekanismen för fasseparation beror på förekomsten av ett blandningslucka i det binära järn-krom-systemet, och tidigare forskning har rapporterat att vissa legeringselement kan  ha  förmågan  att  fördröja  fasseparationen.  Målet med mitt  examensarbete  är  att undersöka påverkan av olika legeringselement och välja ett som kan användas för att fördröja fasseparationen och därav mildra problemet med lågtemperaturförsprödning hos DSS. Detta  arbete  inkluderar  litteraturundersökning  av  olika  legeringselement som  kan påverka  mikrostrukturen  och  mekaniska  egenskaper  hos  DSS  i allmänhet.  Därefter termodynamiska beräkningar för att identifiera effekten av de valda legeringselementen på fasjämvikt under värmebehandlingen. Vanadin valdes som ett potentiellt lämpligt legeringselement som kan tillsättas i DSS. Experimentella undersökningar utfördes på värmebehandlingsprocessen och effekten av V-legering. De huvudsakliga slutsatserna av examensarbetetär: tillsatsen av Al, Si, V, Nb och Ti beräknades av Thermo-Calc, de är alla ferritstabiliserande och V-tillsats verkar kunna vara effektiv på grund av dess kombination med de interstitiella elementen C och N. I den    experimentella    delen    studerades vanadintillsatser    i    kombination    med värmebehandling för att fördröja den hårdnandet och försprödningen. Enligt Thermo- Calc-beräkningar  och experimentella  resultat  så  kan  prestanda  förbättras  desto  merinterstitiella element som kombineras med V.
APA, Harvard, Vancouver, ISO, and other styles
30

Garcia, Erick Renato Vargas. "Efeito da corrente de soldagem do processo TIG pulsado autógeno na microestrutura da zona fundida dos aços inoxidáveis duplex UNS S32304 e UNS S32101." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-12032012-121409/.

Full text
Abstract:
A microestrutura e a composição química dos aços inoxidáveis duplex são responsáveis pela sua resistência mecânica e sua resistência à corrosão que, geralmente, é superior aos aços inoxidáveis ferríticos e austeníticos convencionais. A soldagem destes materiais causa tanto alteração de microestrutura como de composição química, que podem ser alteradas dependendo dos processos de soldagem, dos parâmetros de soldagem, da utilização ou não de metal de adição e da composição química do gás de proteção, nos processos que utilizam proteção gasosa. No caso dos aços inoxidáveis duplex baixa liga, a solidificação é completamente ferrítica, podendo produzir tamanho de grão exagerado no metal de solda e na ZAC. O objetivo deste trabalho é de avaliar o efeito da freqüência de pulsação do processo TIG autógeno na soldagem de aços inoxidáveis duplex baixa liga. Foram soldadas chapas de aços inoxidáveis duplex baixa liga UNS S32304 e UNS S32101 (lean duplex), sem metal de adição e empregando-se argônio como gás de proteção. A soldagem foi executada com o processo TIG, mantendo-se a energia de soldagem constante, de 340 J/mm, e variando-se a freqüência de pulsação entre 1, 5, 10 e 20 Hz. As microestruturas resultantes tanto no metal de solda, região central e região sem mistura, bem como na zona afetada pelo calor foram caracterizadas através de microscopia ótica. Os resultados mostraram que, na soldagem autógena, independente de ter ou não a pulsação da corrente, ocorre um aumento no tamanho do grão da zona fundida devido a solidificação ferrítica deste aço. Comparando-se os resultados do tamanho do grão e da fração volumétrica de ferrita no metal de solda, notouse um aumento no tamanho de grão e na fração volumétrica da ferrita com o aumento da freqüência de pulsação.
The microstructure and chemical composition of duplex stainless steel are responsible for their mechanical strength and corrosion resistance. The welding of these materials produces a change in the microstructure and chemical composition. These changes depend on: welding processes, welding parameters, the use or absence of filler metal and composition of shielding gas in processes that use shielding gas. In the case of lean duplex stainless steel the solidification is fully ferritic, which may produce an excessive grain size in the weld metal and in the heat affected zone (HAZ). The main goal of this paper is to evaluate the effect of pulse frequency in autogenous TIG welding process of lean duplex stainless steel. In this sense, plates of UNS S32304 and UNS S32101 lean duplex were welded without filler metal and using argon as shielding gas. The welds were made using the GTAW process, keeping the heat input constant at 340 J/mm and varying the pulse frequency between 1,5,10 and 20 Hz. The results showed that, independent of pulse frequency, grain growth in the fusion zone took place since this duplex stainless steel type has a ferritic solidification mode. Comparing the grain size and ferrite volumetric fraction in the weld bead, an increase in the mean value of grain size in the central region and unmixed region of weld beads was related to an increase of pulse frequency.
APA, Harvard, Vancouver, ISO, and other styles
31

Shendye, Sanjay B. "Effect of long term elevated temperature exposure on the mechanical properties and weldability of cast duplex stainless steels /." Full text open access at:, 1985. http://content.ohsu.edu/u?/etd,115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Adams, FV, PA Olubambi, FH Potgieter, and Der Merwe F. Van. "Corrosion resistance of duplex stainless steels in selected organic acids and organic acid/chloride environments." Anti-Corrosion Methods and Materials, 2010. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001195.

Full text
Abstract:
Abstract Purpose – The purpose of this paper is to supplement the scant previous investigations on the corrosion behaviour of 2205 and 2507 duplex stainless steels in selected organic acids containing chloride additions. Design/methodology/approach – Microstructural examination of the alloys was first carried out, after which the corrosion behaviour of the alloys in citric, oxalic, formic and acetic acids containing chloride additions at varying temperatures was studied using electrochemical techniques. Findings – The alloy 2507 material had a larger grain size than did the alloy 2205 sample. The corrosion resistances of the alloys generally are highest in acetic acids and lowest in citric acid. The addition of chloride had a pronounced effect on their corrosion resistance. Alloy 2507 generally exhibited higher corrosion resistance in all of the acids than alloy 2205, with the exception of acetic acid at room temperature. The 50:50 ratio of ferrite to austenite composition, as revealed by phase compositional analysis, indicated no significant possibility for galvanic corrosion between the phases. This suggests that the corrosion behaviour of the alloys is controlled by their grain sizes and chemical compositions. Originality/value – Although the corrosion behaviour of duplex stainless steels in some organic acid media has been reported, this investigation covers the major organic acids not previously reported. Since in real industrial systems a mixture of both organic and minerals acids/salts may typically exist, investigations of the combined effect of chloride ions with the organic acids reported in this paper typify real industrial operations. The paper thus provides a basis for material selection for the application of 2205 and 2507 in industrial systems where organic acids are mostly used.
APA, Harvard, Vancouver, ISO, and other styles
33

Wessman, Sten. "Applications of Computational Thermodynamics and Kinetics on Transformations in Stainless Steels." Doctoral thesis, KTH, Skolan för industriell teknik och management (ITM), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121337.

Full text
Abstract:
Stainless steels are high-alloyed, usually with multiple components and often also dual matrix phases, as for duplex stainless steels. This make predictions and calculations of alloying effects on equilibria and transformations complicated. Computational thermodynamics has emerged as an indispensable tool for calculations within these complex systems with predictions of equilibria and precipitation of phases. This thesis offers examples illustrating how computational methods can be applied both to thermodynamics, kinetics and coarsening of stainless steels in order to predict microstructure and, to some extent, also properties. The performance of a current state-of-the-art commercial thermodynamic database was also explored and strengths and weaknesses highlighted.

QC 20130429

APA, Harvard, Vancouver, ISO, and other styles
34

Ali, Rastee Dalshad [Verfasser], and Uwe [Akademischer Betreuer] Heisel. "Modeling and optimization of turning duplex stainless steels / Rastee Dalshad Ali. Betreuer: Uwe Heisel." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1072623951/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Femenia, Marc. "Corrosion Behavior of Duplex Stainless Steels in Acidic-Chloride Solutions Studied with Micrometer Resolution." Doctoral thesis, KTH, Materials Science and Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3484.

Full text
Abstract:

The local corrosion behavior of duplex stainless steel (DSS)is affected by a wide variety of factors. Localized corrosionof DSS frequently starts at micrometer scale inclusions orprecipitates, which are often segregated in theaustenite-ferrite boundary regions. Moreover, due to thepartitioning of the key alloying elements of ferrite (Cr andMo) and austenite (N and Ni), the local interactions betweenthe phases must also be considered.

The aim of this doctoral study was to increase the knowledgeabout the local dissolution behavior of DSS in acidic-chlorideenvironments. The recent developments of new local probingtechniques have opened a new frontier in corrosion science,providing valuable local information not accessible in thepast. The local techniques used include electrochemicalscanning tunneling microscopy (EC-STM), scanning probe forcemicroscopy (SKPFM), magnetic force microscopy (MFM), andscanning Auger electron Spectroscopy (SAES), all withmicrometer or sub-micrometer resolution.

With EC-STM, it was possible to monitor local dissolutionprocesses on DSS in situ, and in real time. MFM was capable ofimaging the phase distribution in DSS without the need of thetraditional surface etching, while SKPFM revealed that theVolta potential difference between the two phases wasmeasurable and significant. SAES showed that the compositiongradient at the phase boundaries is narrower than 2µm.

Different types of DSSs have been studied, from low-alloyedDSS to superduplex. Higher contents of Cr, Mo and Nstrengthened both phases as well as the phase boundaries,resulting in phases having similar corrosion resistance thatshowed a more uniform dissolution behavior. However, the Voltapotential difference between the phases proved to be of thesame order for all the DSSs studied. Austenite was in generalassociated to regions displaying a more noble Volta potentialthan ferrite, resulting in a higher dissolution rate of theferrite next to the austenite phase.

Key words:In situ, local dissolution, electrochemical,STM, SKPFM, MFM, SAES, duplex stainless steel, acidic-chloridesolution.

APA, Harvard, Vancouver, ISO, and other styles
36

Gunn, Robert Neil. "The effect of thermal cycles on the microstructure and toughness of superduplex stainless steels." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/8418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Edling, Erika, Malin Börjesson, Niklas Rogeman, Katea Sarmad Naim, Jenny Bengtsson, Breivik Johan Söderberg, and Markus Wessman. "Rostfritt stål till stora vattentankar utomhus : En jämförelse mellan austenitiska och rostfria stål." Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-175408.

Full text
Abstract:
The austenitic stainless steel 316L has been compared to duplex stainless steels to be able to highlight a choice of material for manufacturing of spare tanks used for cooling water at nuclear power stations on the Swedish west coast. In this report 316L and the duplex stainless steels 2205, 2304 and LDX 2404 have been compared according to corrosion resistance, strength, manufacturing aspects and prices. The steels arranged by increasing corrosion resistance: 316L < 2304 < LDX 2404 < 2205. The steels arranged by increasing strength (considering the thickness of the plates needed for construction): 316L < 2304 < LDX 2404 and 2205. The steels arranged by increasing price/tank: 2304 < LDX 2404 < 2205 < 316L. One of the duplex stainless steels is recommended rather than the austenitic stainless steel 316L. In terms of price 2304 is preferable to 2205 and LDX 2404. When it comes to corrosion resistance 2205 is superior to 2304 and can sometimes be considered as unnecessary good and therefore not relevant for this application.
APA, Harvard, Vancouver, ISO, and other styles
38

Aribo, Sunday. "Corrosion and erosion-corrosion behaviour of lean duplex stainless steels in marine and oilfield environments." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7170/.

Full text
Abstract:
Lean duplex stainless steels are becoming attractive for applications in oilfield and marine environments due to their economic advantages, very good mechanical properties and relatively good corrosion resistance. One such application is in the production of the carcass of flexible pipes. However, materials selection for such oilfield applications becomes more complex as a result of the interactions between corrosion and erosion. Much effort has been directed towards the study of erosion-corrosion behaviour of carbon steels and other passive alloys. However, the subject of erosion-corrosion of lean duplex stainless steels is still rarely reported. Moreover, data available in the literature on the localized corrosion resistance of the lean duplex stainless steels are limited to alkaline environments. Efforts have been made in this thesis to add to the existing data and to the understanding of the subject of localized corrosion and erosion-corrosion resistance of lean duplex stainless steels UNS S32101, UNS S32304 and UNS S82441 in oilfield environments. The lean duplex alloy UNS S32101 has been studied in detail because of its combination of high strength and good corrosion resistance. This research also compared the corrosion and erosion-corrosion resistance of lean duplex stainless steels with standard austenitic stainless steels UNS S30403 and UNS S31603 as well as duplex stainless steel alloy UNS S32205. Aerated 3.5% NaCl and synthesized CO2-saturated oilfield brines were considered as the corrosion media. Extreme erosion-corrosion conditions were simulated to design for severe environments often encountered in sand-containing oilfield pipeline systems. Breakdown potentials, under static conditions, were found to be more positive in the aerated 3.5% NaCl than the CO2-saturated oilfield brine solution. Also, lean duplex stainless steels and standard austenitic stainless steels exhibited similar resistance in both environments. X-ray Photoelectron Spectroscopy (XPS) analysis of the passive film indicated higher chloride incorporation in the CO2-saturated oilfield brine. This, in addition to lower pH of the CO2-saturated oilfield brine appeared to be the reason why the breakdown potential was more negative in this environment. Erosion-corrosion results showed that lean duplex stainless steels, UNS S32101 and UNS S32304, have higher resistance to pure-erosion damage than UNS S30403 and UNS S32205; better erosion-corrosion resistance than UNS S30403 austenitic stainless steel; and equivalent erosion-corrosion resistance to UNS S32205 standard duplex stainless steel. There was also a correlation between the erosion-corrosion resistance of the alloys and the sub-surface crystallography, microstructure and phase transformation. This, together with repassivation kinetics of the passive film, may be used to explain the erosion-corrosion behaviour of UNS S32101 and UNS S30403 in the oilfield slurry.
APA, Harvard, Vancouver, ISO, and other styles
39

Bhogireddy, Venkata Sai Pavan Kumar. "Phase Field modeling of sigma phase transformation in duplex stainless steels : Using FiPy-Finite Volume PDE solver." Thesis, KTH, Materialvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161712.

Full text
Abstract:
Duplex Stainless Steels (DSS) are used extensively in various industrial applications where the properties of both austenite and ferrite steels are required. Higher mechanical strength and superior corrosion resistance are the advantages of DSS. One of the main drawbacks for Duplex steels is precipitation of sigma phase and other intermetallic phases adversely affecting the mechanical strength and the corrosion behavior of the steels. The precipitation of these secondary phases and the associated brittleness can be due to improper heat treatment. The instability in the microstructure of Duplex stainless steels can be studied by understanding the phase transformations especially the ones involving sigma phase. To reduce the time and effort to be put in for experimental work, computational simulations are used to get an initial understanding on the phase transformations. The present thesis work is on the phase transformations involving sigma phase for Fe-Cr system and Fe-Cr-Ni system using theoretical approach in 1D and 2D geometries. A phase field model is implemented for the microstructural evolution in DSS in combination with thermodynamic data collected from the Thermo-Calc software. The Wheeler Boettinger McFadden (WBM) model is used for Gibbs energy interpolation of the system. FiPy- Finite volume PDE solver written in python is used to simulate the phase transformation conditions first in Fe-Cr system for ferrite-austenite and ferrite-sigma phase transformations. It is then repeated for Fe-Cr-Ni ternary system. In the present study a model was developed for deriving Gibbs energy expression for sigma phase based on the common tangent condition. This model can be used to describe composition constrained phases and stoichiometric phases using the WBM model in phase field modeling. Cogswell’s theory of using phase order variable instead of an interpolating polynomial in the expression for Gibbs energy of whole system is also tried.
APA, Harvard, Vancouver, ISO, and other styles
40

Samih, Youssef. "Thermomechanical surface treatments of austenitic stainless steels and their effects on subsequent nitriding during “Duplex” treatments." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0100/document.

Full text
Abstract:
L’optimisation des microstructures de surface est un facteur primordial pour améliorer les propriétés et la durée de vie des matériaux. Pour le traitement des aciers inoxydables, la nitruration est un procédé adéquat permettant l’augmentation de la dureté et de la résistance à l’usure par formation d’une austénite «expansée» sursaturée en azote. Des travaux récents ont suggéré que l’activation de surface par un traitement mécanique préalable permettait d’augmenter les cinétiques de diffusion de l’azote. Avec des traitements « duplex » de ce type, il doit donc être possible (i) d’augmenter l’épaisseur des couches nitrurées pour un temps de nitruration donné et/ou (ii) de diminuer la température de nitruration et éviter ainsi la formation de nitrures nuisibles à la tenue à la corrosion. La littérature montre toutefois qu’une couche de pollution issue du prétraitement peut affecter l’efficacité de la nitruration. L’objectif de ce travail était d’aider à l’optimisation de la maitrise de différents traitements « duplex » impliquant, avant une nitruration assistée plasma, les traitements mécaniques ou thermomécaniques suivants : le grenaillage ultrasonore (SMAT pour Surface Mechanical Attrition Treatment), le laminage et le traitement par faisceau d’électrons pulsé (HCPEB pour High Current Pulsed Electron Beam). La combinaison des traitements mécaniques et thermochimiques a été essentiellement testée sur deux nuances de l’acier inoxydable austénitique 316L (avec et sans sulfures) et, dans une moindre mesure, sur l’acier AISI 660. Afin de mieux caractériser l’effet des différents paramètres du procédé d’hyperdéformation SMAT (diamètre des billes, durée du traitement, amplitude de vibration, etc.) sur l’évolution de la microstructure, une procédure de caractérisation des couches écrouies utilisant l’EBSD a été proposée. Cette technique, basée pour partie sur l’évolution des Dislocations Géométriquement Nécessaires (GNDs), permet d’évaluer quantitativement l’épaisseur des différents types de couches formées en fonction des paramètres du procédé SMAT. Les natures des pollutions de la surface et leurs origines ont aussi été analysées. Une analyse de l’efficacité des différents types de traitements duplex a ensuite était réalisée en comparant systématiquement des résultats obtenus après nitruration sur des échantillons avec et sans activation de surface. Des analyses par diffraction des rayons X, des observations en microscopies électroniques, des mesures de microdureté ainsi que la mesure des profils de concentration en azote par SDL (Spectrométrie à Décharge Luminescente) ont été mises en œuvre pour quantifier les effets des traitements combinés. Les résultats ont montré la complexité des modifications de structures et la complexité des phénomènes mis en jeu
Optimizing the surface microstructure and properties is very important to obtain high performance behaviour. Applying appropriate mechanical and thermochemical treatments has been the prime objective of metallurgists. More recently, and particularly for the stainless steels, the Plasma Nitriding was found to be an efficient technique for enhancing the hardness and wear resistance. However, as the nitriding temperature is about 500 °C, the formation of nitrides on the surface leads to a decrease of the corrosion resistance of these alloys. Recent works have shown that using a mechanical pre-treatment allows to decrease the treatment temperature and duration, and also to enhance the nitrogen diffusion within the stainless steels surfaces. In the present work, performances of different Duplex treatments (mechanical + thermochemical) are studied. The Surface Mechanical Attrition Treatment (SMAT), cold rolling and the High Current Pulsed Electron Beam (HCPEB) are used as surface activators prior to plasma nitriding of stainless steels. Before studying the effect of surface activation on the nitrogen diffusion, the effect of the different SMAT parameters (balls size, balls nature, treatment duration … etc.) on the microstructure is analysed. A new technique based on the notion of Geometrically Necessary Dislocations (GND) is used to depict the thickness of the different SMAT-induced layers and compare the effect of the processing parameters. Then, comparative analysis of the results obtained after nitriding of mechanically deformed samples leads to quantify the effect of the different Duplex treatments. X-Ray Diffraction, Secondary Electron Microscopy associated with Electron BackScattered Diffraction (EBSD), hardness measurement and chemical composition analysis by Glow Discharge Optical Emission Spectroscopy (GD-OES) showed the importance of the surface microstructure and deformation state on the nitrogen diffusion
APA, Harvard, Vancouver, ISO, and other styles
41

Menezes, John Winston Abitibol. "AnÃlise Quantitativa da Fase FerrÃtica do AÃo inoxidÃvel Duplex UNS S3 1803 na CondiÃÃo Soldada." Universidade Federal do CearÃ, 2005. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7367.

Full text
Abstract:
Em geral, os requisitos essenciais exigidos para uma liga metÃlica utilizada em atividades ligadas à industria petroquÃmica sÃo resistÃncia mecÃnica, tendo em vista os diversos esforÃos aos quais os materiais serÃo submetidos, e resistÃncia à corrosÃo, devido a severidade ambiental ao qual os materiais serÃo expostos. O aÃo inoxidÃvel duplex (AID) vem conquistando cada vez mais espaÃo no setor petroquÃmico justamente por possuir tais requisitos citados acima. Atribuem-se suas altas resistÃncias à corrosÃo e mecÃnica à sua microestrutura balanceada em aproximadamente 50% de ferrita e 50% de austenita. O presente trabalho estudou a influÃncia de diversas condiÃÃes de soldagem sobre o balanÃo de fases de um aÃo inoxidÃvel duplex UNS S31803. Para tanto quatro tÃcnicas de quantificaÃÃes foram utilizadas para medir a fraÃÃo volumÃtrica de ferrita para as diversas condiÃÃes empregadas. AlÃm disso, uma propriedade mecÃnica (dureza) e uma propriedade de resistÃncia à corrosÃo (corrosÃo intergranular) foram avaliadas em funÃÃo da energia de soldagem empregada. Por fim, um estudo qualitativo acerca da precipitaÃÃo de compostos intermetÃlicos oriundos da soldagem foi realizado. Os resultados mostraram que o efeito da energia de soldagem sobre a fraÃÃo volumÃtrica de ferrita foi bem marcante no metal de solda, porÃm para a zona afetada pelo calor (ZAC) e o metal de base este efeito nÃo foi tÃo pronunciado. Ainda em relaÃÃo à fraÃÃo volumÃtrica de ferrita, foi constatado que esta à mais afetado pela largura do corpo de prova que pelo meio de resfriamento pÃs-soldagem. Em geral, tanto a dureza como a resistÃncia à corrosÃo intergranular nÃo sofreram influÃncia quando as diversas condiÃÃes de soldagem foram comparadas. Por fim, apesar de ter ocorrido a precipitaÃÃo de compostos intermetÃlicos, contatou-se que esta foi de pequena intensidade.
In general, the essential requirements for a metal alloy used inactivities are linked to the petrochemical industry mechanical strength, in view of the many efforts to which the materials are subjected, and corrosion resistance due to severe environment to which the materials are exposed. The duplex stainless steel (AID) has been gaining more space in the petrochemical industry precisely because it has such requirements mentioned above. Are attributed to their high resistance to corrosion and its mechanical balanced microstructure by approximately 50% to 50% ferrite and austenite. This work studied the influence of different welding conditions on the balance of phases of a duplex stainless steel UNS S31803. For both techniques of four measurements were used to measure the volume fraction of ferrite for the various conditions employed. Moreover, the mechanical properties (hardness) and corrosion resistance property (intergranular) were measured by the energy welding employed. Finally, a qualitative study about the precipitation of intermetallic compounds derived welding was performed. The results showed that the effect of heat input on the volume fraction of ferrite was well marked in the weld metal, but for the heat-affected zone (HAZ) and base metal this effect was not as pronounced. Still on the volume fraction of ferrite, it was found that this is more affected by the width of the body of evidence by means of cooling after welding. In general, both the hardness and resistance to intergranular corrosion when not influenced by the different welding conditions were compared. Finally, although there was precipitation of intermetallic compounds, is contacted to this was mild.
APA, Harvard, Vancouver, ISO, and other styles
42

Da, Silva Craidy Pedro. "Interactions Hydrogène-Microstructure-Propriétés Mécaniques dans les Composants en Acier Inoxydable Super Suplex." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI041.

Full text
Abstract:
La demande croissante en énergie nécessite l'exploration de pétrole et de gaz dans des conditions plus difficiles. Ces systèmes de production exigent l'utilisation d'équipements forgés faits de nuances d'acier de plus haute résistance, comme les aciers inoxydables austéno-ferritiques (duplex). Ces composants tendent à présenter une perte de ductilité et de performance mécanique générale provoquée par l'hydrogène produit par p. ex. des systèmes de protection cathodique et des processus de corrosion. Les composants en aciers inoxydables duplex présentent une longue histoire d’endommagement par l'hydrogène à basse température provenant de diverses sources. Bien qui ce type de endommagement soit assez récurrent, diverses informations connexes restent à élucider, en raison de l'interaction complexe de l'hydrogène avec la microstructure et le caractère localisé de la production et du transport de l'hydrogène dans le matériau.Le présent travail vise à améliorer la compréhension physique de l'interaction entre l'hydrogène et la microstructure ainsi que les effets de différentes procédures de chargement d'hydrogène sur les propriétés mécaniques des composants forgés en acier inoxydable super duplex UNS S32750.Le développement d'une telle compréhension implique l'évaluation des effets de l'hydrogène sur les propriétés mécaniques du matériau au moyen d'essais de traction dans différents environnements riches en hydrogène. Basé sur des résultats d'essais de traction à vitesse de déformation faible, une relation quantitative entre la fragilisation provoquée par l'hydrogène gazeux et cathodique est proposée, et les effets possibles de la fragilisation par l’hydrogène provoquée par dislocations sont discutés.Des descriptions quantitatives et qualitatives du transport de l'hydrogène, incluant l'analyse des effets des différentes microstructures et voies de diffusion, et de sa position dans le réseau et dans la microstructure (ségrégation de l'hydrogène aux pièges) sont proposées. Ces descriptions sont obtenues en considérant les résultats de différentes techniques expérimentales: essais de perméation, spectroscopie de désorption thermique, spectroscopie de masse d'ions secondaires à temps de vol et diffusion de neutrons
The increasing demand for energy requires the exploration of oil and gas at deeper water locations and on more severe conditions. These production systems have demanded the use of forged equipments made of higher strength steel grades, such as austenitic-ferritic (duplex) stainless steels. These components are more prone to exhibit loss of ductility and general mechanical performance caused by hydrogen generated e.g. by cathodic protection. Duplex stainless stainless steels components present a vast history of hydrogen damage at low temperatures, due to hydrogen derived from various sources. Even being this kind of damage fairly recurring, various related information remains to be elucidated, due to the complex interaction of hydrogen with the microstructure and localized character of hydrogen generation and transportation in the material. The present work aims to improve the physical understanding of the interaction between hydrogen and the microstructure as well as the effects of different hydrogen charging procedures on the mechanical properties of forged components made of the super duplex stainless steel grade UNS S32750.The development of such understanding involves the evaluation of the effects of hydrogen on the mechanical properties of the material through tensile tests in different hydrogen-rich environments. Based on results of slow-strain rate tensile tests, a quantitative relationship between embrittlement caused by gas hydrogen and cathodic charging is proposed, and possible effects of dislocation-assisted hydrogen transportation and embrittlement are discussed. Quantitative and qualitative descriptions of the hydrogen transportation, including analysis of the effects of different microstructures and diffusion paths, and of its position in the lattice and in the microstructure (hydrogen segregation to traps) are proposed. These descriptions are achieved considering results of different testing techniques: permeation tests, thermal desorption spectroscopy, time-of-flight secondary ion mass spectroscopy and neutron scattering
APA, Harvard, Vancouver, ISO, and other styles
43

Lin, Sen. "Deformation-Induced Martensitic Transformation and Mechanical Properties of Duplex and Austenitic Stainless Steels : A Synchrotron X-Ray Diffraction Study." Thesis, KTH, Metallografi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233334.

Full text
Abstract:
Metastable austenitic and duplex stainless steels are widely used materials in industrial anddomestic applications, owing to their attractive characteristics such as good corrosion resistanceand favorable mechanical properties. Both types of steel experience enhanced mechanicalproperties during plastic deformation due to the formation of the martensite phase from theparent austenite phase, this is called deformation-induced martensitic transformation (DIMT).It is therefore of technical interest to study the transformation mechanism and its impact onmechanical properties for a better understanding and ultimately for developing new materialswith improved performance in certain applications. In the present thesis, two austenitic stainless steels (201Cu, HyTens® 301) and two duplexstainless steels (FDX25®, FDX27®) were investigated. Samples were tensile tested during insitusynchrotron radiation experiments performed at the Cornell High Energy SynchrotronSource (CHESS), Ithaca, USA. Tests were performed at both room temperature and at elevatedtemperatures. The collected diffraction data were then processed by software such as Fit2D andMATLAB. Quantitative phase fraction analysis based on the direct comparison method wasperformed successfully. Microstructural analysis of samples before deformation and after thefull tensile testing was also performed using electron microscopy. The deformation induced martensitic transformation took place in HyTens 301, FDX25 andFDX27, but in 201Cu the austenite was stable during the tensile tests conducted here. The a’-martensite formed in a significantly higher fraction than the ε-martensite in all alloys. At roomtemperature, the critical stress levels for martensitic transformation were 490 MPa, 700 MPaand 700MPa for HyTens 301, FDX25 and FDX27, respectively.
APA, Harvard, Vancouver, ISO, and other styles
44

FONTES, TALITA F. "Efeito da fase alfa linha nas propriedades mecanicas e de resistencia a corrosao do aco inoxidavel duplex UR 52N+." reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9448.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:26:53Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:00:37Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles
45

Poinsot, Jocelin. "Influence des éléments cuivre et tungstène sur les mécanismes de corrosion localisée des super-duplex." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK013.

Full text
Abstract:
Les aciers inoxydables super-duplex (SDSS) sont des matériaux d’ingénierie intéressants, du fait de leur structure biphasé qui leur confère généralement une grande résistance à la corrosion combinée à une haute résistance mécanique. Ils sont utilisés dans de nombreux secteurs industriels, tels que l’oil & gas (pipelines et réservoirs de stockage), le dessalement (évaporateurs et pompes), la géothermie, la dépollution (épurateur) et l’industrie des pâtes et papiers (digesteurs et réacteurs de blanchissement).Dans cette thèse, l’influence de l’addition de cuivre et de tungstène dans les SDSS sur la résistance à la corrosion localisée (piqûration) a été évaluée. Les trois nuances étudiées ont été : UR2507, UR2507Cu (1,6 %mass. Cu) et UR2507W (0,6%mass. Cu et 0,6%mass. W).L’épaisseur et la composition chimique des films passifs formés après un état de surface optimisés ont été étudiées par spectrométrie photoélectronique X et par spectrométrie Auger avant et après immersion dans 5 M NaCl 90°C. La résistance à la corrosion par piqûres a ensuite été évaluée dans des milieux NaCl en utilisant la méthode de la détermination de la température critique de piqûration (CPT) combinée à la microcellule électrochimique (capillaire d’un diamètre de 300 microns environ) et la méthode pulsée (PPT). Les analyses locales de CPT ont été utilisées pour comparer les mécanismes d’amorçage des piqûres sur les trois nuances alors que la PPT a permis de comparer la taille des piqûres formées. En complément, les potentiels critiques de piqûration ont été mesurés à une échelle plus globale (5 cm²) dans des solutions de différentes concentrations en NaCl et de différentes températures. Ces conditions sont plus proches des conditions réelles d’utilisation des SDSS. Il a été montré que l’effet du cuivre et du tungstène sur la résistance à la corrosion localisée dans les SDSS dépend du milieu d’utilisation (T,[Cl-]) et que les phases d’amorçage et de début de propagation peuvent aussi être influencés par des paramètres non liés à la composition tel que le pH local et l’état de surface (écrouissage)
Super duplex stainless steels (SDSS) are interesting engineering materials, due to their generally high corrosion resistance combined with high strength. They are widely used in various industrial sectors, such as oil & gas (pipelines and storage tanks), desalination (evaporators and pumps), geothermal, pollution control (scrubber) and pulp and paper (digester and bleaching reactors) industries.In this PhD thesis, the influence of the addition of copper and tungsten in SDSS on their localised corrosion resistance (pitting) was investigated. Three alloys studied were: UR2507, UR2507Cu (1.6 %wt. Cu) and UR2507W (0.6%wt. Cu and 0.6%wt. W).The thickness and chemical composition of the passive film formed on the three alloys after optimised surface preparation was first investigated by means of X ray photoelectron spectroscopy and Auger electron spectroscopy before and after immersion in highly concentrated NaCl solutions. Pitting corrosion resistance was then investigated in NaCl-based media using the critical pitting temperature testing method combined with the electrochemical microcell technique (capillary diameter of about 300 microns) and potentiostatic pulse technique (PPT). Local CPT measurements were used to compare the resistance of the three different alloys to pitting while PPT enables to compare the size of the pits formed. In addition, pitting potentials were measured in samples with 5 cm² area in solutions of different NaCl concentrations and temperatures. These measurements are closer to the real using conditions of the alloys.It was showed that copper and tungsten effects on localised corrosion resistance in SDSS depend on the using media (T, [Cl-]) and the initiation and start of the propagation phases can also be influenced by parameters not linked to composition such as local pH and surface conditions (cold-work layer)
APA, Harvard, Vancouver, ISO, and other styles
46

Andersen, Kjetil. "HISC in Super Duplex Stainless Steels : A study of the relation between microstructure and susceptibility to hydrogen induced stress cracking." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22418.

Full text
Abstract:
Testing of susceptibility to hydrogen induced stress cracking (HISC) in two 25% Cr Super Duplex Stainless Steels (SDSS) has been carried out. These were a forged material and a hot isostatically pressed (HIP) material with austenite spacing 51.5 µm and 12.9 µm, respectively. The tests were carried out on both smooth and notched samples by stepwise increasing load in Cortest proof rings on hydrogen pre-charged samples until fracture. The fracture surfaces were examined in scanning electron microscopes (SEM) and the hydrogen contents were measured. The microstructures of the materials were examined with the electron backscattered diffraction technique (EBSD) and assessed in relation to the results from the HISC testing.The results indicated that both SDSS materials are prone to HISC and that the HIP material has a higher threshold for HISC. The fracture surface on samples of both materials showed features indicating reduced ductility from HISC. The HIP samples indicated ductile fracture in the centre, implying that hydrogen influence was primarily in close proximity of the sample surfaces. This observation, and considerably higher hydrogen content measured in the forged material, indicates slower hydrogen diffusion in the HIP material than in the forged material.The results obtained were discussed against the literature reviewed and compared to the requirements in DNV-RP-F112. Indication of low temperature creep was observed on smooth samples by relaxation of the load determining ring deflection. The results from smooth samples indicated a threshold for HISC fracture (after one day of low temperature creep) at 112.6% ± 3.9% of yield strength (YS) and 104.8% ± 3.1% for HIP and forged material, respectively. No ring relaxation occurred for the notched samples. Therefore the results from these samples indicated higher threshold for HISC than the smooth samples, namely at 117.1% ± 2.2% and 113.8% ± 2.2\% of YS for HIP and forged samples, respectively.
APA, Harvard, Vancouver, ISO, and other styles
47

McCusker, Peter Michael. "Aspects of the repassivation kinetics of a range of duplex and austenitic stainless steels in acidic and neutral chloride environments." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

GOMES, ANA PAULA SILVA. "EFFECT OF N2 ADDITION ON THE GAS PROTECTION FOR AUTOGENOUS AND NI-CONTAINING WELD METAL WELDING OF DUPLEX STAINLESS STEELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35991@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTITUIÇÕES COMUNITÁRIAS DE ENSINO PARTICULARES
Os aços inoxidáveis duplex (AID) são uma classe de aços que combinam a alta resistência mecânica da ferrita e a ductilidade da austenita possuindo alto limite de escoamento e resistência à corrosão, sendo empregados em meios corrosivos com solicitações mecânicas elevadas. As boas propriedades mecânicas e de resistência à corrosão se devem a microestrutura duplex (ferrita e austenita), com proporções volumétricas similares, e cujo balanço é controlado por meio da composição química e tratamentos térmicos durante a fabricação. No entanto, durante processos de fabricação e manutenção, como a soldagem por fusão, em função do processo utilizado e dos ciclos térmicos impostos, assim como pela presença de gases de proteção que induzem determinada atmosfera, as propriedades do metal de solda e da zona termicamente afetada (ZTA), podem ser alteradas. Deste modo, a composição química, a distribuição dos elementos de liga e balanço das fases destas regiões serão suscetíveis a transformações de fases como ferritização, precipitação de fases indesejáveis e perda de elementos de liga, como níquel e nitrogênio, resultando em redução da resistência à corrosão. A presença de nitrogênio nos aços duplex, tanto em conjunto ou como substituto para o níquel, influencia na formação da austenita e também no controle da cinética de transformação de fases durante o resfriamento. O presente trabalho teve como objetivo estudar os efeitos do nitrogênio e do níquel na transformação de fases de dois aços inoxidáveis duplex (SAF 2304 e 2507) durante dois processos de soldagem: autógena e com metal de adição contendo Ni. Ambas as soldagens foram realizadas com aporte térmico fixo e com um e dois passes, utilizando a técnica de cordão sobre chapa para a soldagem com metal de adição. Foram utilizados dois gases de proteção, Ar e Ar + N2. Foram avaliadas a dureza e a resistência à corrosão por cloreto. A microestrutura da ZTA e composição química final do metal de solda alteraram significativamente, comparados ao metal de base. A fração volumétrica da fase austenítica na ZTA reduziu em todas as situações avaliadas. A presença de nitrogênio no gás de proteção manteve o teor deste elemento constante ou mais elevado no metal de solda. Cada conjunto de condições de soldagem aplicada apresentou diferentes características de dureza e resistência à corrosão por pites, sendo que na soldagem autógena do SAF 2507 foram encontradas durezas mais altas e menores perdas de massa após ensaio de corrosão. Com a adição de N2 no gás de proteção o teor de nitrogênio final aumentou em relação ao teor de nitrogênio no metal base, porém a fração volumétrica de austenita não se elevou da mesma forma.
Duplex stainless steels (DSS) combines high yield stress from ferrite and ductility from austenite, good mechanical and corrosion resistance. It has been used in corrosive environments associated with severe mechanical stress. The good mechanical strength and corrosive resistance properties are due to the duplex microstructure (ferrite and austenite), with the same volumetric fraction, whose balance is controlled by chemical composition and heat treatment during steel manufacturing. However, when welded by process such as fusion welding the high thermal cycles and the presence of shielding gases inducing a certain atmosphere, the properties of the weld metal (WM) and the heat affected zone (HAZ) can be significantly changed. Therefore, the chemical composition, element partioning and the phase balance in these regions (WM and HAZ) will be susceptible to phase transformations such as ferritization, precipitation of secondary phases and alloy element losses, such as nitrogen and nickel, resulting in the decrease of the corrosion resistance. The presence of nitrogen in the duplex steels, either together or as a substitute for nickel, influences the austenite formation and controls phase transformation kinetics during cooling as well. The objective of this work was to study the effect of nitrogen and nickel on the phase transformation of two duplex stainless steels (SAF 2304 and 2507) during two welding processes: autogenous and with Ni-containing filler metal, considering a fixed thermal input and welds with one and two passes, using the technique of bead on plate for the weld with filler metal. Two shielding gases were used, Ar and Ar + N2. Hardness and corrosion resistance in chloride environment were evaluated for each studied condition. Both HAZ microstructure and final chemical composition of the weld metal modified significantly, when compared to the base metal. The HAZ volume fraction of austenite was reduced, and the presence of nitrogen in the shielding gas helped to keep the nitrogen content the same or increased in the weld metal. Each set of weld parameters applied presented different characteristics of hardness and pitting resistance corrosion. The autogenous welding of the SAF 2507 presented higher hardness and low weight losses. In a general way, the addition of N2 in the shielding gas increased the nitrogen content of the weld metal for all conditions of lean duplex material, compared to the base metal, but the austenite volumetric phase did not increased in the HAZ.
APA, Harvard, Vancouver, ISO, and other styles
49

Zhou, Jing. "Experimental study of phase separation in Fe-Cr based alloys." Licentiate thesis, KTH, Metallografi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119230.

Full text
Abstract:
Duplex stainless steels (DSSs) are important engineering materials due to their combination of good mechanical properties and corrosion resistance. However, as a consequence of their ferrite content, DSSs are sensitive to the so-called ‘475°C embrittlement’, which is induced by phase separation, namely, the ferrite decomposed into Fe-rich ferrite (α) and Cr-rich ferrite (α'), respectively. The phase separation is accompanied with a severe loss of toughness. Thus, the ‘475°C embrittlement’ phenomenon limits DSSs’ upper service temperature to around 250°C. In the present work, Fe-Cr binary model alloys and commercial DSSs from weldments were investigated for the study of phase separation in ferrite. Different techniques were employed to study the phase separation in model alloys and commercial DSSs, including atom probe tomography, transmission electron microscopy and micro-hardness test. Three different model alloys, Fe-25Cr, Fe-30Cr and Fe-35Cr (wt. %) were analyzed by atom probe tomography after different aging times. A new method based on radial distribution function was developed to evaluate the wavelength and amplitude of phase separation in these Fe-Cr binary alloys. The results were compared with the wavelengths obtained from 1D auto-correlation function and amplitudes from Langer-Bar-On-Miller method. It was found that the wavelengths from 1D auto-correlation function cannot reflect the 3D nano-scaled structures as accurate as those obtained by radial distribution function. Furthermore, the Langer-Bar-On-Miller method underestimates the amplitudes of phase separation. Commercial DSSs of SAF2205, 2304, 2507 and 25.10.4L were employed to investigate the connections between phase separation and mechanical properties from different microstructures (base metal, heat-affected-zone and welding bead) in welding. Moreover, the effect of external tensile stress during aging on phase separation of ferrite was also investigated. It was found that atom probe tomography is very useful for the analysis of phase separation in ferrite and the radial distribution function (RDF) is an effective method to compare the extent of phase separation at the very early stages. RDF is even more sensitive than frequency diagrams. In addition, the results indicate that the mechanical properties are highly connected with the phase separation in ferrite and other phenomena, such as Ni-Mn-Si-Cu clusters, that can also deteriorate the mechanical properties.

QC 20130308

APA, Harvard, Vancouver, ISO, and other styles
50

Naser, Hasan. "Développement de micro-composites architecturés en aciers inoxydables duplex : élaboration, microstructure et propriétés mécaniques." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI024/document.

Full text
Abstract:
L'utilisation de l'acier inoxydable duplex (DSS) pour des applications structurales est considérée comme l'un des progrès les plus notables et qui a le plus grand impact sur le secteur de la construction. Ceci est grâce à ses propriétés mécaniques élevées couplées avec des propriétés fonctionnelles intéressantes telles que la résistance à la corrosion, ou encore la faible conductivité thermique par rapport aux aciers au carbone. En raison de sa microstructure et l'interaction complexe entre les phases, DSS a un fort potentiel pour le développement des propriétés uniques. Une meilleure compréhension est nécessaire pour obtenir des propriétés exceptionnelles et fournir la possibilité de concevoir un DSS sur-mesure et architecturé pour des applications spécifiques. Dans ce travail, nous avons proposé une approche différente de celle utilisée jusqu'à présent pour comprendre le comportement du DSS. La stratégie adoptée dans ce travail était une stratégie dite top-down dans laquelle au moins deux métaux ayant un comportement et des propriétés bien connues sont mécaniquement assemblés par déformation plastique sévère (SPD). Cette stratégie proposée a pour objectifs: i) améliorer les propriétés par raffinement de microstructure jusqu’à une échelle sub-micrométrique ii) l'élaboration d'un matériau modèle permettant de comprendre le comportement DSS obtenu par les méthodes métallurgique conventionnelles. Le premier objectif de ce travail était, par conséquent, la mise en œuvre d'une méthodologie de fabrication en utilisant la technique SPD par co-tréfilage. Cette technique permettra l'obtention d'une microstructure ultrafine des composites 316L / 430LNb. L'un des défis rencontrés au cours de notre étude était l'inter-diffusion significative lors de traitement thermique susceptible de limiter un raffinement supplémentaire de la microstructure en question. Une étude d'optimisation a été effectuée pour tenir compte du rôle de cette inter-diffusion pour un couple 316L / 430LNb. Ainsi, des micro-composites multi-échelles ont été obtenus. Dans ce travail, nous avons montré la limitation de ce processus en termes de raffinement de microstructure. Une rationalisation de ces limites a été donnée par une étude thermocinétiques sur les micro-composites et matériaux brut initialement utilisés. Parallèlement à l'évaluation de la microstructure, le comportement mécanique de ces nouveaux micro-composites a été examiné. Afin de fournir une explication plus approfondie sur le comportement plastique de nos composites, des essais de traction in situ par rayonnement X synchrotron à haute énergie ont été effectués
The use of duplex stainless steel (DSS) grades for structural applications is considered as one of the most significant advances impacting the construction sector. This is because of their high mechanical properties coupled with interesting functional properties such as corrosion resistance or even the low thermal conductivity compared to carbon steels. Due to their complex microstructure and interaction between the phases, DSS have a significant potential for unique properties. A better understanding is needed to give the possibility to obtain break through properties and to provide the possibility to design tailor-made, architectured DSS for specific applications. In this work we proposed a different approach from that used until now to understand the behavior of DSS. The strategy adopted in this work was a top-down strategy in which at least two bulk metals with well known behavior and properties are mechanically alloyed by Severe Plastic Deformation (SPD). This proposed strategy served two main objectives: i) enhancing the properties by microstructure refining down to sub-micron scale ii) elaborating a material model for understanding the DSS behavior obtained by the conventional metallurgical methods. The first objective of this work was, therefore, the implementation of a methodology of manufacturing using SPD technique by co-drawing. This technique will allow obtaining an ultra-fine microstructure of 316L/430LNb composites. One of the challenges met during our study was the significant inter-diffusion during heat-treatment step necessary during processing preventing by consequence further refining. An optimization investigation was carried out to account the role of this inter-diffusion for 316L/430LNb couple. Multi-scale micro-composites have been then obtained. In this work, we showed the limitation of this process in terms of microstructure refining. A rationalization of these limits was given by studying the thermo-kinetics of both micro-composites and bulk materials. In parallel with the microstructural evaluation, the mechanical behavior of these new micr-composites was examined. In order to provide a more in-depth explanation of the plastic behavior of our composites, in situ tensile test using high energy X-ray synchrotron have been performed
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography