Journal articles on the topic 'Durotaxie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Durotaxie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sunyer, Raimon, and Xavier Trepat. "Durotaxis." Current Biology 30, no. 9 (2020): R383—R387. http://dx.doi.org/10.1016/j.cub.2020.03.051.
Full textHuang, Yuxing, Jing Su, Jiayong Liu, et al. "YAP Activation in Promoting Negative Durotaxis and Acral Melanoma Progression." Cells 11, no. 22 (2022): 3543. http://dx.doi.org/10.3390/cells11223543.
Full textPuleo, Julieann I., Sara S. Parker, Mackenzie R. Roman, et al. "Mechanosensing during directed cell migration requires dynamic actin polymerization at focal adhesions." Journal of Cell Biology 218, no. 12 (2019): 4215–35. http://dx.doi.org/10.1083/jcb.201902101.
Full textStyle, R. W., Y. Che, S. J. Park, et al. "Patterning droplets with durotaxis." Proceedings of the National Academy of Sciences 110, no. 31 (2013): 12541–44. http://dx.doi.org/10.1073/pnas.1307122110.
Full textHartman, Christopher D., Brett C. Isenberg, Samantha G. Chua, and Joyce Y. Wong. "Vascular smooth muscle cell durotaxis depends on extracellular matrix composition." Proceedings of the National Academy of Sciences 113, no. 40 (2016): 11190–95. http://dx.doi.org/10.1073/pnas.1611324113.
Full textYuehua, YANG, and JIANG Hongyuan. "Research Advances in Cell Durotaxis." 应用数学和力学 42, no. 10 (2021): 999–1007. http://dx.doi.org/10.21656/1000-0887.420265.
Full textBueno, Jesus, Yuri Bazilevs, Ruben Juanes, and Hector Gomez. "Wettability control of droplet durotaxis." Soft Matter 14, no. 8 (2018): 1417–26. http://dx.doi.org/10.1039/c7sm01917c.
Full textDoering, Charles R., Xiaoming Mao, and Leonard M. Sander. "Random walker models for durotaxis." Physical Biology 15, no. 6 (2018): 066009. http://dx.doi.org/10.1088/1478-3975/aadc37.
Full textStefanoni, Filippo, Maurizio Ventre, Francesco Mollica, and Paolo A. Netti. "A numerical model for durotaxis." Journal of Theoretical Biology 280, no. 1 (2011): 150–58. http://dx.doi.org/10.1016/j.jtbi.2011.04.001.
Full textParida, Lipika, and Venkat Padmanabhan. "Durotaxis in Nematode Caenorhabditis elegans." Biophysical Journal 111, no. 3 (2016): 666–74. http://dx.doi.org/10.1016/j.bpj.2016.06.030.
Full textDuChez, Brian J., Andrew D. Doyle, Emilios K. Dimitriadis, and Kenneth M. Yamada. "Durotaxis by Human Cancer Cells." Biophysical Journal 116, no. 4 (2019): 670–83. http://dx.doi.org/10.1016/j.bpj.2019.01.009.
Full textMoriyama, Kousuke, and Satoru Kidoaki. "Cellular Durotaxis Revisited: Initial-Position-Dependent Determination of the Threshold Stiffness Gradient to Induce Durotaxis." Langmuir 35, no. 23 (2018): 7478–86. http://dx.doi.org/10.1021/acs.langmuir.8b02529.
Full textFeng, Jingchen, Herbert Levine, Xiaoming Mao, and Leonard M. Sander. "Cell motility, contact guidance, and durotaxis." Soft Matter 15, no. 24 (2019): 4856–64. http://dx.doi.org/10.1039/c8sm02564a.
Full textNovikova, Elizaveta A., Matthew Raab, Dennis E. Discher, and Cornelis Storm. "Cellular Durotaxis from Differentially Persistent Motility." Biophysical Journal 112, no. 3 (2017): 436a. http://dx.doi.org/10.1016/j.bpj.2016.11.2327.
Full textLazopoulos, Konstantinos A., and Dimitrije Stamenović. "Durotaxis as an elastic stability phenomenon." Journal of Biomechanics 41, no. 6 (2008): 1289–94. http://dx.doi.org/10.1016/j.jbiomech.2008.01.008.
Full textGomez, Hector, and Mirian Velay-Lizancos. "Thin-film model of droplet durotaxis." European Physical Journal Special Topics 229, no. 2-3 (2020): 265–73. http://dx.doi.org/10.1140/epjst/e2019-900127-x.
Full textWei, Jie, Xiaofeng Chen, and Bin Chen. "Harnessing structural instability for cell durotaxis." Acta Mechanica Sinica 35, no. 2 (2019): 355–64. http://dx.doi.org/10.1007/s10409-019-00853-2.
Full textKassianides, Christoforos, Alain Goriely, and Hadrien Oliveri. "The multiscale mechanics of axon durotaxis." Journal of the Mechanics and Physics of Solids 200 (July 2025): 106134. https://doi.org/10.1016/j.jmps.2025.106134.
Full textRaab, Matthew, Joe Swift, P. C. Dave P. Dingal, Palak Shah, Jae-Won Shin, and Dennis E. Discher. "Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain." Journal of Cell Biology 199, no. 4 (2012): 669–83. http://dx.doi.org/10.1083/jcb.201205056.
Full textMcKenzie, Andrew J., Kathryn V. Svec, Tamara F. Williams, and Alan K. Howe. "Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis." Molecular Biology of the Cell 31, no. 1 (2020): 45–58. http://dx.doi.org/10.1091/mbc.e19-03-0131.
Full textLiu, Yang, Jiwen Cheng, Hui Yang, and Guang-Kui Xu. "Rotational constraint contributes to collective cell durotaxis." Applied Physics Letters 117, no. 21 (2020): 213702. http://dx.doi.org/10.1063/5.0031846.
Full textHarland, Ben, Sam Walcott, and Sean X. Sun. "Adhesion dynamics and durotaxis in migrating cells." Physical Biology 8, no. 1 (2011): 015011. http://dx.doi.org/10.1088/1478-3975/8/1/015011.
Full textHarland, Ben, Sam Walcott, and Sean X. Sun. "Adhesion Dynamics and Durotaxis in Migrating Cells." Biophysical Journal 100, no. 3 (2011): 303a. http://dx.doi.org/10.1016/j.bpj.2010.12.1855.
Full textJain, Gaurav, Andrew J. Ford, and Padmavathy Rajagopalan. "Opposing Rigidity-Protein Gradients Reverse Fibroblast Durotaxis." ACS Biomaterials Science & Engineering 1, no. 8 (2015): 621–31. http://dx.doi.org/10.1021/acsbiomaterials.5b00229.
Full textRiaz, Maryam, Marie Versaevel, and Sylvain Gabriele. "On the Mechanism of Durotaxis in Motile Cells." Biophysical Journal 106, no. 2 (2014): 571a. http://dx.doi.org/10.1016/j.bpj.2013.11.3167.
Full textEscribano, Jorge, Raimon Sunyer, María Teresa Sánchez, Xavier Trepat, Pere Roca-Cusachs, and José Manuel García-Aznar. "A hybrid computational model for collective cell durotaxis." Biomechanics and Modeling in Mechanobiology 17, no. 4 (2018): 1037–52. http://dx.doi.org/10.1007/s10237-018-1010-2.
Full textVicente-Manzanares, Miguel. "Cell Migration: Cooperation between Myosin II Isoforms in Durotaxis." Current Biology 23, no. 1 (2013): R28—R29. http://dx.doi.org/10.1016/j.cub.2012.11.024.
Full textVicente-Manzanares, Miguel. "Cell Migration: Cooperation between Myosin II Isoforms in Durotaxis." Current Biology 23, no. 5 (2013): 441. http://dx.doi.org/10.1016/j.cub.2013.02.014.
Full textWieland, Annalena, Pamela L. Strissel, Hannah Schorle, et al. "Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts." Cancers 13, no. 20 (2021): 5144. http://dx.doi.org/10.3390/cancers13205144.
Full textWieland, Annalena, Pamela L. Strissel, Hannah Schorle, et al. "Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts." Cancers 13, no. 20 (2021): 5144. http://dx.doi.org/10.3390/cancers13205144.
Full textShellard, Adam, and Roberto Mayor. "Collective durotaxis along a self-generated stiffness gradient in vivo." Nature 600, no. 7890 (2021): 690–94. http://dx.doi.org/10.1038/s41586-021-04210-x.
Full textSunyer, R., V. Conte, J. Escribano, et al. "Collective cell durotaxis emerges from long-range intercellular force transmission." Science 353, no. 6304 (2016): 1157–61. http://dx.doi.org/10.1126/science.aaf7119.
Full textMartinez, Jessica S., Ali M. Lehaf, Joseph B. Schlenoff, and Thomas C. S. Keller. "Cell Durotaxis on Polyelectrolyte Multilayers with Photogenerated Gradients of Modulus." Biomacromolecules 14, no. 5 (2013): 1311–20. http://dx.doi.org/10.1021/bm301863a.
Full textVincent, Ludovic G., Yu Suk Choi, Baldomero Alonso-Latorre, Juan C. del Álamo, and Adam J. Engler. "Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength." Biotechnology Journal 8, no. 4 (2013): 472–84. http://dx.doi.org/10.1002/biot.201200205.
Full textPamonag, Michael, Abigail Hinson, Elisha J. Burton, et al. "Individual cells generate their own self-reinforcing contact guidance cues through local matrix fiber remodeling." PLOS ONE 17, no. 3 (2022): e0265403. http://dx.doi.org/10.1371/journal.pone.0265403.
Full textAubry, D., M. Gupta, B. Ladoux, and R. Allena. "Mechanical link between durotaxis, cell polarity and anisotropy during cell migration." Physical Biology 12, no. 2 (2015): 026008. http://dx.doi.org/10.1088/1478-3975/12/2/026008.
Full textIsenberg, Brett C., Paul A. DiMilla, Matthew Walker, Sooyoung Kim, and Joyce Y. Wong. "Vascular Smooth Muscle Cell Durotaxis Depends on Substrate Stiffness Gradient Strength." Biophysical Journal 97, no. 5 (2009): 1313–22. http://dx.doi.org/10.1016/j.bpj.2009.06.021.
Full textKuntanawat, P., C. Wilkinson, and M. Riehle. "Observation of durotaxis on a well-defined continuous gradient of stiffness." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146, no. 4 (2007): S192. http://dx.doi.org/10.1016/j.cbpa.2007.01.421.
Full textWormer, Duncan B., Kevin A. Davis, James H. Henderson, and Christopher E. Turner. "The Focal Adhesion-Localized CdGAP Regulates Matrix Rigidity Sensing and Durotaxis." PLoS ONE 9, no. 3 (2014): e91815. http://dx.doi.org/10.1371/journal.pone.0091815.
Full textEbata, Hiroyuki, Kousuke Moriyama, Thasaneeya Kuboki, and Satoru Kidoaki. "General cellular durotaxis induced with cell-scale heterogeneity of matrix-elasticity." Biomaterials 230 (February 2020): 119647. http://dx.doi.org/10.1016/j.biomaterials.2019.119647.
Full textShellard, Adam, and Roberto Mayor. "Publisher Correction: Collective durotaxis along a self-generated stiffness gradient in vivo." Nature 601, no. 7894 (2022): E33. http://dx.doi.org/10.1038/s41586-021-04367-5.
Full textBudde, Ilka, David Ing, Albrecht Schwab, and Zoltan Denes Petho. "Mechanosensitive ion channels are essential for the durotaxis of pancreatic stellate cells." Biophysical Journal 121, no. 3 (2022): 314a. http://dx.doi.org/10.1016/j.bpj.2021.11.1181.
Full textAlert, Ricard, and Jaume Casademunt. "Role of Substrate Stiffness in Tissue Spreading: Wetting Transition and Tissue Durotaxis." Langmuir 35, no. 23 (2018): 7571–77. http://dx.doi.org/10.1021/acs.langmuir.8b02037.
Full textAllena, R., M. Scianna, and L. Preziosi. "A Cellular Potts Model of single cell migration in presence of durotaxis." Mathematical Biosciences 275 (May 2016): 57–70. http://dx.doi.org/10.1016/j.mbs.2016.02.011.
Full textMalik, Adam A., and Philip Gerlee. "Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis." Journal of Mathematical Biology 78, no. 7 (2019): 2289–315. http://dx.doi.org/10.1007/s00285-019-01344-5.
Full textWhang, Minji, and Jungwook Kim. "Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds." Tissue Engineering and Regenerative Medicine 13, no. 2 (2016): 126–39. http://dx.doi.org/10.1007/s13770-016-0026-x.
Full textMarzban, Bahador, Xin Yi, and Hongyan Yuan. "A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis." Biomechanics and Modeling in Mechanobiology 17, no. 3 (2018): 915–22. http://dx.doi.org/10.1007/s10237-018-1001-3.
Full textZhang, Zhiwen, Phoebus Rosakis, Thomas Y. Hou, and Guruswami Ravichandran. "A minimal mechanosensing model predicts keratocyte evolution on flexible substrates." Journal of The Royal Society Interface 17, no. 166 (2020): 20200175. http://dx.doi.org/10.1098/rsif.2020.0175.
Full textLachowski, Dariusz, Ernesto Cortes, Benjamin Robinson, Alistair Rice, Krista Rombouts, and Armando E. Del Río Hernández. "FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis." FASEB Journal 32, no. 2 (2018): 1099–107. http://dx.doi.org/10.1096/fj.201700721r.
Full textWalker, Matthew L., David House, Margrit Betke, and Joyce Y. Wong. "Using Automated Cell Tracking Software to Quantifying Durokinesis and Durotaxis in Real Time." Biophysical Journal 96, no. 3 (2009): 633a. http://dx.doi.org/10.1016/j.bpj.2008.12.3347.
Full text