Academic literature on the topic 'Dye-sensitized solar cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dye-sensitized solar cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dye-sensitized solar cells"
Rosana, N. T. Mary, and Joshua Amarnath . D. "Dye Sensitized Solar Cells for The Transformation of Solar Radiation into Electricity." Indian Journal of Applied Research 4, no. 6 (October 1, 2011): 169–70. http://dx.doi.org/10.15373/2249555x/june2014/53.
Full textWei, Di. "Dye Sensitized Solar Cells." International Journal of Molecular Sciences 11, no. 3 (March 16, 2010): 1103–13. http://dx.doi.org/10.3390/ijms11031103.
Full textGrätzel, Michael. "Dye-sensitized solar cells." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4, no. 2 (October 2003): 145–53. http://dx.doi.org/10.1016/s1389-5567(03)00026-1.
Full textHagfeldt, Anders, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson. "Dye-Sensitized Solar Cells." Chemical Reviews 110, no. 11 (November 10, 2010): 6595–663. http://dx.doi.org/10.1021/cr900356p.
Full textZulkifili, Arini Nuran Binti, Terauchi Kento, Matsutake Daiki, and Akira Fujiki. "The Basic Research on the Dye-Sensitized Solar Cells (DSSC)." Journal of Clean Energy Technologies 3, no. 5 (2015): 382–87. http://dx.doi.org/10.7763/jocet.2015.v3.228.
Full textKong, Fan-Tai, Song-Yuan Dai, and Kong-Jia Wang. "Review of Recent Progress in Dye-Sensitized Solar Cells." Advances in OptoElectronics 2007 (August 29, 2007): 1–13. http://dx.doi.org/10.1155/2007/75384.
Full textNahar, Kamrun. "A Review on Natural Dye Sensitized Solar Cells: Dye Extraction, Application and Comparing the Performance." Advanced Engineering Forum 39 (February 2021): 63–73. http://dx.doi.org/10.4028/www.scientific.net/aef.39.63.
Full textM. Johnson, Noah, Yuriy Y. Smolin, Chris Shindler, Daniel Hagaman, Masoud Soroush, Kenneth K. S. Lau, and Hai-Feng Ji. "Photochromic dye-sensitized solar cells." AIMS Materials Science 2, no. 4 (2015): 503–9. http://dx.doi.org/10.3934/matersci.2015.4.503.
Full textHellert, Christian, Christian Klemt, Uta Scheidt, Irén Juhász Junger, Eva Schwenzfeier-Hellkamp, and Andrea Ehrmann. "Rehydrating dye sensitized solar cells." AIMS Energy 5, no. 3 (2017): 397–403. http://dx.doi.org/10.3934/energy.2017.3.397.
Full textLiu, Jingyuan, Renzhi Li, Xiaoying Si, Difei Zhou, Yushuai Shi, Yinghui Wang, Xiaoyan Jing, and Peng Wang. "Oligothiophene dye-sensitized solar cells." Energy & Environmental Science 3, no. 12 (2010): 1924. http://dx.doi.org/10.1039/c0ee00304b.
Full textDissertations / Theses on the topic "Dye-sensitized solar cells"
Risbridger, Thomas Arthur George. "Aqueous dye sensitized solar cells." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607628.
Full textPalma, Giuseppina. "Nanostructured dye-sensitized solar cells." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/9972.
Full textDye-sensitized solar cells (DSSCs) represent a promising alternative to silicon-based technology. From the first publications about DSSCs in the 90s, they are considered an important breakthrough for achieving high efficiency by using relatively inexpensive and abundant materials. Stability and efficiency are two crucial points in the development of this new class of hybrid photovoltaic devices. Most of the DSSC studies carried out over the past twenty years are based on the optimization of these two aspects. In particular, no particular efficiency improvement was obtained in the last period, although many efforts have been made for the research of appropriate solutions able to allow to fabricate more efficient devices. In this scenario, the topic of interest for this thesis is to further enhance the photovoltaic performance of DSSCs by integrating a nano-engineered TiOx photoanode obtained by means of a new nanostructuring method. This novel method, called ASB-SANS (Auxiliary Solvent-Based Sublimation-Aided NanoStructuring) allows the fast nanostructuring of a material in conditions of room temperature and atmospheric pressure. The nanostructuring process occurs by means of an auxiliary sublimating substance that, after having influenced the spatial arrangement of the material to be nanostructured, sublimates away from the system spontaneously. So-obtained TiOx photoanodes are characterized by an inner surface area which is higher than that of commonly used photoanodes. This implies that higher dye loading values are possible, in turn meaning an increase of photogenerated charge carriers upon sunlight absorption, hence an overall increase of the DSSC efficiency. This thesis is structured as following: - Chapter 1 is a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the dye cell; - Chapter 2 presents the motivation and objectives of PhD work, with particular interest in the state of art on the semiconductor layer optimization; - Chapter 3 contains a description of the two instrumental systems assembled by the author and colleagues for the characterization of photovoltaic devices (current/voltage recording system and IPCE system). A particular focus is put on the development of a tool for the determination of the photovoltaic quantum efficiency obtained by the conversion of a common UV-Vis spectrometer; - Chapter 4 is focused on the description of two methods for the determination of the active sites (dye grafting points) of the TiOx surface: the first based on the acetic acid adsorption and the second on the dye molecules adsorption. These methods are used for the characterization of all fabricated photoanodes; - Chapter 5 starts with the proven effectiveness of the ASB-SANS method applied to nanostructuring, over relatively large areas, a semiconducting polymer widely used in organic solar cells. The chapter is then focused on the description of the ASB-SANS method applied to fabricate our nano-engineered photoanodes; - Chapter 6 presents the results obtained by the application of the nano-engineered photoanodes in photovoltaic devices; - Chapter 7 reports some final conclusions together with our outlooks in the future research and development of the nano-engineered photoanodes for dye-sensitized solar cells.
Le celle solari a colorante organico (DSSC) proposte da Grätzel rappresentano una promettente alternativa alle tecnologie basate sul silicio già in commercio. Dalle prime pubblicazioni negli anni 90 esse hanno reppresentato un importante passo avanti per raggiungere un’efficienza relativamente alta utilizzando materiali poco costosi e abbondanti in natura. Gli aspetti più importanti per lo sviluppo di questa tecnologia sono la stabilità e l’efficienza, su cui si fonda la maggior parte degli studi sulle DSSC condotti negli ultimi vent’anni. In particolare, nonostante gli sforzi enormi nella ricerca di soluzioni appropriate che consentissero di fabbricare dispositivi più efficienti, nessun particolare incremento di efficienze è stato registrato. In questo scenario, il presente lavoro di tesi ha come scopo il miglioramento della performance fotovoltaica di DSSC attraverso l’integrazione al loro interno di un fotoanodo di TiOx nanostrutturato utilizzando un nuovo metodo di fabbricazione. Questo metodo, denominato ASB-SANS (Auxiliary Solvent- Based Sublimation-Aided NanoStructuring) permette la nanostrutturazione di un materiale senza dispendio di tempo ed in condizioni di temperatura ambiente e pressione atmosferica. La nanostrutturazione di un materiale avviene per mezzo di un sublimante ausiliario che, dopo aver influenzato la disposizione spaziale del materiale, si allontana dal sistema spontaneamente per semplice sublimazione. I fotoanodi di TiOx così ottenuti presentano una superficie esposta all’attacco del colorante maggiore di quella esposta generalmente dai fotoanodi comunemente impiegati. Ciò comporta un aumento della quantità di colorante che il fotoanodo può adsorbire che si traduce in un aumento della quantità di portatori di carica che si possono generare per effetto dell’assorbimento della luce solare. Il miglioramento della corrente generata nel dispositivo influenzerà positivamente l’efficienza globale della cella DSSC. Il presente lavoro di tesi è strutturato nel seguente modo: - il Capitolo 1 costituisce l’introduzione alla tematica di interesse con un approfondimento descrittivo dei componenti di una DSSC e del suo funzionamento; - il Capitolo 2 espone la motivazione e gli obbiettivi del lavoro di dottorato con particolare interesse verso lo stato dell’arte inerente alla motivazione espressa; - il Capitolo 3 contiene la descrizione accurata dei sistemi di caratterizzazione di dispositivi fotovoltaici. Di particolare rilievo è la messa a punto di uno strumento per la determinazione dell’efficienza quantica. Quest’ultimo è stato ottenuto assemblando un comune spettrometro UV-Vis con un multimetro per la registrazione delle correnti generate dalla cella; - il Capitolo 4 improntato sulla descrizione di due metodi per la determinazione dei siti attivi (punti di attacco del colorante) presenti sulla superficie del TiOx: il primo basato sull’adsorbimento dell’acido acetico e il secondo sull’adsorbimento delle molecole di colorante. Tali metodi serviranno per la caratterizzazione dei fotoanodi nanostrutturati; - il Capitolo 5 si apre con la provata efficacia del metodo di nanostrutturazione ASB-SANS applicato su polimeri di interesse fotovoltaico. Il fulcro del capitolo è tutto rivolto alla descrizione del metodo applicato al sistema di nanoparticelle di TiOx, con tute le soluzioni tecniche adottate per renderlo altrettanto efficace su questo genere di sistemi; - il Capitolo 6 riporta i risultati ottenuti per l’applicazione dei fotoanodi del capitolo 5 all’interno dei dispositivi fotovoltaici; - il capitolo 7 conclude il lavoro e riporta le eventuali prospettive per il futuro.
XXVI Ciclo
1984
Greijer, Agrell Helena. "Interactions in Dye-sensitized Solar Cells." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3752.
Full textCameron, Petra Jane. "Studies of dye sensitized solar cells." Thesis, University of Bath, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407482.
Full textMaluta, Eric N. "Simulations of dye-sensitized solar cells." Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538165.
Full textZahiko, I. V. "TiO2-based dye-sensitized solar cells." Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/34953.
Full textAlmodôvar, Vítor Alexandre da Silva. "Diketopyrrolopyrroles for dye-sensitized solar cells." Master's thesis, Universidade de Évora, 2017. http://hdl.handle.net/10174/22074.
Full textBELLA, FEDERICO. "Photopolymers for dye-sensitized solar cells." Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2594972.
Full textPellejà, i. Puxeu Laia. "Exploring novel dye concepts in dye sensitized solar cells." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/284156.
Full textThis thesis is based on a type of photovoltaic devices; the dye sensitized solar cells (DSCs). In the last two decades, the study of these devices has been increased and currently results with over 13% efficiency have been published. The first chapter discusses the various components of this kind of device, its function and its components. It is also explained how these cells work and all the reactions and physical phenomena that take place. The second chapter explains how to prepare these devices and how are characterized. And the third, fourth, fifth and sixth chapters are based on diverse articles published and the difference between them is the kind of dye. In chapter 3, the dyes used are porphyrins, chapter 4 is based on phthalocyanines, chapter 5 is centred on organic dyes that have a structure called donor-acceptor with a π-bridge type in between and chapter 6 studies two ruthenium complexes.
Jim, Wai-yan, and 詹煒炘. "Tin oxide based dye sensitized solar cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206431.
Full textpublished_or_final_version
Physics
Master
Master of Philosophy
Books on the topic "Dye-sensitized solar cells"
Kosyachenko, Leonid A. Solar cells: Dye-sensitized devices. Rijeka, Croatia: InTech, 2011.
Find full textTravino, Michael R. Dye-sensitized solar cells and solar cell performance. Hauppauge, N.Y: Nova Science Publisher, 2011.
Find full textA new sight towards dye-sensitized solar cells: Material and theoretical. Stafa-Zurich: Trans Tech Publications, 2011.
Find full textArakawa, Hironori. Shikiso zōkan taiyō denchi no saishin gijutsu. Tōkyō: Shīemushī Suppan, 2001.
Find full textZ, Zhang Jin, Clark Hal, California Energy Commission. Energy Innovations Small Grant Program., and California Energy Commission. Public Interest Energy Research., eds. Development and characterization of improved solid state dye-sensitized nanocrystalline solar cells. [Sacramento, Calif.]: Public Interest Energy Research, California Energy Commission, 2003.
Find full textYun, Sining, and Anders Hagfeldt, eds. Counter Electrodes for Dye-sensitized and Perovskite Solar Cells. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.
Full textYŏnʼguwŏn, Hanʼguk Chŏnja Tʻongsin, and Korea (South) Chŏngbo Tʻongsinbu, eds. Chʻa sedae PC-yong ioniksŭ soja kaebal =: Development of ionics device for operating next-generation PC. [Seoul]: Chŏngbo Tʻongsinbu, 2005.
Find full textPandikumar, Alagarsamy, and R. Jothilakshmi. Potential development in dye-sensitized solar cells for renewable energy. Durnten-Zurich: Trans Tech Publications Ltd, 2014.
Find full textJinkō kōgōsei to yūkikei taiyō denchi: Saishin no gijutsu to sono kenkyū kaihatsu = Artificial photosynthesis and organic solar cell. Kyōto-shi: Kagaku Dōjin, 2010.
Find full textBook chapters on the topic "Dye-sensitized solar cells"
Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma, and Qian Feng. "Dye-Sensitized Solar Cell." In Semiconductor Photovoltaic Cells, 325–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_8.
Full textMunukutla, Lakshmi V., Aung Htun, Sailaja Radhakrishanan, Laura Main, and Arunachala M. Kannan. "Dye-Sensitized Solar Cells." In Solar Cell Nanotechnology, 159–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch6.
Full textZdyb, Agata. "Dye-sensitized Solar Cells." In Third Generation Solar Cells, 47–68. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003196785-3.
Full textHara, Kohjiro, and Shogo Mori. "Dye-Sensitized Solar Cells." In Handbook of Photovoltaic Science and Engineering, 642–74. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470974704.ch15.
Full textHara, Kohjiro, and Hironori Arakawa. "Dye-Sensitized Solar Cells." In Handbook of Photovoltaic Science and Engineering, 663–700. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470014008.ch15.
Full textGodin, Biana, Elka Touitou, Rajaram Krishnan, Michael J. Heller, Nicolas G. Green, Hossein Nili, David J. Bakewell, et al. "Dye Sensitized Solar Cells." In Encyclopedia of Nanotechnology, 604. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100196.
Full textKhanna, Vinod Kumar. "Dye-Sensitized Solar Cells." In Nano-Structured Photovoltaics, 163–81. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003215158-10.
Full textKroon, Jan, and Andreas Hinsch. "Dye-Sensitized Solar Cells." In Organic Photovoltaics, 273–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05187-0_7.
Full textHočevar, Mateja, Marko Berginc, Urša Opara Krašovec, and Marko Topič. "Dye-Sensitized Solar Cells." In Sol-Gel Processing for Conventional and Alternative Energy, 147–75. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1957-0_8.
Full textAgasti, Amrut, Lekha Peedikakkandy, Rahul Kumar, Shyama Prasad Mohanty, Vivekanand P. Gondane, and Parag Bhargava. "Dye-Sensitized Solar Cells." In Springer Handbook of Inorganic Photochemistry, 1137–214. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-63713-2_39.
Full textConference papers on the topic "Dye-sensitized solar cells"
Orebiyi, Joshua, Benjamin Barnes, and Kausiksankar Das. "Dye Sensitized Solar Cells." In The 16th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Innovation in Education and Inclusion”. Latin American and Caribbean Consortium of Engineering Institutions, 2018. http://dx.doi.org/10.18687/laccei2018.1.1.79.
Full textTobin, Laura L., Thomas O'Reilly, Dominic Zerulla, and John T. Sheridan. "Characterising dye-sensitized solar cells." In SPIE Photonic Devices + Applications, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2009. http://dx.doi.org/10.1117/12.826221.
Full textBuraidah, M. H., L. P. Teo, Shahan Shah, M. A. Careem, I. Albinsson, B. E. Mellander, and A. K. Arof. "Solar Module Using Dye-Sensitized Solar Cells." In 2018 20th International Conference on Transparent Optical Networks (ICTON). IEEE, 2018. http://dx.doi.org/10.1109/icton.2018.8473702.
Full textHan, Liyuan, and Ashraful Islam. "Highly efficient dye-sensitized solar cells." In SPIE Photonic Devices + Applications, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2009. http://dx.doi.org/10.1117/12.829181.
Full textHolliman, Peter, Kakali Sen, Diana Meza-Rojas, Rosie Anthony, Eurig Jones, Christopher Kersahw, Arthur Connell, et al. "Surface Engineering Dye-sensitized Solar Cells." In 11th International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.hopv.2019.016.
Full textHan, Liyuan. "Highly Efficient Dye-Sensitized Solar Cells." In Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asu2a.2.
Full textNguyen, Crystal, Daniel Volpe, William Wilson, Mansour Zenouzi, and Jason Avent. "Efficiency Experiments on Modified Dye Sensitized Solar Cells." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68773.
Full textRoy, M. S., Y. S. Deol, Manish Kumar, Narottam Prasad, Yojana Janu, P. Predeep, Mrinal Thakur, and M. K. Ravi Varma. "Dye-sensitized Solar Cells for Solar Energy Harvesting." In OPTICS: PHENOMENA, MATERIALS, DEVICES, AND CHARACTERIZATION: OPTICS 2011: International Conference on Light. AIP, 2011. http://dx.doi.org/10.1063/1.3646776.
Full textSaxena, Vibha, P. Veerender, A. K. Chauhan, P. Jha, D. K. Aswal, and S. K. Gupta. "Metal-free organic dye for dye sensitized solar cells." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710177.
Full textBerginc, Marko, Ursa Opara Krasovec, Etienne Quesnel, and Marko Topic. "Plasmonic effect in dye-sensitized solar cells." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6317558.
Full textReports on the topic "Dye-sensitized solar cells"
Sweeney, Charles B., Mark Bundy, Mark Griep, and Shashi P. Karna. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada611102.
Full textJames, Keith. The Effects of Phosphonic Acids in Dye-Sensitized Solar Cells. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2946.
Full textHANNA, LAUREN, and PATRICK WARD. ENHANCING CHARGE INJECTION IN POLYOXOMETALATE-BASED DYE-SENSITIZED SOLAR CELLS. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1891252.
Full textCramer, Hailey E., Mark H. Griep, and Shashi P. Karna. Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada568748.
Full textHamann, Thomas. Molecular and Material Approaches to Overcome Kinetic and Energetic Constraints in Dye-Sensitized Solar Cells. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1338205.
Full textElliott, C. Michael, and Amy L. Prieto. Transition Metal Polypyridine Complexes: Studies of Mediation in Dye-Sensitized Solar Cells and Charge Separation. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1342993.
Full textChauhan, Rahul. Development of dye-sensitized solar cells using algal-based natural dyes for climate change mitigation. Peeref, December 2022. http://dx.doi.org/10.54985/peeref.2212p1968754.
Full textBOWERMAN, B., and V. FTHENAKIS. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/788240.
Full textBOWERMAN, B., and V. FTHENAKIS. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/789278.
Full textHesselsweet, Ian. Polyaniline Nanofibers as the Hole Transport Medium in an Inverse Dye-Sensitized Solar Cell. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.710.
Full text