Journal articles on the topic 'Dynamic coacervates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dynamic coacervates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gruber, Dominik, Cristina Ruiz-Agudo, Ashit Rao, Simon Pasler, Helmut Cölfen, and Elena V. Sturm. "Complex Coacervates: From Polyelectrolyte Solutions to Multifunctional Hydrogels for Bioinspired Crystallization." Crystals 14, no. 11 (2024): 959. http://dx.doi.org/10.3390/cryst14110959.
Full textFurlani, Franco, Pietro Parisse, and Pasquale Sacco. "On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates." Molecules 25, no. 5 (2020): 1071. http://dx.doi.org/10.3390/molecules25051071.
Full textZeng, Yuqi, Long Zhao, Yihao Liu, Tianhuan Peng, Yifan Lyu, and Quan Yuan. "Biomimetic and Biological Applications of DNA Coacervates." Chinese Journal of Chemistry 43, no. 12 (2025): 1442–62. https://doi.org/10.1002/cjoc.202401276.
Full textZheng, Jiabao, Qing Gao, Ge Ge та ін. "Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates". Food Hydrocolloids 124 (березень 2022): 107339. http://dx.doi.org/10.1016/j.foodhyd.2021.107339.
Full textVecchies, Federica, Pasquale Sacco, Eleonora Marsich, Giuseppe Cinelli, Francesco Lopez, and Ivan Donati. "Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates." Polymers 12, no. 4 (2020): 897. http://dx.doi.org/10.3390/polym12040897.
Full textAponte-Rivera, Christian, and Michael Rubinstein. "Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes." Macromolecules 54, no. 4 (2021): 1783–800. http://dx.doi.org/10.1021/acs.macromol.0c01393.
Full textMohanty, B., V. K. Aswal, P. S. Goyal, and H. B. Bohidar. "Small-angle neutron and dynamic light scattering study of gelatin coacervates." Pramana 63, no. 2 (2004): 271–76. http://dx.doi.org/10.1007/bf02704984.
Full textLin, Ya’nan, Hairong Jing, Zhijun Liu, Jiaxin Chen, and Dehai Liang. "Dynamic Behavior of Complex Coacervates with Internal Lipid Vesicles under Nonequilibrium Conditions." Langmuir 36, no. 7 (2020): 1709–17. http://dx.doi.org/10.1021/acs.langmuir.9b03561.
Full textWang, Lechuan, Mengzhuo Liu, Panpan Guo, et al. "Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes." Food Chemistry 414 (July 2023): 135718. http://dx.doi.org/10.1016/j.foodchem.2023.135718.
Full textFurlani, Franco, Ivan Donati, Eleonora Marsich, and Pasquale Sacco. "Characterization of Chitosan/Hyaluronan Complex Coacervates Assembled by Varying Polymers Weight Ratio and Chitosan Physical-Chemical Composition." Colloids and Interfaces 4, no. 1 (2020): 12. http://dx.doi.org/10.3390/colloids4010012.
Full textBohidar, H., P. L. Dubin, P. R. Majhi, C. Tribet, and W. Jaeger. "Effects of Protein−Polyelectrolyte Affinity and Polyelectrolyte Molecular Weight on Dynamic Properties of Bovine Serum Albumin−Poly(diallyldimethylammonium chloride) Coacervates." Biomacromolecules 6, no. 3 (2005): 1573–85. http://dx.doi.org/10.1021/bm049174p.
Full textDanielsen, Scott P. O., James McCarty, Joan-Emma Shea, Kris T. Delaney, and Glenn H. Fredrickson. "Molecular design of self-coacervation phenomena in block polyampholytes." Proceedings of the National Academy of Sciences 116, no. 17 (2019): 8224–32. http://dx.doi.org/10.1073/pnas.1900435116.
Full textBos, Inge, Eline Brink, Lucile Michels, and Joris Sprakel. "DNA dynamics in complex coacervate droplets and micelles." Soft Matter 18, no. 10 (2022): 2012–27. http://dx.doi.org/10.1039/d1sm01787j.
Full textTom, Jenna K. A., and Ashok A. Deniz. "Complex dynamics of multicomponent biological coacervates." Current Opinion in Colloid & Interface Science 56 (December 2021): 101488. http://dx.doi.org/10.1016/j.cocis.2021.101488.
Full textPeixoto, Paulo D. S., Guilherme M. Tavares, Thomas Croguennec, et al. "Structure and Dynamics of Heteroprotein Coacervates." Langmuir 32, no. 31 (2016): 7821–28. http://dx.doi.org/10.1021/acs.langmuir.6b01015.
Full textWang, Shengbo, Changlong Chen, Bor-Jier Shiau, and Jeffrey H. Harwell. "Counterion binding on coacervation of dioctyl sulfosuccinate in aqueous sodium chloride." Soft Matter 15, no. 18 (2019): 3771–78. http://dx.doi.org/10.1039/c8sm02531b.
Full textKausik, Ravinath, Aasheesh Srivastava, Peter A. Korevaar, Galen Stucky, J. Herbert Waite, and Songi Han. "Local Water Dynamics in Coacervated Polyelectrolytes Monitored through Dynamic Nuclear Polarization-Enhanced1H NMR." Macromolecules 42, no. 19 (2009): 7404–12. http://dx.doi.org/10.1021/ma901137g.
Full textKausik, Ravinath, Aasheesh Srivastava, Peter A. Korevaar, Galen Stucky, J. Herbert Waite, and Songi Han. "Local Water Dynamics in Coacervated Polyelectrolytes Monitored through Dynamic Nuclear Polarization-Enhanced1H NMR." Macromolecules 43, no. 6 (2010): 3122. http://dx.doi.org/10.1021/ma902825f.
Full textArmstrong, James P. K., Sam N. Olof, Monika D. Jakimowicz, et al. "Cell paintballing using optically targeted coacervate microdroplets." Chemical Science 6, no. 11 (2015): 6106–11. http://dx.doi.org/10.1039/c5sc02266e.
Full textKaroui, Hedi, Marianne J. Seck, and Nicolas Martin. "Self-programmed enzyme phase separation and multiphase coacervate droplet organization." Chemical Science 12, no. 8 (2021): 2794–802. http://dx.doi.org/10.1039/d0sc06418a.
Full textLambden, Edward, and Martin B. Ulmschneider. "Coarse grained antimicrobial coacervated nanoparticle dynamics." Biophysical Journal 122, no. 3 (2023): 371a. http://dx.doi.org/10.1016/j.bpj.2022.11.2044.
Full textLiu, Yang, Rongrong Zou, Yiwei Wang, et al. "Investigating coacervates as drug carriers using molecular dynamics." Precision Medicine and Engineering 1, no. 2 (2024): 100012. http://dx.doi.org/10.1016/j.preme.2024.100012.
Full textKayitmazer, A. Basak, Himadri B. Bohidar, Kevin W. Mattison, et al. "Mesophase separation and probe dynamics in protein–polyelectrolyte coacervates." Soft Matter 3, no. 8 (2007): 1064–76. http://dx.doi.org/10.1039/b701334e.
Full textYu, Boyuan, Phillip M. Rauscher, Nicholas E. Jackson, Artem M. Rumyantsev, and Juan J. de Pablo. "Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates." ACS Macro Letters 9, no. 9 (2020): 1318–24. http://dx.doi.org/10.1021/acsmacrolett.0c00522.
Full textOrtony, Julia H., Dong Soo Hwang, John M. Franck, J. Herbert Waite, and Songi Han. "Asymmetric Collapse in Biomimetic Complex Coacervates Revealed by Local Polymer and Water Dynamics." Biomacromolecules 14, no. 5 (2013): 1395–402. http://dx.doi.org/10.1021/bm4000579.
Full textLiu, Wei, Jie Deng, Siyu Song, Soumya Sethi, and Andreas Walther. "A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior." Communications Chemistry 7, no. 1 (2024). http://dx.doi.org/10.1038/s42004-024-01185-4.
Full textAppelhans, Dietmar, Yang Zhou, Kehu Zhang, Silvia Moreno, Achim Temme, and Brigitte Voit. "Continuous Transformation from Membrane‐less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures." Angewandte Chemie, June 7, 2024. http://dx.doi.org/10.1002/ange.202407472.
Full textAppelhans, Dietmar, Yang Zhou, Kehu Zhang, Silvia Moreno, Achim Temme, and Brigitte Voit. "Continuous Transformation from Membrane‐less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures." Angewandte Chemie International Edition, June 7, 2024. http://dx.doi.org/10.1002/anie.202407472.
Full textCao, Shoupeng, Peng Zhou, Guizhi Shen, et al. "Binary peptide coacervates as an active model for biomolecular condensates." Nature Communications 16, no. 1 (2025). https://doi.org/10.1038/s41467-025-57772-z.
Full textNair, Karthika S., Sreelakshmi Radhakrishnan, and Harsha Bajaj. "Dynamic Duos: Coacervate‐Lipid Membrane Interactions in Regulating Membrane Transformation and Condensate Size." Small, March 30, 2025. https://doi.org/10.1002/smll.202501470.
Full textKluczka, Eugénie, Valentin Rinaldo, Angélique Coutable-Pennarun, Claire Stines-Chaumeil, J. L. Ross Anderson, and Nicolas Martin. "Enhanced Catalytic Activity of a de novo Enzyme in a Coacervate Phase." ChemCatChem, May 8, 2024. http://dx.doi.org/10.1002/cctc.202400558.
Full textCao, Shoupeng, Siyu Song, Tsvetomir Ivanov, et al. "Synthetic Biomolecular Condensates: Phase‐Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential." Angewandte Chemie, November 22, 2024. http://dx.doi.org/10.1002/ange.202418431.
Full textCao, Shoupeng, Siyu Song, Tsvetomir Ivanov, et al. "Synthetic Biomolecular Condensates: Phase‐Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential." Angewandte Chemie International Edition, November 22, 2024. http://dx.doi.org/10.1002/anie.202418431.
Full textWang, Jiahua, Manzar Abbas, Yu Huang, Junyou Wang, and Yuehua Li. "Redox-responsive peptide-based complex coacervates as delivery vehicles with controlled release of proteinous drugs." Communications Chemistry 6, no. 1 (2023). http://dx.doi.org/10.1038/s42004-023-01044-8.
Full textBal, Subhajit, Saurabh Gupta, Chiranjit Mahato, and Dibyendu Das. "Catalytically Active Coacervates Sustained under Out‐of‐Equilibrium Conditions." Angewandte Chemie International Edition, April 14, 2025. https://doi.org/10.1002/anie.202505296.
Full textBal, Subhajit, Saurabh Gupta, Chiranjit Mahato, and Dibyendu Das. "Catalytically Active Coacervates Sustained under Out‐of‐Equilibrium Conditions." Angewandte Chemie, April 14, 2025. https://doi.org/10.1002/ange.202505296.
Full textSugawara-Narutaki, Ayae. "Self-assembled nanofibers and hydrogels of double-hydrophobic elastin-like polypeptides formed via coacervation." Polymer Journal, March 21, 2025. https://doi.org/10.1038/s41428-025-01028-6.
Full textChen, Hongfei, Yishu Bao, Xiaojing Li, et al. "Cell Surface Engineering by Phase‐Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy." Angewandte Chemie International Edition, August 5, 2024. http://dx.doi.org/10.1002/anie.202410566.
Full textChen, Hongfei, Yishu Bao, Xiaojing Li, et al. "Cell Surface Engineering by Phase‐Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy." Angewandte Chemie, August 5, 2024. http://dx.doi.org/10.1002/ange.202410566.
Full textJimenez Granda, Edison Rafael, Hedi Karoui, Xavier Brilland, Jean-Christophe Baret, and Nicolas Martin. "Light‐responsive mononucleotide coacervates." Chemistry – A European Journal, April 17, 2025. https://doi.org/10.1002/chem.202501109.
Full textBlanco‐López, Marcos, Alejandro Marcos‐García, Álvaro González‐Garcinuño, Antonio Tabernero, and Eva M. Martín del Valle. "Exploring the effect of experimental conditions on the synthesis and stability of alginate–gelatin coacervates." Polymers for Advanced Technologies 35, no. 8 (2024). http://dx.doi.org/10.1002/pat.6554.
Full textIvanov, Tsvetomir, Thao P. Doan‐Nguyen, Mohammed Amin Belahouane, et al. "Coacervate Droplets as Biomimetic Models for Designing Cell‐Like Microreactors." Macromolecular Rapid Communications, November 26, 2024. http://dx.doi.org/10.1002/marc.202400626.
Full textChoi, Hyunsuk, Yuri Hong, Saeed Najafi, et al. "Spontaneous Transition of Spherical Coacervate to Vesicle‐Like Compartment." Advanced Science, December 8, 2023. http://dx.doi.org/10.1002/advs.202305978.
Full textNair, Karthika S., Sreelakshmi Radhakrishnan, and Harsha Bajaj. "Dynamic Control of Functional Coacervates in Synthetic Cells." ACS Synthetic Biology, June 19, 2023. http://dx.doi.org/10.1021/acssynbio.3c00249.
Full textSpäth, Fabian, Anton S. Maier, Michele Stasi, et al. "The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervates." Angewandte Chemie International Edition, August 7, 2023. http://dx.doi.org/10.1002/anie.202309318.
Full textSpäth, Fabian, Anton S. Maier, Michele Stasi, et al. "The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervates." Angewandte Chemie, August 7, 2023. http://dx.doi.org/10.1002/ange.202309318.
Full textKishimura, Akihiro, Biplab K C, Teruki Nii, Takeshi Mori, and Yoshiki Katayama. "Dynamic frustrated charge hotspots created by charge density modulation sequester globular proteins into complex coacervates." Chemical Science, 2023. http://dx.doi.org/10.1039/d3sc00993a.
Full textArdestani, Faezeh, Ali Haghighi Asl, and Ali Rafe. "Characterization of caseinate-pectin complex coacervates as a carrier for delivery and controlled-release of saffron extract." Chemical and Biological Technologies in Agriculture 11, no. 1 (2024). http://dx.doi.org/10.1186/s40538-024-00647-0.
Full textGordon-Kim, Christella, Allisandra Rha, George A. Poppitz, et al. "Polyanion order controls liquid-to-solid phase transition in peptide/nucleic acid co-assembly." Frontiers in Molecular Biosciences 9 (November 14, 2022). http://dx.doi.org/10.3389/fmolb.2022.991728.
Full textCai, Jiyang, Shumin Zhang, Shuqin Zheng, Yunyi Yang, Zhili Wan, and Xiaoquan Yang. "Multistep dynamic wetting of soy protein coacervates at hydrophobic interfaces." Food Hydrocolloids, September 2024, 110616. http://dx.doi.org/10.1016/j.foodhyd.2024.110616.
Full text