Academic literature on the topic 'Dynamic crack detection with photogrammetry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic crack detection with photogrammetry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic crack detection with photogrammetry"
Merkle, D., A. Schmitt, and A. Reiterer. "SENSOR EVALUATION FOR CRACK DETECTION IN CONCRETE BRIDGES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020 (August 14, 2020): 1107–14. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2020-1107-2020.
Full textWang, Jun, and Ruishe Jiang. "Eggshell crack detection by dynamic frequency analysis." European Food Research and Technology 221, no. 1-2 (April 21, 2005): 214–20. http://dx.doi.org/10.1007/s00217-005-1149-9.
Full textMohammed, O. D., and M. Rantatalo. "Gear tooth crack detection using dynamic response analysis." Insight - Non-Destructive Testing and Condition Monitoring 55, no. 8 (August 1, 2013): 417–21. http://dx.doi.org/10.1784/insi.2012.55.8.417.
Full textQian, G. L., S. N. Gu, and J. S. Jiang. "The dynamic behaviour and crack detection of a beam with a crack." Journal of Sound and Vibration 138, no. 2 (April 1990): 233–43. http://dx.doi.org/10.1016/0022-460x(90)90540-g.
Full textBelloni, V., A. Sjölander, R. Ravanelli, M. Crespi, and A. Nascetti. "TACK PROJECT: TUNNEL AND BRIDGE AUTOMATIC CRACK MONITORING USING DEEP LEARNING AND PHOTOGRAMMETRY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2020 (August 25, 2020): 741–45. http://dx.doi.org/10.5194/isprs-archives-xliii-b4-2020-741-2020.
Full textMiya, K., H. Yanagi, and K. Someya. "A new technique for detection of dynamic crack initiation." Nuclear Engineering and Design 94, no. 3 (July 1986): 281–89. http://dx.doi.org/10.1016/0029-5493(86)90010-5.
Full textMeng, G., and E. J. Hahn. "Dynamic Response of a Cracked Rotor With Some Comments on Crack Detection." Journal of Engineering for Gas Turbines and Power 119, no. 2 (April 1, 1997): 447–55. http://dx.doi.org/10.1115/1.2815595.
Full textHaldar, A., R. Martinez-Flores, and H. Katkhuda. "Crack detection in existing structures using noise-contaminated dynamic responses." Theoretical and Applied Fracture Mechanics 50, no. 1 (August 2008): 74–80. http://dx.doi.org/10.1016/j.tafmec.2008.04.007.
Full textHampel, U., and H. G. Maas. "Cascaded image analysis for dynamic crack detection in material testing." ISPRS Journal of Photogrammetry and Remote Sensing 64, no. 4 (July 2009): 345–50. http://dx.doi.org/10.1016/j.isprsjprs.2008.12.006.
Full textPlachy, Tomáš, Jakub Okénka, Pavel Tesárek, and Michal Polák. "Damage Detection and Localization on Cement Specimens." Applied Mechanics and Materials 617 (August 2014): 229–32. http://dx.doi.org/10.4028/www.scientific.net/amm.617.229.
Full textDissertations / Theses on the topic "Dynamic crack detection with photogrammetry"
Hampel, Uwe, and Hans-Gerd Maas. "Dynamische Rissdetektion mittels photogrammetrischer Verfahren – Entwicklung und Anwendung optimierter Algorithmen." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244047882026-24052.
Full textCasey, Cody. "Crack detection in a rotor dynamic system by vibration monitoring." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17838.
Full textHaji, Zyad. "Dynamic analysis and crack detection in stationary and rotating shafts." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/dynamic-analysis-and-crack-detection-in-stationary-and-rotating-shafts(2e9dcab4-685d-4c20-8f9d-55b6892b8149).html.
Full textNeeli, Yeshwanth Sai. "Use of Photogrammetry Aided Damage Detection for Residual Strength Estimation of Corrosion Damaged Prestressed Concrete Bridge Girders." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99445.
Full textMaster of Science
Corrosion damage is a major concern for bridges as it reduces their load carrying capacity. Bridge failures in the past have been attributed to corrosion damage. The risk associated with corrosion damage caused failures increases as the infrastructure ages. Many bridges across the world built forty to fifty years ago are now in a deteriorated condition and need to be repaired and retrofitted. Visual inspections to identify damage or deterioration on a bridge are very important to assess the condition of the bridge and determine the need for repairing or for posting weight restrictions for the vehicles that use the bridge. These inspections require close physical access to the hard-to-reach areas of the bridge for physically measuring the damage which involves many resources in the form of experienced engineers, skilled labor, equipment, time, and money. The safety of the personnel involved in the inspections is also a major concern. Nowadays, a lot of research is being done in using Unmanned Aerial Vehicles (UAVs) like drones for bridge inspections and in using artificial intelligence for the detection of cracks on the images of concrete and steel members. Girders or beams in a bridge are the primary longitudinal load carrying members. Concrete inherently is weak in tension. To address this problem, High Strength steel reinforcement (called prestressing steel or prestressing strands) in prestressed concrete beams is pre-loaded with a tensile force before the application of any loads so that the regions which will experience tension under the service loads would be subjected to a pre-compression to improve the performance of the beam and delay cracking. Spalls are a type of corrosion damage on concrete members where portions of concrete fall off (section loss) due to corrosion in the steel reinforcement, exposing the reinforcement to the environment which leads to accelerated corrosion causing a loss of cross-sectional area and ultimately, a rupture in the steel. If the process of detecting the damage (cracks, spalls, exposed or severed reinforcement, etc.) is automated, the next logical step that would add great value would be, to quantify the effect of the damage detected on the load carrying capacity of the bridges. Using a quantified estimate of the remaining capacity of a bridge, determined after accounting for the corrosion damage, informed decisions can be made about the measures to be taken. This research proposes a stepwise framework to forge a link between a semi-automated visual inspection and residual capacity evaluation of actual prestressed concrete bridge girders obtained from two bridges that have been removed from service in Virginia due to extensive deterioration. 3D point clouds represent an object as a set of points on its surface in three dimensional space. These point clouds can be constructed either using laser scanning or using Photogrammetry from images of the girders captured with a digital camera. In this research, 3D point clouds are reconstructed from sequences of overlapping images of the girders using an approach called Structure from Motion (SfM) which locates matched pixels present between consecutive images in the 3D space. Crack-like features were automatically detected and highlighted on the images of the girders that were used to build the 3D point clouds using artificial intelligence (Neural Network). The images with cracks highlighted were applied as texture to the surface mesh on the point cloud to transfer the detail, color, and realism present in the images to the 3D model. Spalls were detected on 3D point clouds based on the orientation of the normals associated with the points with respect to the reference directions. Point clouds and textured meshes of the girders were scaled to real-world dimensions facilitating the measurement of any required dimension on the point clouds, eliminating the need for physical contact in condition assessment. Any cracks or spalls that went unidentified in the damage detection were visible on the textured meshes of the girders improving the performance of the approach. 3D textured mesh models of the girders overlaid with the detected cracks and spalls were used as 3D damage maps in residual strength estimation. Cross-sectional slices were extracted from the dense point clouds at various sections along the length of each girder. The slices were overlaid on the cross-section drawings of the girders, and the prestressing strands affected due to the corrosion damage were identified. They were reduced in cross-sectional area to account for the corrosion damage as per the recommendations of Naito, Jones, and Hodgson (2011) and were used in the calculation of the ultimate moment capacity of the girders using an approach called strain compatibility analysis. Estimated residual capacities were compared to the actual capacities of the girders found from destructive tests conducted by Al Rufaydah (2020). Comparisons are presented for the failure sections in these tests and the results were analyzed to evaluate the effectiveness of this framework. More research is to be done to determine the factors causing rupture in prestressing strands with different degrees of corrosion. This framework was found to give satisfactory estimates of the residual strength. Reduction in resources involved in current visual inspection practices and eliminating the need for physical access, make this approach worthwhile to be explored further to improve the output of each step in the proposed framework.
Alekseychuk, Oleksandr. "Detection of crack-like indications in digital radiography by global optimisation of a probabilistic estimation function." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1154450084263-67485.
Full textIn dieser Arbeit wurde ein neuer Algorithmus zur Detektion rissartiger Anzeigen in der digitalen Radiographie entwickelt. Klassische lokale Detektionsmethoden versagen wegen des geringen Signal-Rausch-Verhältnisses (von ca. 1) der Rissanzeigen in den Radiographien. Die notwendige Resistenz gegen Rauschen wird durch die Benutzung von globalen Merkmalen dieser Anzeigen erzielt. Das ist aber mit einem undurchführbaren Rechenaufwand sowie Problemen bei der formalen Beschreibung der Rissform verbunden. Üblicherweise wird ein übermäßiger Rechenaufwand bei der Lösung vergleichbarer Probleme durch Anwendung von Heuristisken reduziert. Dazu benuzte Heuristiken werden mit der Versuchs-und-Irrtums-Methode ermittelt, sind stark problemangepasst und können die optimale Lösung nicht garantieren. Das Besondere dieser Arbeit ist anderer Lösungsansatz, der jegliche Heuristik bei der Suche nach Rissanzeigen vermeidet. Ein globales wahrscheinlichkeitstheoretisches Merkmal, hier Schätzfunktion genannt, wird konstruiert, dessen Maximum unter allen möglichen Formen, Längen und Positionen der Rissanzeige exakt (d.h. ohne Einsatz jeglicher Heuristik) gefunden werden kann. Diese Schätzfunktion wird als die Summe des a posteriori Informationsgewinns bezüglich des Vorhandenseins eines Risses im jeden Punkt entlang der hypothetischen Rissanzeige definiert. Der Informationsgewinn entsteht durch die Überprüfung der Hypothese der Rissanwesenheit anhand der vorhandenen Bildinformation. Eine so definierte Schätzfunktion ist theoretisch gerechtfertigt und besitzt die gewünschten Eigenschaften bei wechselnder Anzeigenintensität. Der Algorithmus wurde in der Programmiersprache C++ implementiert. Seine Detektionseigenschaften wurden sowohl mit simulierten als auch mit realen Bildern untersucht. Der Algorithmus liefert gute Ergenbise (hohe Detektionsrate bei einer vorgegebenen Fehlalarmrate), die jeweils vergleichbar mit den Ergebnissen trainierter menschlicher Auswerter sind
Alekseychuk, Oleksandr. "Detection of crack-like indications in digital radiography by global optimisation of a probabilistic estimation function." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24919.
Full textIn dieser Arbeit wurde ein neuer Algorithmus zur Detektion rissartiger Anzeigen in der digitalen Radiographie entwickelt. Klassische lokale Detektionsmethoden versagen wegen des geringen Signal-Rausch-Verhältnisses (von ca. 1) der Rissanzeigen in den Radiographien. Die notwendige Resistenz gegen Rauschen wird durch die Benutzung von globalen Merkmalen dieser Anzeigen erzielt. Das ist aber mit einem undurchführbaren Rechenaufwand sowie Problemen bei der formalen Beschreibung der Rissform verbunden. Üblicherweise wird ein übermäßiger Rechenaufwand bei der Lösung vergleichbarer Probleme durch Anwendung von Heuristisken reduziert. Dazu benuzte Heuristiken werden mit der Versuchs-und-Irrtums-Methode ermittelt, sind stark problemangepasst und können die optimale Lösung nicht garantieren. Das Besondere dieser Arbeit ist anderer Lösungsansatz, der jegliche Heuristik bei der Suche nach Rissanzeigen vermeidet. Ein globales wahrscheinlichkeitstheoretisches Merkmal, hier Schätzfunktion genannt, wird konstruiert, dessen Maximum unter allen möglichen Formen, Längen und Positionen der Rissanzeige exakt (d.h. ohne Einsatz jeglicher Heuristik) gefunden werden kann. Diese Schätzfunktion wird als die Summe des a posteriori Informationsgewinns bezüglich des Vorhandenseins eines Risses im jeden Punkt entlang der hypothetischen Rissanzeige definiert. Der Informationsgewinn entsteht durch die Überprüfung der Hypothese der Rissanwesenheit anhand der vorhandenen Bildinformation. Eine so definierte Schätzfunktion ist theoretisch gerechtfertigt und besitzt die gewünschten Eigenschaften bei wechselnder Anzeigenintensität. Der Algorithmus wurde in der Programmiersprache C++ implementiert. Seine Detektionseigenschaften wurden sowohl mit simulierten als auch mit realen Bildern untersucht. Der Algorithmus liefert gute Ergenbise (hohe Detektionsrate bei einer vorgegebenen Fehlalarmrate), die jeweils vergleichbar mit den Ergebnissen trainierter menschlicher Auswerter sind.
Book chapters on the topic "Dynamic crack detection with photogrammetry"
Mohammed, Omar D., Matti Rantatalo, and Jan-Olov Aidanpää. "Dynamic Modelling of Gear System with Gyroscopic Effect and Crack Detection Analysis." In Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 1303–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06590-8_106.
Full textde Oliveira, Lucas Rangel, and Gilberto Pechoto de Melo. "Crack Detection and Dynamic Analysis of a Cracked Rotor with Soft Bearings Using Different Methods of Solution." In Mechanisms and Machine Science, 3–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99268-6_1.
Full textHan, X., and G. R. Liu. "Computational Inverse Techniques for Crack Detection Using Dynamic Responses." In Inverse Problems in Engineering Mechanics IV, 167–73. Elsevier, 2003. http://dx.doi.org/10.1016/b978-008044268-6/50022-3.
Full textRanjan, Rajeev. "Dynamic Behaviour and Crack Detection of a Multi Cracked Rotating Shaft using Adaptive Neuro-Fuzzy-Inference System." In Fuzzy Systems, 1540–51. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1908-9.ch062.
Full textConference papers on the topic "Dynamic crack detection with photogrammetry"
Peng, Jian-Ping, Jian-Ji Fu, Jian-Ming Zhao, Xiang Zhang, and Hui Yin. "Dynamic Detection of Rail Surface Crack Based on ACFM." In 2020 IEEE Far East NDT New Technology & Application Forum (FENDT). IEEE, 2020. http://dx.doi.org/10.1109/fendt50467.2020.9337521.
Full textRabinovich, Daniel, Dan Givoli, and Shmuel Vigdergauz. "Framework for Flaw Detection: Application to Dynamic Crack Detection in Flat Membranes." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59086.
Full textZhang, Zhao-de, Yong-he Xie, and De-yu Wang. "Crack Detection in Offshore Structures Using Dynamic Characteristics and Wavelet Transform." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79647.
Full textMeng, G., and Eric J. Hahn. "Dynamic Response of a Cracked Rotor With Some Comments on Crack Detection." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-029.
Full textGreen, Itzhak, and Cody Casey. "Crack Detection in a Rotor Dynamic System by Vibration Monitoring: Part I — Analysis." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38659.
Full textYuan, Peilong, Lisha Huo, Tommaso Seresini, Yang Liu, Sevilia Sunetchiieva, Helge Pfeiffer, Martine Wevers, and Christ Glorieux. "Laser ultrasonic inspection for crack detection in a rotating tube under dynamic load." In 2019 International Congress on Ultrasonics. ASA, 2019. http://dx.doi.org/10.1121/2.0001128.
Full textShi-liang Lv and Shao-hua Guo. "Study on the dynamic behavior of thickness-stretch piezoelectric actuators used in crack detection." In 2009 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2009). IEEE, 2009. http://dx.doi.org/10.1109/spawda.2009.5428945.
Full textVarney, Philip, and Itzhak Green. "Crack Detection in a Rotor Dynamic System by Vibration Monitoring: Analysis and Experimental Results." In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61076.
Full textAvila, Manuel, Stephane Begot, Florent Duculty, and Tien Sy Nguyen. "2D image based road pavement crack detection by calculating minimal paths and dynamic programming." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025157.
Full textAli, Rahmat, Jiangyu Zeng, and Young-Jin Cha. "Deep learning-based crack detection in a concrete tunnel structure using multispectral dynamic imaging." In Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, edited by Kerrie Gath and Norbert G. Meyendorf. SPIE, 2020. http://dx.doi.org/10.1117/12.2557900.
Full textReports on the topic "Dynamic crack detection with photogrammetry"
Berney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman, and John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40401.
Full text