Academic literature on the topic 'Dynamic stochastic optimal power flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dynamic stochastic optimal power flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dynamic stochastic optimal power flow"
Domyshev, Alexander. "New method of stochastic optimization for dynamic optimal power flow." E3S Web of Conferences 209 (2020): 02010. http://dx.doi.org/10.1051/e3sconf/202020902010.
Full textBai, Wenlei, Duehee Lee, and Kwang Lee. "Stochastic Dynamic Optimal Power Flow Integrated with Wind Energy Using Generalized Dynamic Factor Model." IFAC-PapersOnLine 49, no. 27 (2016): 129–34. http://dx.doi.org/10.1016/j.ifacol.2016.10.731.
Full textLiang, Jiaqi, Diogenes D. Molina, Ganesh Kumar Venayagamoorthy, and Ronald G. Harley. "Two-Level Dynamic Stochastic Optimal Power Flow Control for Power Systems With Intermittent Renewable Generation." IEEE Transactions on Power Systems 28, no. 3 (August 2013): 2670–78. http://dx.doi.org/10.1109/tpwrs.2013.2237793.
Full textQin, Zhengfeng, Xiaoqing Bai, and Xiangyang Su. "Robust Stochastic Dynamic Optimal Power Flow Model of Electricity-Gas Integrated Energy System considering Wind Power Uncertainty." Complexity 2020 (October 12, 2020): 1–11. http://dx.doi.org/10.1155/2020/8879906.
Full textBai, Wenlei, Duehee Lee, and Kwang Lee. "Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model." Energies 10, no. 12 (December 15, 2017): 2138. http://dx.doi.org/10.3390/en10122138.
Full textSun, Guoqiang, Yichi Li, Shuang Chen, Zhinong Wei, Sheng Chen, and Haixiang Zang. "Dynamic stochastic optimal power flow of wind power and the electric vehicle integrated power system considering temporal-spatial characteristics." Journal of Renewable and Sustainable Energy 8, no. 5 (September 2016): 053309. http://dx.doi.org/10.1063/1.4966152.
Full textHutterer, Stephan, and Michael Affenzeller. "Probabilistic Electric Vehicle Charging Optimized With Genetic Algorithms and a Two-Stage Sampling Scheme." International Journal of Energy Optimization and Engineering 2, no. 3 (July 2013): 1–15. http://dx.doi.org/10.4018/ijeoe.2013070101.
Full textLiang, Jiaqi, Ganesh K. Venayagamoorthy, and Ronald G. Harley. "Wide-Area Measurement Based Dynamic Stochastic Optimal Power Flow Control for Smart Grids With High Variability and Uncertainty." IEEE Transactions on Smart Grid 3, no. 1 (March 2012): 59–69. http://dx.doi.org/10.1109/tsg.2011.2174068.
Full textRauh, Andreas. "Kalman Filter-Based Real-Time Implementable Optimization of the Fuel Efficiency of Solid Oxide Fuel Cells." Clean Technologies 3, no. 1 (March 1, 2021): 206–26. http://dx.doi.org/10.3390/cleantechnol3010012.
Full textCECI, CLAUDIA. "UTILITY MAXIMIZATION WITH INTERMEDIATE CONSUMPTION UNDER RESTRICTED INFORMATION FOR JUMP MARKET MODELS." International Journal of Theoretical and Applied Finance 15, no. 06 (September 2012): 1250040. http://dx.doi.org/10.1142/s0219024912500409.
Full textDissertations / Theses on the topic "Dynamic stochastic optimal power flow"
Liang, Jiaqi. "Wind energy and power system interconnection, control, and operation for high penetration of wind power." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/47570.
Full textNasri, Amin. "On the Dynamics and Statics of Power System Operation : Optimal Utilization of FACTS Devicesand Management of Wind Power Uncertainty." Doctoral thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154576.
Full textThe Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively.QC 20141028
Singh, Manish Kumar. "Optimization, Learning, and Control for Energy Networks." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104064.
Full textDoctor of Philosophy
Massive infrastructure networks play a pivotal role in everyday human lives. A minor service disruption occurring locally in electric power, natural gas, or water networks is considered a significant loss. Uncertain demands, equipment failures, regulatory stipulations, and most importantly complicated physical laws render managing these networks an arduous task. Oftentimes, the first principle mathematical models for these networks are well known. Nevertheless, the computations needed in real-time to make spontaneous decisions frequently surpass the available resources. Explicitly identifying such problems, this dissertation extends the state of the art on three fronts: First, efficient models enabling the operators to tractably solve some routinely encountered problems are developed using fundamental and diverse mathematical tools; Second, quickly trainable machine learning based solutions are developed that enable spontaneous decision making while learning offline from sophisticated mathematical programs; and Third, control mechanisms are designed that ensure a safe and autonomous network operation without human intervention. These novel solutions are bolstered by mathematical guarantees and extensive simulations on benchmark power, water, and natural gas networks.
Campbell, Angela Mari. "Architecting aircraft power distribution systems via redundancy allocation." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53087.
Full textHuang, Renke. "Seamless design of energy management systems." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53518.
Full textYamaguti, Lucas do Carmo. "Despacho ótimo de geração e controle de potência reativa no sistema elétrico de potência /." Ilha Solteira, 2019. http://hdl.handle.net/11449/183534.
Full textResumo: Neste trabalho são propostos modelos matemáticos determinístico e estocástico de programação cônica de segunda ordem em coordenadas retangulares para o problema de fluxo de potência ótimo de geração e controle de potência reativa no sistemas elétricos de potência, considerando as minimização dos custos de geração de energia, perdas ativas da rede e emissão de poluentes no meio ambiente. Os modelos contemplam as principais características físicas e econômicas do problema estudado, assim como os limites operacionais do sistema elétrico. Os modelos são programados em linguagem AMPL e suas soluções são obtidas através do solver comercial CPLEX. Os sistemas testes IEEE30, IEEE118 e ACTIVSg200 são utilizados nas simulações computacionais dos modelos propostos. Os resultados obtidos pelo modelo determinístico desenvolvido são validados através de comparações com os resultados fornecidos pelo software MATPOWER , onde ambos consideram apenas a existência de gerações termoelétricas. No modelo estocástico utiliza-se a técnica de geração de cenários e considera-se um período de um ano (8760 horas), e geradores que utilizam fontes de geração renováveis e não renováveis.
Abstract: In this work we propose deterministic and stochastic mathematical models of second order conical programming in rectangular coordinates for the optimal power flow problem of reactive power generation and control in electric power systems, considering the minimization of energy generation costs, losses networks and emission of pollutants into the environment. The models contemplate the main physical and economic characteristics of the studied problem, as well as the operational limits of the electric system. The models are programmed in AMPL language and their solutions are obtained through the commercial solver CPLEX. The IEEE30, IEEE118 and ACTIVSg200 test systems are used in the computer simulations of the proposed models. The results obtained by the deterministic model developed are validated through comparisons with the results provided by the software MATPOWERR , where both consider only the existence of thermoelectric generations. The stochastic model uses the scenario generation technique and considers a period of one year (8760 hours), and generators using renewable and non-renewable generation sources.
Mestre
Haessig, Pierre. "Dimensionnement et gestion d’un stockage d’énergie pour l'atténuation des incertitudes de production éolienne." Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0030/document.
Full textThe context of this PhD thesis is the integration of wind power into the electricity grid of small islands. This work is supported by EDF SEI, the system operator for French islands. We study a wind-storage system where an energy storage is meant to help a wind farm operator fulfill a day-ahead production commitment to the grid. Within this context, we propose an approach for the optimization of the sizing and the control of the energy storage system (energy management). Because day-ahead wind power forecast errors are a major source of uncertainty, the energy management of the storage is a stochastic optimization problem (stochastic optimal control). To solve this problem, we first study the modeling of the components of the system. This include energy-based models of the storage system, with a focus on Lithium-ion and Sodium-Sulfur battery technologies. We then model the system inputs and in particular the stochastic time series like day-ahead forecast errors. We also discuss the modeling of storage aging, using a formulation which is adapted to the control optimization. Assembling all these models enables us to optimize the energy management of the storage system using the stochastic dynamic programming (SDP) method. We introduce the SDP algorithms and present our optimization results, with a special interest for the effect of the shape of the penalty function on the energy control law. We also present additional energy management applications with SDP (mitigation of wind power ramps and smoothing of ocean wave power). Having optimized the storage energy management, we address the optimization of the storage sizing (choice of the rated energy). Stochastic time series simulations show that the temporal structure (autocorrelation) of wind power forecast errors have a major impact on the need for storage capacity to reach a given performance level. Then we combine simulation results with cost parameters, including investment, losses and aging costs, to build a economic cost function for sizing. We also study storage sizing when the penalization of commitment deviations includes a tolerance threshold. We finish this manuscript with a structural study of the interaction between the optimizations of the sizing and the control of an energy storage system, because these two optimization problems are coupled
Oriondo, Marco Alonso Meneses [UNESP]. "Resolução do problema de fluxo de potência ótimo pela meta-heurística algoritmo dos fogos de artifício de busca dinâmica com mutação de covariância." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/138202.
Full textApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-02T18:55:33Z (GMT) No. of bitstreams: 1 oriondo_mam_me_ilha.pdf: 4087822 bytes, checksum: dc161c85a2ac9500af836619b1f9d6f3 (MD5)
Made available in DSpace on 2016-05-02T18:55:33Z (GMT). No. of bitstreams: 1 oriondo_mam_me_ilha.pdf: 4087822 bytes, checksum: dc161c85a2ac9500af836619b1f9d6f3 (MD5) Previous issue date: 2016-03-10
Neste trabalho apresenta-se uma versão especializada da meta-heurística Algoritmo dos Fogos de Artifício de Busca Dinâmica com Mutação de Covariância (AFABDMC) para resolver o problema de Fluxo de Potência Ótimo (FPO) em sistemas de transmissão. No algoritmo proposto consideram-se como variáveis contínuas de controle a magnitude da tensão e a geração de potência ativa nas barras de geração e como variáveis de controle discretas o estado de operação dos shunts e a posição do comutador de taps em transformadores. Assim, o modelo para o problema é de Programação Não-Linear Inteira Mista (PNLIM). A estratégia de resolução adotada consiste em controlar, em cada iteração, os valores das variáveis de controle discretas utilizando-se a meta-heurística AFABDMC e a partir desses valores escolhidos pela meta-heurística, resolver um problema de Programação Não-Linear (PNL) que fornece os valores das variáveis de controle contínuas junto com o estado de operação do sistema. A meta-heurística AFABDMC foi escrita em linguagem MATLAB e o modelo do problema em AMPL. Os subproblemas de PNL foram resolvidos utilizando-se o solver KNITRO, sendo que a interface entre o MATLAB e o AMPL foi feita utilizando-se o AMPL API. Foram realizados testes com os sistemas IEEE de 14, 30, 57 e 118 barras e os resultados indicam que a metodologia proposta é capaz de encontrar soluções de muito boa qualidade para o problema.
In this work, a new specialized metaheuristic based on the Dynamic Search Fireworks Algorithm with Covariance Mutation (DSFWACM) is applied on the Optimal Power Flow (OPF) problem in transmission systems. In the proposed method, generator bus voltage magnitudes and active power generation are considered as continuous variables and the operating state of the shunts and transformer taps settings are considered as discrete variables. Thus, the model is a Mixed-Integer Nonlinear Programming (MINLP) problem. The adopted resolution strategy is to control, in each iteration, the value of the discrete control variables using the DSFWACM metaheuristic and from the metaheuristic’s chosen values, solve the Nonlinear Programming (NLP) problem that provides the values of the continuous control variables along with the system’s operation state. The DSFWACM metaheuristic was written in MATLAB and the problem model in AMPL. The NLP sub-problems were solved using the KNITRO solver, and the interface between MATLAB and AMPL was implemented using the AMPL API. Tests were conducted with the IEEE 14, 30, 57 and 118-bus systems and the results show that the proposed method is able to find high quality solutions to the problem.
CNPq: 132374/2011-0
Oriondo, Marco Alonso Meneses. "Resolução do problema de fluxo de potência ótimo pela meta-heurística algoritmo dos fogos de artifício de busca dinâmica com mutação de covariância /." Ilha Solteira, 2016. http://hdl.handle.net/11449/138202.
Full textResumo: Neste trabalho apresenta-se uma versão especializada da meta-heurística Algoritmo dos Fogos de Artifício de Busca Dinâmica com Mutação de Covariância (AFABDMC) para resolver o problema de Fluxo de Potência Ótimo (FPO) em sistemas de transmissão. No algoritmo proposto consideram-se como variáveis contínuas de controle a magnitude da tensão e a geração de potência ativa nas barras de geração e como variáveis de controle discretas o estado de operação dos shunts e a posição do comutador de taps em transformadores. Assim, o modelo para o problema é de Programação Não-Linear Inteira Mista (PNLIM). A estratégia de resolução adotada consiste em controlar, em cada iteração, os valores das variáveis de controle discretas utilizando-se a meta-heurística AFABDMC e a partir desses valores escolhidos pela meta-heurística, resolver um problema de Programação Não-Linear (PNL) que fornece os valores das variáveis de controle contínuas junto com o estado de operação do sistema. A meta-heurística AFABDMC foi escrita em linguagem MATLAB e o modelo do problema em AMPL. Os subproblemas de PNL foram resolvidos utilizando-se o solver KNITRO, sendo que a interface entre o MATLAB e o AMPL foi feita utilizando-se o AMPL API. Foram realizados testes com os sistemas IEEE de 14, 30, 57 e 118 barras e os resultados indicam que a metodologia proposta é capaz de encontrar soluções de muito boa qualidade para o problema.
Abstract: In this work, a new specialized metaheuristic based on the Dynamic Search Fireworks Algorithm with Covariance Mutation (DSFWACM) is applied on the Optimal Power Flow (OPF) problem in transmission systems. In the proposed method, generator bus voltage magnitudes and active power generation are considered as continuous variables and the operating state of the shunts and transformer taps settings are considered as discrete variables. Thus, the model is a Mixed-Integer Nonlinear Programming (MINLP) problem. The adopted resolution strategy is to control, in each iteration, the value of the discrete control variables using the DSFWACM metaheuristic and from the metaheuristic’s chosen values, solve the Nonlinear Programming (NLP) problem that provides the values of the continuous control variables along with the system’s operation state. The DSFWACM metaheuristic was written in MATLAB and the problem model in AMPL. The NLP sub-problems were solved using the KNITRO solver, and the interface between MATLAB and AMPL was implemented using the AMPL API. Tests were conducted with the IEEE 14, 30, 57 and 118-bus systems and the results show that the proposed method is able to find high quality solutions to the problem.
Mestre
Yong, Taiyou. "Study of stochastic optimal power flow /." 2001. http://www.library.wisc.edu/databases/connect/dissertations.html.
Full textBook chapters on the topic "Dynamic stochastic optimal power flow"
Christensen, G. S., M. E. El-Hawary, and S. A. Soliman. "Dynamic Optimal Load Flow." In Optimal Control Applications in Electric Power Systems, 21–53. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-2085-0_3.
Full textShafiq, Sundas, Nadeem Javaid, Sikandar Asif, Farwa Ali, Nasir Hussain Chughtai, and Nouman Khurshid. "An Optimal Power Flow Approach for Stochastic Wind and Solar Energy Integrated Power Systems." In Advances in Intelligent Systems and Computing, 292–304. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93659-8_26.
Full textCapitanescu, Florin. "Challenges Ahead Risk-Based AC Optimal Power Flow Under Uncertainty for Smart Sustainable Power Systems." In Dynamic Vulnerability Assessment and Intelligent Control for Sustainable Power Systems, 149–76. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119214984.ch7.
Full textSchween, Nils, Philipp Gerstner, Nico Meyer-Hübner, Viktor Slednev, Thomas Leibfried, Wolf Fichtner, Valentin Bertsch, and Vincent Heuveline. "A Domain Decomposition Approach to Solve Dynamic Optimal Power Flow Problems in Parallel." In Trends in Mathematics, 41–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32157-4_4.
Full textHuebner, Nico, Nils Schween, Michael Suriyah, Vincent Heuveline, and Thomas Leibfried. "Multi-area Coordination of Security-Constrained Dynamic Optimal Power Flow in AC-DC Grids with Energy Storage." In Trends in Mathematics, 27–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32157-4_3.
Full text"Toward Dynamic Stochastic Optimal Power Flow." In Handbook of Learning and Approximate Dynamic Programming. IEEE, 2009. http://dx.doi.org/10.1109/9780470544785.ch22.
Full textMomoh, James A. "Optimal Power Flow." In Adaptive Stochastic Optimization Techniques with Applications, 197–246. CRC Press, 2015. http://dx.doi.org/10.1201/b19256-11.
Full textGlavitsch, Hans, and Rainer Bacher. "Optimal Power Flow Algorithms." In Control and Dynamic Systems, 135–205. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-12-012741-2.50008-7.
Full textJabari, Farkhondeh, Heresh Seyedia, Sajad Najafi Ravadanegh, and Behnam Mohammadi Ivatloo. "Stochastic Contingency Analysis Based on Voltage Stability Assessment in Islanded Power System Considering Load Uncertainty Using MCS and k-PEM." In Advances in Computer and Electrical Engineering, 12–36. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9911-3.ch002.
Full textSasaki, H., J. Kubokawa, N. Yorino, and R. Yokoyama. "DEVELOPMENT OF OPTIMAL POWER FLOW AND APPLICATION TO DYNAMIC ECONOMIC LOAD DISPATCH." In Power Systems and Power Plant Control 1989, 117–22. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-08-037039-2.50025-x.
Full textConference papers on the topic "Dynamic stochastic optimal power flow"
Hutterer, Stephan, Stefan Vonolfen, and Michael Affenzeller. "Genetic programming enabled evolution of control policies for dynamic stochastic optimal power flow." In Proceeding of the fifteenth annual conference companion. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2464576.2482732.
Full textLiang, Jiaqi, Ganesh Kumar Venayagamoorthy, and Ronald Harley. "Two-level dynamic stochastic optimal power flow control for power systems with intermittent renewable generation." In 2014 IEEE Power & Energy Society General Meeting. IEEE, 2014. http://dx.doi.org/10.1109/pesgm.2014.6939430.
Full textJiaqi Liang, G. K. Venayagamoorthy, and R. G. Harley. "Dynamic stochastic optimal power flow control for intelligent coordination of grid-connected energy systems." In 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6344983.
Full textLuo, Jinshan, Yuan Tian, Keyou Wang, Guojie Li, Ying Wang, and Haoyang Yu. "Dynamic stochastic optimal power flow considering spatial correlation of wind speed based on simplified pair copula." In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2017. http://dx.doi.org/10.1109/ei2.2017.8245518.
Full textHamon, Camille, Magnus Perninge, and Lennart Soder. "Applying stochastic optimal power flow to power systems with large amounts of wind power and detailed stability limits." In 2013 IREP Symposium - Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid (IREP). IEEE, 2013. http://dx.doi.org/10.1109/irep.2013.6629407.
Full textJiaqi Liang, G. Venayagamoorthy, and R. Harley. "Wide-area measurement based dynamic stochastic optimal power flow control for smart grids with high variability and uncertainty." In 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6344989.
Full textHamon, Camille, Magnus Perninge, and Lennart Soder. "Closure of “applying stochastic optimal power flow to power systems with large amounts of wind power and detailed stability limits”." In 2013 IREP Symposium - Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid (IREP). IEEE, 2013. http://dx.doi.org/10.1109/irep.2013.6629416.
Full textYong, T., R. Entriken, and Pei Zhang. "Reserve Determination with Stochastic Optimal Power Flow." In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918725.
Full textSharif, S. S., and J. H. Taylor. "Dynamic optimal reactive power flow." In Proceedings of the 1998 American Control Conference (ACC). IEEE, 1998. http://dx.doi.org/10.1109/acc.1998.703223.
Full textEntriken, Robert, Aidan Tuohy, and Daniel Brooks. "Stochastic optimal power flow in systems with wind power." In 2011 IEEE Power & Energy Society General Meeting. IEEE, 2011. http://dx.doi.org/10.1109/pes.2011.6039581.
Full text