To see the other types of publications on this topic, follow the link: Dynamic wheel loads.

Dissertations / Theses on the topic 'Dynamic wheel loads'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Dynamic wheel loads.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Siddiqui, Owais Mustafa. "Dynamic analysis of a modern urban bus for assessment of ride quality and dynamic wheel loads." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/MQ54328.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smagina, Zana. "Dynamic amplification for moving vehicle loads on buried pipes : Evaluation of field-tests." Thesis, KTH, Bro- och stålbyggnad, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-36801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hosseini, SayedMohammad. "A Statistical Approach to Modeling Wheel-Rail Contact Dynamics." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/101864.

Full text
Abstract:
The wheel-rail contact mechanics and dynamics that are of great importance to the railroad industry are evaluated by applying statistical methods to the large volume of data that is collected on the VT-FRA state-of-the-art roller rig. The intent is to use the statistical principles to highlight the relative importance of various factors that exist in practice to longitudinal and lateral tractions and to develop parametric models that can be used for predicting traction in conditions beyond those tested on the rig. The experiment-based models are intended to be an alternative to the classical traction-creepage models that have been available for decades. Various experiments are conducted in different settings on the VT-FRA Roller Rig at the Center for Vehicle Systems and Safety at Virginia Tech to study the relationship between the traction forces and the wheel-rail contact variables. The experimental data is used to entertain parametric and non-parametric statistical models that efficiently capture this relationship. The study starts with single regression models and investigates the main effects of wheel load, creepage, and the angle of attack on the longitudinal and lateral traction forces. The assumptions of the classical linear regression model are carefully assessed and, in the case of non-linearities, different transformations are applied to the explanatory variables to find the closest functional form that captures the relationship between the response and the explanatory variables. The analysis is then extended to multiple models in which interaction among the explanatory variables is evaluated using model selection approaches. The developed models are then compared with their non-parametric counterparts, such as support vector regression, in terms of "goodness of fit," out-of-sample performance, and the distribution of predictions.
Master of Science
The interaction between the wheel and rail plays an important role in the dynamic behavior of railway vehicles. The wheel-rail contact has been extensively studied through analytical models, and measuring the contact forces is among the most important outcomes of such models. However, these models typically fall short when it comes to addressing the practical problems at hand. With the development of a high-precision test rig—called the VT-FRA Roller Rig, at the Center for Vehicle Systems and Safety (CVeSS)—there is an increased opportunity to tackle the same problems from an entirely different perspective, i.e. through statistical modeling of experimental data. Various experiments are conducted in different settings that represent railroad operating conditions on the VT-FRA Roller Rig, in order to study the relationship between wheel-rail traction and the variables affecting such forces. The experimental data is used to develop parametric and non-parametric statistical models that efficiently capture this relationship. The study starts with single regression models and investigates the main effects of wheel load, creepage, and the angle of attack on the longitudinal and lateral traction forces. The analysis is then extended to multiple models, and the existence of interactions among the explanatory variables is examined using model selection approaches. The developed models are then compared with their non-parametric counterparts, such as support vector regression, in terms of "goodness of fit," out-of-sample performance, and the distribution of the predictions. The study develops regression models that are able to accurately explain the relationship between traction forces, wheel load, creepage, and the angle of attack.
APA, Harvard, Vancouver, ISO, and other styles
4

Cummings, Patrick. "Modeling the Locked-Wheel Skid Tester to Determine the Effect of Pavement Roughness on the International Friction Index." Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1604.

Full text
Abstract:
Pavement roughness has been found to have an effect on the coefficient of friction measured with the Locked-Wheel Skid Tester (LWT) with measured friction decreasing as the long wave roughness of the pavement increases. However, the current pavement friction standardization model adopted by the American Society for Testing and Materials (ASTM), to compute the International Friction Index (IFI), does not account for this effect. In other words, it had been previously assumed that the IFI's speed constant (SP), which defines the gradient of the pavement friction versus speed relationship, is an invariant for any pavement with a given mean profile depth (MPD), regardless of its roughness. This study was conducted to quantify the effect of pavement roughness on the IFI's speed constant. The first phase of this study consisted of theoretical modeling of the LWT using a two-degree of freedom vibration system. The model parameters were calibrated to match the measured natural frequencies of the LWT. The calibrated model was able to predict the normal load variation during actual LWT tests to a reasonable accuracy. Furthermore, by assuming a previously developed skid number (SN) versus normal load relationship, even the friction profile of the LWT during an actual test was predicted reasonably accurately. Because the skid number (SN) versus normal load relationship had been developed previously using rigorous protocol, a new method that is more practical and convenient was prescribed in this work. This study concluded that higher pavement long-wave roughness decreases the value of the SP compared to a pavement with identical MPD but lower roughness. Finally, the magnitude of the loss of friction was found to be governed by the non-linear skid number versus normal load characteristics of a pavement.
APA, Harvard, Vancouver, ISO, and other styles
5

Kassner, Bernard Leonard. "Long-term In-service Evaluation of Two Bridges Designed with Fiber-Reinforced Polymer Girders." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/10122.

Full text
Abstract:
A group of researchers, engineers, and government transportation officials have teamed up to design two bridges with simply-supported FRP composite structural beams. The Toms Creek Bridge, located in Blacksburg, Virginia, has been in service for six years. Meanwhile, the Route 601 Bridge, located in Sugar Grove, Virginia, has been in service for two years. Researchers have conducted load tests at both bridges to determine if their performance has changed during their respective service lives. The key design parameters under consideration are: deflection, wheel load distribution, and dynamic load allowance. The results from the latest tests in 2003 yield little, yet statistically significant, changes in these key factors for both bridges. Most differences appear to be largely temperature related, although the reason behind this effect is unclear. For the Toms Creek Bridge, the largest average values from the 2003 tests are 440 me for service strain, 0.43 in. (L/484) for service deflection, 0.08 (S/11.1) for wheel load distribution, and 0.64 for dynamic load allowance. The values for the Route 601 Bridge are 220 me, 0.38 in. (L/1230), 0.34 (S/10.2), and 0.14 for the same corresponding paramters. The recommended design values for the dynamic load allowance in both bridges have been revised upwards to 1.35 and 0.50 for the Toms Creek Bridge and Route 601 Bridge, respectively, to account for variability in the data. With these increased factors, the largest strain in the toms Creek Bridge and Route 601 Bridge would be less than 13% and 12%, respectively, of ultimate strain. Therefore, the two bridges continue to provide a large factor of safety against failure.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
6

Collins, William Norfleet. "Live Load Testing and Analysis of the Southbound Span of U.S. Route 15 over Interstate-66." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/34364.

Full text
Abstract:
As aging bridges around the United States begin to near the end of their service lives, more funding must be allocated for their rehabilitation or replacement. The Federal Highway Administrationâ s (FHWA) Long-Term Bridge Performance (LTBP) Program has been developed to help bridge stakeholders make the best decisions concerning the allocation of these funds. This is done through the use of high quality data obtained through numerous testing processes. As part of the LTBP Pilot Program, researchers have performed live load tests on the U.S. Route 15 Southbound bridge over Interstate-66. The main performance and behavior characteristics focused on are service strain and deflection, wheel load distribution, dynamic load allowance, and rotational behavior of bridge bearings. Data from this test will be used as a tool in developing and refining a plan for long-term bridge monitoring. This includes identifying the primarily loaded girders and their expected range of response under ambient traffic conditions. Information obtained from this test will also aid in the refinement of finite element models by offering insight into the performance of individual bridge components, as well as overall global behavior. Finally, the methods and results of this test have been documented to allow for comparison with future testing of this bridge, which will yield information concerning the changes in bridge behavior over time.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
7

Neely, William Douglas. "Evaluation of the In-Servic Performance of the Tom's Creek Bridge." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/33249.

Full text
Abstract:
The Tom's Creek Bridge is a small-scale demonstration project involving the use of fiber-reinforced polymer (FRP) composite girders as the main load carrying members. The project is intended to serve two purposes. First, by calculating bridge design parameters such as the dynamic load allowance, transverse wheel load distribution and deflections under service loading, the Tom's Creek Bridge will aid in modifying current AASHTO bridge design standards for use with FRP composite materials. Second, by evaluating the FRP girders after being exposed to service conditions, the project will begin to answer questions about the long-term performance of these advanced composite material beams when used in bridge design. This thesis details the In-Service analysis of the Tom's Creek Bridge. Five load tests, at six month intervals, were conducted on the bridge. Using mid-span strain and deflection data gathered from the FRP composite girders during these tests the above mentioned bridge design parameters have been determined. The Tom's Creek Bridge was determined to have a dynamic load allowance, IM, of 0.90, a transverse wheel load distribution factor, g, of 0.101 and a maximum deflection of L/488. Two bridge girders were removed from the Tom's Creek Bridge after fifteen months of service loading. These FRP composite girders were tested at the Structures and Materials Research Laboratory at Virginia Tech for stiffness and ultimate strength and compared to pre-service values for the same beams. This analysis indicates that after fifteen months of service, the FRP composite girders have not lost a significant amount of either stiffness or ultimate strength.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Restrepo, Edgar Salom. "Determination of AASHTO Bridge Design Parameters through Field Evaluation of the Rt. 601 Bridge: A Bridge Utilizing Strongwell 36 in. Fiber-Reinforced Polymer Double Web Beams as the Main Load Carrying Members." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/36182.

Full text
Abstract:
The Route 601 Bridge in Sugar Grove, Virginia spans 39 ft over Dickey Creek. The Bridge is the first to use the Strongwell 36 in. fiber reinforced polymer (FRP) double web beam (DWB) in its superstructure. Replacement of the old bridge began in June 2001, and construction of the new bridge was completed in October 2001. The bridge was field tested in October 2001 and June 2002. This thesis details the field evaluation of the Rt. 601 Bridge. Using mid span deflection and strain data from the October 2001 and June 2002 field tests, the primary goal of this research was to determine the following AASHTO bridge design parameters: wheel load distribution factor g, dynamic load allowance IM, and maximum deflection. The wheel load distribution factor was determined to be S/5, a dynamic load allowance was determined to be 0.30, and the maximum deflection of the bridge was L/1500. Deflection results were lower than the AASHTO L/800 limit. This discrepancy is attributed to partial composite action of the deck-to-girder connections, bearing restraint at the supports, and contribution of guardrail stiffness. Secondary goals of this research were to quantify the effect of diaphragm removal on girder distribution factor, determine torsion and axial effects of the FRP girders, compare responses to multiple lane symmetrical loading to superimposed single lane response, and compare the field test results to a finite element and a finite difference model. It was found that diaphragm removal had a small effect on the wheel load distribution factor. Torsional and axial effects were small. The bridge response to multilane loading coincided with superimposed single lane truck passes, and curb-stiffening effects in a finite difference model improved the accuracy of modeling the Rt. 601 Bridge behavior.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Bian, Jian. "Ultimate flexural limit states analysis of prestressed concrete sleeper." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/63660/1/Jian_Bian_Thesis.pdf.

Full text
Abstract:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
APA, Harvard, Vancouver, ISO, and other styles
10

Davis, Lloyd Eric. "Heavy vehicle suspensions : testing and analysis." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/34499/1/Lloyd_Davis_Thesis.pdf.

Full text
Abstract:
Transport regulators consider that, with respect to pavement damage, heavy vehicles (HVs) are the riskiest vehicles on the road network. That HV suspension design contributes to road and bridge damage has been recognised for some decades. This thesis deals with some aspects of HV suspension characteristics, particularly (but not exclusively) air suspensions. This is in the areas of developing low-cost in-service heavy vehicle (HV) suspension testing, the effects of larger-than-industry-standard longitudinal air lines and the characteristics of on-board mass (OBM) systems for HVs. All these areas, whilst seemingly disparate, seek to inform the management of HVs, reduce of their impact on the network asset and/or provide a measurement mechanism for worn HV suspensions. A number of project management groups at the State and National level in Australia have been, and will be, presented with the results of the project that resulted in this thesis. This should serve to inform their activities applicable to this research. A number of HVs were tested for various characteristics. These tests were used to form a number of conclusions about HV suspension behaviours. Wheel forces from road test data were analysed. A “novel roughness” measure was developed and applied to the road test data to determine dynamic load sharing, amongst other research outcomes. Further, it was proposed that this approach could inform future development of pavement models incorporating roughness and peak wheel forces. Left/right variations in wheel forces and wheel force variations for different speeds were also presented. This led on to some conclusions regarding suspension and wheel force frequencies, their transmission to the pavement and repetitive wheel loads in the spatial domain. An improved method of determining dynamic load sharing was developed and presented. It used the correlation coefficient between two elements of a HV to determine dynamic load sharing. This was validated against a mature dynamic loadsharing metric, the dynamic load sharing coefficient (de Pont, 1997). This was the first time that the technique of measuring correlation between elements on a HV has been used for a test case vs. a control case for two different sized air lines. That dynamic load sharing was improved at the air springs was shown for the test case of the large longitudinal air lines. The statistically significant improvement in dynamic load sharing at the air springs from larger longitudinal air lines varied from approximately 30 percent to 80 percent. Dynamic load sharing at the wheels was improved only for low air line flow events for the test case of larger longitudinal air lines. Statistically significant improvements to some suspension metrics across the range of test speeds and “novel roughness” values were evident from the use of larger longitudinal air lines, but these were not uniform. Of note were improvements to suspension metrics involving peak dynamic forces ranging from below the error margin to approximately 24 percent. Abstract models of HV suspensions were developed from the results of some of the tests. Those models were used to propose further development of, and future directions of research into, further gains in HV dynamic load sharing. This was from alterations to currently available damping characteristics combined with implementation of large longitudinal air lines. In-service testing of HV suspensions was found to be possible within a documented range from below the error margin to an error of approximately 16 percent. These results were in comparison with either the manufacturer’s certified data or test results replicating the Australian standard for “road-friendly” HV suspensions, Vehicle Standards Bulletin 11. OBM accuracy testing and development of tamper evidence from OBM data were detailed for over 2000 individual data points across twelve test and control OBM systems from eight suppliers installed on eleven HVs. The results indicated that 95 percent of contemporary OBM systems available in Australia are accurate to +/- 500 kg. The total variation in OBM linearity, after three outliers in the data were removed, was 0.5 percent. A tamper indicator and other OBM metrics that could be used by jurisdictions to determine tamper events were developed and documented. That OBM systems could be used as one vector for in-service testing of HV suspensions was one of a number of synergies between the seemingly disparate streams of this project.
APA, Harvard, Vancouver, ISO, and other styles
11

Jbily, Dalia. "Prise en compte de l’usure dans la modélisation du comportement sous charge des engrenages roues et vis tangentes." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI037/document.

Full text
Abstract:
Les engrenages roues et vis sans fin sont une solution avantageuse pour transmettre le couple entre des axes perpendiculaires non concourants. Ces engrenages offrent une solution simple et efficace en terme de coût dans les applications de transmission de puissance, où un grand rapport de réduction est nécessaire, en comparaison avec les engrenages classiques à axes parallèles qui nécessitent normalement deux ou trois étapes pour obtenir les mêmes réductions avec une augmentation conséquente de complexité et du nombre de pièces. L’usure de surface est un des modes de défaillance observés dans la vie des engrenages roues et vis sans fin qui influe sur la portée de contact, les caractéristiques de transmission et le bruit résultant. La première étape de ces travaux est la mise au point d’un modèle numérique pour étudier le comportement quasi statique des engrenages roues et vis sans fin avec une roue en bronze et une vis en acier. Le modèle est basé sur la résolution des équations de compatibilité des déplacements ainsi que sur la méthode des coefficients d’influence. Les effets globaux de flexion et les effets locaux de contact ont été séparés. Les effets de contact ont été obtenus par la théorie de Boussinesq. Les coefficients de flexion sont estimés par la combinaison d’un calcul Éléments Finis et des fonctions d’interpolation, permettant d’une part de prendre en compte l’environnement de l'engrenage (la géométrie des arbres, des jantes et des voiles, l’emplacement des roulements,...) et d’autre part de réduire significativement les temps de calculs. Dans une seconde étape, une méthodologie est proposée pour modéliser l’usure de la surface de dent de la roue. Le modèle de contact quasi-statique de la répartition des charges est combiné avec un modèle d’usure d’Archard. Ce modèle suppose que la profondeur d’usure est directement proportionnelle à la pression de contact et à la distance de glissement et inversement proportionnelle à la dureté du matériau. Cette loi d’usure est modifiée pour prendre en compte l’influence des conditions de lubrification en utilisant un coefficient d’usure local, dépendant de l’épaisseur du film lubrifiant, rapportée à l’amplitude des rugosités des surfaces. L’enlèvement de matière par l’usure du flanc de la roue influe sur la répartition des pressions et donc les modifications de la géométrie des dents doivent être incluses dans la prédiction de l’usure. Le calcul des pressions de contact est ainsi mis à jour pour tenir compte des changements de géométrie. Enfin, pour valider le modèle développé des comparaisons du modèle avec des résultats expérimentaux issus de la bibliographie ont été effectuées
Worm gears are one of the technical devices for transmitting torque between spatial crossed axes. They provide a simple and cost effective solution in power transmission applications, where a high reduction ratio is required. Comparable conventional parallel axis gearing would normally require two or three stages to achieve the same reduction, with a consequent increase in complexity and number of parts. Surface wear is one of the failure modes observed in life worm gear sets which affects the contact patterns, the other transmission characteristics and the resultant noise. The first step of this work is the development of a numerical model to study provide the quasi-static behavior of worm gears with bronze wheel and steel worm. The model is based on solving of the equation of displacement compatibility and the influence coefficient method. The global effects of bending and local effects of contact are separated. The contact effects are obtained with the theory of Boussinesq. Bending effects are estimated by the combination of one standard FEM computation and interpolation functions. These methods allow, on the one hand, to take into account the environment of the gear (shaft shape, rim, web, bearing location ...) and on the other to reduce significantly the computation time. In a second step, a methodology is proposed for predicting the wear of the wheel tooth surface. In this process, a quasi-static contact model of the load distribution is combined with Archard's wear model. This model assumes that the wear depth is directly proportional to the contact pressure and sliding distance and inversely proportional to the hardness of the material. The wear law is modified to take into account the influence of the lubrication conditions using a local wear coefficient, depending on the lubricant film thickness, relative to the amplitude of surface roughness. Removal of material by wear on the wheel flank affects the pressure distribution, therefore the changes in teeth must be included in the prediction of wear. The calculation of contact pressures must also be updated to take into account the modification of the gear flank geometry. The last step concerns the validation of the numerical. Comparisons have been carried out between the model results and experimental ones issued from the bibliography
APA, Harvard, Vancouver, ISO, and other styles
12

(6397871), Rahul Mula. "A SYSTEMATIC METHODOLOGY FOR FATIGUE ANALYSIS OF MACHINE ELEMENTS WITH CHARACTERIZED DYNAMIC LOADS." Thesis, 2019.

Find full text
Abstract:
Fatigue analysis is essential for the optimization of products subjected to dynamic loads. However, a number of fatigue analysis theories have been developed, how to apply an established method in real-world product designs is not a trivial task. Most of small or medium sized enterprises (SMEs) still rely heavily on the experiments to evaluate the fatigue lives of products. Among existing fatigue design methods (i.e., experiments, analytical methods, and simulations), the simulation-based methods have the advantages of low cost, low risk environment and enable a designer to determine the accuracy and performance of a product design without building physical prototypes. Regarding the methodologies for fatigue analysis, some identified challenges are (1) the characterization of dynamic loads, (2) the formulation of finite element models which can be aligned with applications or testing scenarios, and (3) the verification and validation of simulations. To make a simulation-based fatigue analysis more practical for real-world product designs, the solutions to the aforementioned problems must be found. This thesis aims to establish a systematic methodology to perform the fatigue analysis for product design with any material, carbon steel material is used for the present case study to illustrate and verify the proposed methodology for fatigue analysis. Major tasks involved in this thesis study are: 1).The method for the characterization of dynamic loads. It is a numerical method to simulate the kinematic and dynamic behaviors subjected to the given motion, and it is expected to extract interacting dynamic forces of components to be analyzed. 2).The systematic method and procedure to formulate the problem of fatigue analysis as a finite element analysis model and find the solution of fatigue life of product.3).The procedure and approaches are developed to verify and validate fatigue analysis models and procedure used for the present case study.4).The parametric studies with a set of design variables to show the feasibility and flexibility of using simulation methods to evaluate the influence of multiple design variables on wheel products.
APA, Harvard, Vancouver, ISO, and other styles
13

(9815870), Nirmal Mandal. "Failure of railhead material of insulated rail joints." Thesis, 2011. https://figshare.com/articles/thesis/Failure_of_railhead_material_of_insulated_rail_joints/13461620.

Full text
Abstract:
"Aim of this research is to examine the impact fatigue failure of the railhead of the IRJ [insulated rail joints] and determine actions that can be taken to prolong IRJ life in the track. Mechanical fatigue and plastic deformation (metal flow) of the railhead in the vicinity of the IRJs are the main aspects considered in the research"--p. 3.
APA, Harvard, Vancouver, ISO, and other styles
14

YAN, YU-XING, and 顏育星. "Development of Dynamic Balancing Vehicle with Double Wheel Load." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/w25wpz.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fung, Ho Ching, and 何靜芳. "Rail-Wheel Dynamical Analysis by Appling Theory of Periodically Supported Beam under Moving Loads." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/57494240749438010614.

Full text
Abstract:
碩士
國立海洋大學
系統工程暨造船學系
89
The aim of this thesis is to establish the theoretical model of the rail-wheel interaction and the induced vibrations. The dynamic analyses regarding all kinds of the existing rail and train in our country have been carried out. The rail on the equidistant sleepers can be considered as a periodically supported beam. Using the theory of rail-wheel interaction, the analyses of the diversely dynamic responses of the train wheels and rails which are installed by the Taiwan Railway, the Taiwan Rapid Transit and the Taiwan High Speed Rail etc., are undertaken. Besides, the effect of damping material on the vibration and noise attenuation of the rail of Taipei Rapid Transit, has been characterized. Comparison of the vibration responses by the software-simulation and the experimental measurement to the rail entity, has been made to ascertain the optimal design of the countermeasure in using the damping layer technique. The model analysis and harmonic analysis of the rails and wheels are undertaken by the finite element analysis software ANSYS. Firstly, the natural frequencies of and the relevant natural modes of each pair of wheels and rail are obtained by the Modal Analysis. Then, the receptance function representing the vibration transmission behavior from a driving point with unit harmonic force to a receiving point can be analyzed by the Harmonic Analysis. Regarding to the dynamic responses of each mechanical components of a moving train such as car body, bogie and rail, the software ADAMS, i.e., Automatic Dynamic Analysis of Mechanical Systems , developed by Mechanical Dynamic Incorporated track systems, is used to perform the analysis for the cases of different rail track systems and different moving velocities of train. Also, the influences of train creepage and rail roughness on the interaction at the contacting point between rail and wheel and the derailment quotient are discussed. In addition, to discuss the radiating noise from a moving train, the software TWINS,i.e.,Track-Wheel Interaction Noise Software, which is developed by the European Rail Research Institute and some related groups for low noise tracks systems, is applied to analyse the source and discuss to the related remedy measures for the noise. In the process of the analysis, the sound power of the exciting source point and the radiated sound pressure at some specified location in the system can be attained. Meanwhile, the dynamic characteristics like the receptances, the wave number, and the relevant properties system can be obtained as well.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography