Academic literature on the topic 'Dystrophin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dystrophin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dystrophin"

1

Straub, Volker, Jill A. Rafael, Jeffrey S. Chamberlain, and Kevin P. Campbell. "Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption." Journal of Cell Biology 139, no. 2 (1997): 375–85. http://dx.doi.org/10.1083/jcb.139.2.375.

Full text
Abstract:
Genetic defects in a number of components of the dystrophin–glycoprotein complex (DGC) lead to distinct forms of muscular dystrophy. However, little is known about how alterations in the DGC are manifested in the pathophysiology present in dystrophic muscle tissue. One hypothesis is that the DGC protects the sarcolemma from contraction-induced damage. Using tracer molecules, we compared sarcolemmal integrity in animal models for muscular dystrophy and in muscular dystrophy patient samples. Evans blue, a low molecular weight diazo dye, does not cross into skeletal muscle fibers in normal mice.
APA, Harvard, Vancouver, ISO, and other styles
2

Cui, Chang-Hao, Taro Uyama, Kenji Miyado, et al. "Menstrual Blood-derived Cells Confer Human Dystrophin Expression in the Murine Model of Duchenne Muscular Dystrophy via Cell Fusion and Myogenic Transdifferentiation." Molecular Biology of the Cell 18, no. 5 (2007): 1586–94. http://dx.doi.org/10.1091/mbc.e06-09-0872.

Full text
Abstract:
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder in children, is an X-linked recessive muscle disease characterized by the absence of dystrophin at the sarcolemma of muscle fibers. We examined a putative endometrial progenitor obtained from endometrial tissue samples to determine whether these cells repair muscular degeneration in a murine mdx model of DMD. Implanted cells conferred human dystrophin in degenerated muscle of immunodeficient mdx mice. We then examined menstrual blood–derived cells to determine whether primarily cultured nontransformed cells also repair
APA, Harvard, Vancouver, ISO, and other styles
3

Steen, Michelle S., Marvin E. Adams, Yan Tesch, and Stanley C. Froehner. "Amelioration of Muscular Dystrophy by Transgenic Expression of Niemann-Pick C1." Molecular Biology of the Cell 20, no. 1 (2009): 146–52. http://dx.doi.org/10.1091/mbc.e08-08-0811.

Full text
Abstract:
Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 ca
APA, Harvard, Vancouver, ISO, and other styles
4

Peter, Angela K., Jamie L. Marshall, and Rachelle H. Crosbie. "Sarcospan reduces dystrophic pathology: stabilization of the utrophin–glycoprotein complex." Journal of Cell Biology 183, no. 3 (2008): 419–27. http://dx.doi.org/10.1083/jcb.200808027.

Full text
Abstract:
Mutations in the dystrophin gene cause Duchenne muscular dystrophy and result in the loss of dystrophin and the entire dystrophin–glycoprotein complex (DGC) from the sarcolemma. We show that sarcospan (SSPN), a unique tetraspanin-like component of the DGC, ameliorates muscular dystrophy in dystrophin-deficient mdx mice. SSPN stabilizes the sarcolemma by increasing levels of the utrophin–glycoprotein complex (UGC) at the extrasynaptic membrane to compensate for the loss of dystrophin. Utrophin is normally restricted to the neuromuscular junction, where it replaces dystrophin to form a functiona
APA, Harvard, Vancouver, ISO, and other styles
5

Yeadon, J. E., H. Lin, S. M. Dyer, and S. J. Burden. "Dystrophin is a component of the subsynaptic membrane." Journal of Cell Biology 115, no. 4 (1991): 1069–76. http://dx.doi.org/10.1083/jcb.115.4.1069.

Full text
Abstract:
A subsynaptic protein of Mr approximately 300 kD is a major component of Torpedo electric organ postsynaptic membranes and copurifies with the AChR and the 43-kD subsynaptic protein. mAbs against this protein react with neuromuscular synapses in higher vertebrates, but not at synapses in dystrophic muscle. The Torpedo 300-kD protein comigrates in SDS-PAGE with murine dystrophin and reacts with antibodies against murine dystrophin. The sequence of a partial cDNA isolated by screening an expression library with mAbs against the Torpedo 300-kD protein shows striking homology to mammalian dystroph
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yi-Wen, Po Zhao, Rehannah Borup, and Eric P. Hoffman. "Expression Profiling in the Muscular Dystrophies." Journal of Cell Biology 151, no. 6 (2000): 1321–36. http://dx.doi.org/10.1083/jcb.151.6.1321.

Full text
Abstract:
We used expression profiling to define the pathophysiological cascades involved in the progression of two muscular dystrophies with known primary biochemical defects, dystrophin deficiency (Duchenne muscular dystrophy) and α-sarcoglycan deficiency (a dystrophin-associated protein). We employed a novel protocol for expression profiling in human tissues using mixed samples of multiple patients and iterative comparisons of duplicate datasets. We found evidence for both incomplete differentiation of patient muscle, and for dedifferentiation of myofibers to alternative lineages with advancing age.
APA, Harvard, Vancouver, ISO, and other styles
7

Teramoto, Naomi, Hidetoshi Sugihara, Keitaro Yamanouchi, et al. "Pathological evaluation of rats carrying in-frame mutations in the dystrophin gene: a new model of Becker muscular dystrophy." Disease Models & Mechanisms 13, no. 9 (2020): dmm044701. http://dx.doi.org/10.1242/dmm.044701.

Full text
Abstract:
ABSTRACTDystrophin, encoded by the DMD gene on the X chromosome, stabilizes the sarcolemma by linking the actin cytoskeleton with the dystrophin-glycoprotein complex (DGC). In-frame mutations in DMD cause a milder form of X-linked muscular dystrophy, called Becker muscular dystrophy (BMD), characterized by the reduced expression of truncated dystrophin. So far, no animal model with in-frame mutations in Dmd has been established. As a result, the effect of in-frame mutations on the dystrophin expression profile and disease progression of BMD remains unclear. In this study, we established a nove
APA, Harvard, Vancouver, ISO, and other styles
8

Spaulding, HR, C. Ballmann, JC Quindry, MB Hudson, and JT Selsby. "Autophagy in the heart is enhanced and independent of disease progression in mus musculus dystrophinopathy models." JRSM Cardiovascular Disease 8 (January 2019): 204800401987958. http://dx.doi.org/10.1177/2048004019879581.

Full text
Abstract:
Background Duchenne muscular dystrophy is a muscle wasting disease caused by dystrophin gene mutations resulting in dysfunctional dystrophin protein. Autophagy, a proteolytic process, is impaired in dystrophic skeletal muscle though little is known about the effect of dystrophin deficiency on autophagy in cardiac muscle. We hypothesized that with disease progression autophagy would become increasingly dysfunctional based upon indirect autophagic markers. Methods Markers of autophagy were measured by western blot in 7-week-old and 17-month-old control (C57) and dystrophic (mdx) hearts. Results
APA, Harvard, Vancouver, ISO, and other styles
9

Zabłocka, Barbara, Dariusz C. Górecki, and Krzysztof Zabłocki. "Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences." International Journal of Molecular Sciences 22, no. 20 (2021): 11040. http://dx.doi.org/10.3390/ijms222011040.

Full text
Abstract:
Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the DMD gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca2+ in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is
APA, Harvard, Vancouver, ISO, and other styles
10

Zabłocka, Barbara, Dariusz C. Górecki, and Krzysztof Zabłocki. "Disrupted Calcium Homeostasis in Duchenne Muscular Dystrophy: A Common Mechanism behind Diverse Consequences." International Journal of Molecular Sciences 22, no. 20 (2021): 11040. http://dx.doi.org/10.3390/ijms222011040.

Full text
Abstract:
Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the DMD gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Among this spectrum of defects, abnormalities of calcium homeostasis are the common dystrophic feature. Given the fundamental role of Ca2+ in all cells, this biochemical alteration might be underlying all the DMD abnormalities. However, its mechanism is
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dystrophin"

1

Gaschen, Lorrie. "Cardiomyopathy in dystrophin-deficient hypertrophic feline muscular dystrophy /." [S.l.] : [s.n.], 1998. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Howard, Judith. "Electrodiagnostic evaluation of dystrophin-deficient hypertrophic feline muscular dystrophy /." [S.l.] : [s.n.], 2000. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thorley, Matthew. "Analysis of the dystrophin interactome." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066619/document.

Full text
Abstract:
Le but de ce projet était d'identifier de manière méthodique et standardisée les partenaires interagissant avec la protéine dystrophine dans les cellules musculaires squelettiques humaines différenciées et découvrir de nouveaux rôles de la dystrophine. Des cellules immortalisées ont été obtenue en sur-exprimant de manière stable hTERT / CDK4. Nous avons réalisé une analyse transcriptomique comparant des lignées immortalisées avec leurs populations primaires correspondantes, à l’état de prolifération et de différentiation. Nous avons constaté que l'immortalisation n'a pas d'effet mesurable sur
APA, Harvard, Vancouver, ISO, and other styles
4

Acharyya, Swarnali. "Elucidating molecular mechanisms of muscle wasting in chronic diseases." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180096565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thorley, Matthew. "Analysis of the dystrophin interactome." Electronic Thesis or Diss., Paris 6, 2016. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2016PA066619.pdf.

Full text
Abstract:
Le but de ce projet était d'identifier de manière méthodique et standardisée les partenaires interagissant avec la protéine dystrophine dans les cellules musculaires squelettiques humaines différenciées et découvrir de nouveaux rôles de la dystrophine. Des cellules immortalisées ont été obtenue en sur-exprimant de manière stable hTERT / CDK4. Nous avons réalisé une analyse transcriptomique comparant des lignées immortalisées avec leurs populations primaires correspondantes, à l’état de prolifération et de différentiation. Nous avons constaté que l'immortalisation n'a pas d'effet mesurable sur
APA, Harvard, Vancouver, ISO, and other styles
6

Pearce, Marcela. "Genomic structure of the human utrophin gene." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coovert, Daniel David. "Analysis of dystrophin in duchenne muscular dystrophy and SMN in spinal muscular atrophy /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487951595500021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reza, Mojgan. "Engineering and optimisation of mini-dystrophin constructs for Duchenne muscular dystrophy gene therapy." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2827.

Full text
Abstract:
Muscular dystrophies (MDs) are inherited disorders characterised by muscle weakness and atrophy. One of the most severe forms is Duchenne muscular dystrophy (DMD) which together with the milder allelic form Becker muscular dystrophy (BMD) are known as the dystrophinopathies and result from defects in the X-linked gene encoding dystrophin. Dystrophin is a structural protein of the muscle that connects the internal cytoskeleton of muscle fibres to the extracellular matrix. DMD is also amongst the most common forms of muscular dystrophy, affecting ~1 in 4000 live male birth and manifests as rapid
APA, Harvard, Vancouver, ISO, and other styles
9

Johnson, Eric K. "A new model for the dystrophin associated protein complex in striated muscles." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354554580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steen, Michelle Sabrina. "Analyses of alpha-dystrobrevin-null mice implicate Niemann-Pick C1 in muscular dystrophy /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/10537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Dystrophin"

1

J, Winder Steve, ed. Molecular mechanisms of muscular dystrophies. Landes Bioscience : Eurekah.com, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1958-, Brown Susan C., and Lucy Jack A. 1929-, eds. Dystrophin: Gene, protein, and cell biology. Cambridge University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

D'Souza, Vinita N. Dystrophin expression in the retina. National Library of Canada, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bestard, Jennifer. Dystrophin gene regulation in muscle. National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thanh, Le Thiet. Exon-specific monoclonal antibodies against dystrophin. University of Salford, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dally, Ghassan Y. Characterization of nommuscle isoforms of dystrophin. National Library of Canada, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cisternas, Felipe A. The function of alternatively spliced isoforms of dystrophin. National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1932-, Kakulas Byron A., Howell J. McC, and Roses Allen D, eds. Duchenne muscular dystrophy: Animal models and genetic manipulation. Raven Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Emery, Alan E. H. Muscular dystrophy, the facts. 2nd ed. Oxford University Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Emery, Alan E. H. Muscular dystrophy. 3rd ed. Oxford University Press Inc., 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Dystrophin"

1

Lu-Nguyen, Ngoc, Alberto Malerba, and Linda Popplewell. "Use of Small Animal Models for Duchenne and Parameters to Assess Efficiency upon Antisense Treatment." In Methods in Molecular Biology. Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_20.

Full text
Abstract:
AbstractDuchenne muscular dystrophy (DMD) is a rare genetic disease affecting 1 in 5000 newborn boys. It is caused by mutations in the DMD gene with a consequent lack of dystrophin protein that leads to deterioration of myofibers and their replacement with fibro-adipogenic tissue. Using antisense oligonucleotides (AONs) to modify out-of-frame mutations in the DMD gene, named exon skipping, is currently considered among the most promising treatments for DMD patients. The development of this strategy is rapidly moving forward, and AONs designed to skip exons 51 and 53 have received accelerated a
APA, Harvard, Vancouver, ISO, and other styles
2

Agarwal, Aishwarya, Kunal Verma, Shivani Tyagi, et al. "Muscular Dystrophy: Mutations in the Dystrophin Gene." In Mechanism and Genetic Susceptibility of Neurological Disorders. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9404-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dickson, George, and Matthew Dunckley. "Human dystrophin gene transfer: genetic correction of dystrophin deficiency." In Molecular and Cell Biology of Muscular Dystrophy. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1528-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blake, Derek J., and Kay E. Davies. "Dystrophin and the molecular genetics of muscular dystrophy." In Protein Dysfunction in Human Genetic Disease. Garland Science, 2024. http://dx.doi.org/10.1201/9781003579953-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mirza, Zeenat, and Sajjad Karim. "Decoding Dystrophin Gene Mutations: Unraveling the Mysteries of Muscular Dystrophy." In Mechanism and Genetic Susceptibility of Neurological Disorders. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9404-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goossens, Remko, and Annemieke Aartsma-Rus. "In Vitro Delivery of PMOs in Myoblasts by Electroporation." In Methods in Molecular Biology. Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_12.

Full text
Abstract:
AbstractAntisense oligonucleotides (AONs) are small synthetic molecules of therapeutic interest for a variety of human disease. Their ability to bind mRNA and affect its splicing gives AONs potential use for exon skipping therapies aimed at restoring the dystrophin transcript reading frame for Duchenne muscular dystrophy (DMD) patients. The neutrally charged phosphorodiamidate morpholino oligomers (PMOs) are a stable and relatively nontoxic AON modification. To assess exon skipping efficiency in vitro, it is important to deliver them to target cells. Here, we describe a method for the delivery
APA, Harvard, Vancouver, ISO, and other styles
7

Barresi, Rita, and Susan C. Brown. "Dystrophin and Its Associated Glycoprotein Complex." In Muscle Disease. John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118635469.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shah, Md Nur Ahad, and Toshifumi Yokota. "Restoring Dystrophin Expression by Skipping Exons 6 and 8 in Neonatal Dystrophic Dogs." In Methods in Molecular Biology. Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2772-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murphy, Sandra, and Kay Ohlendieck. "Proteomic Profiling of the Dystrophin-Deficient Brain." In Methods in Molecular Biology. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7374-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

López-Martínez, Andrea, Patricia Soblechero-Martín, and Virginia Arechavala-Gomeza. "Evaluation of Exon Skipping and Dystrophin Restoration in In Vitro Models of Duchenne Muscular Dystrophy." In Methods in Molecular Biology. Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_14.

Full text
Abstract:
AbstractSeveral exon skipping antisense oligonucleotides (eteplirsen, golodirsen, viltolarsen, and casimersen) have been approved for the treatment of Duchenne muscular dystrophy, but many more are in development targeting an array of different DMD exons. Preclinical screening of the new oligonucleotide sequences is routinely performed using patient-derived cell cultures, and evaluation of their efficacy may be performed at RNA and/or protein level. While several methods to assess exon skipping and dystrophin expression in cell culture have been developed, the choice of methodology often depen
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dystrophin"

1

Cassino, Theresa R., Masaho Okada, Lauren Drowley, Johnny Huard, and Philip R. LeDuc. "Mechanical Stimulation Improves Muscle-Derived Stem Cell Transplantation for Cardiac Repair." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192941.

Full text
Abstract:
Muscle-derived stem cells (MDSCs) have been successfully transplanted into both skeletal (1) and cardiac muscle (2) of dystrophin-deficient (mdx) mice, and show potential for improving cardiac and skeletal dysfunction in diseases like Duchenne muscular dystrophy (DMD). Our previous study explored the regeneration of dystrophin-expressing myocytes following MDSC transplantation into environments with distinct blood flow and chemical/mechanical stimulation attributes. After MDSC transplantation within left ventricular myocardium and gastrocnemius (GN) muscles of the same mdx mice, significantly
APA, Harvard, Vancouver, ISO, and other styles
2

Cassino, Theresa R., Masaho Okada, Lauren M. Drowley, Joseph Feduska, Johnny Huard, and Philip R. LeDuc. "Using Mechanical Environment to Enhance Stem Cell Transplantation in Muscle Regeneration." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176545.

Full text
Abstract:
Muscle-derived stem cell (MDSC) transplantation has shown potential as a therapy for cardiac and skeletal muscle dysfunction in diseases such as Duchenne muscular dystrophy (DMD). In this study we explore mechanical environment and its effects on MDSCs engraftment into cardiac and skeletal muscle in mdx mice and neoangiogenesis within the engraftment area. We first looked at transplantation of the same number of MDSCs into the heart and gastrocnemius (GN) muscle of dystrophic mice and the resulting dystrophin expression. We then explored neoangiogenesis within the engraftments through quantifi
APA, Harvard, Vancouver, ISO, and other styles
3

Oliveira, Marco Antônio Rodrigues Gomes de, and Isaura Maria Mesquita Prado. "Evidence and affects in Duchenne muscular dystrophy in children and Golden Retriever dogs." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.302.

Full text
Abstract:
Introduction: Progressive muscular dystrophies differ in different ways due to their age of manifestation, the distribution of muscle weakness and the association of heart, central nervous system and peripheral nervous system. The most severe and common form of muscular dystrophies is Duchenne muscular dystrophy (DMD). Its involvement is 1/3500 male babies born alive and is attributed to 80% of cases of dystrophinopathies. The impairment of the dystrophin-glycoprotein complex in Becker and Duchenne dystrophies, in most congenital and girdle dystrophies, destruction of the sarcolemmal muscle fi
APA, Harvard, Vancouver, ISO, and other styles
4

de Feraudy, Yvan, Rabah Yaou, Karim Wahbi, France Leturcq, and Helge Amthor. "Residual Very Low Dystrophin Levels Mitigate Dystrophinopathy towards Becker’s Muscular Dystrophy." In Abstracts of the 47th Annual Meeting of the SENP (Société Européenne De Neurologie Pédiatrique). Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1685441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hilton, S., M. Christen, T. Bilzer, et al. "Dystrophin (DMD) missense variant in cats with Becker type muscular dystrophy." In 31. Jahrestagung der FG „Innere Medizin und klinische Labordiagnostik“ der DVG (InnLab) – Teil 1: Vorträge. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1760811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lima, Karlla Danielle Ferreira, Pedro Henrique Marte Arruda Sampaio, Marco Antonio Veloso Albuquerque, and Edmar Zanoteli. "Evaluation of lung function and respiratory muscles in Duchenne muscular dystrophy." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.695.

Full text
Abstract:
Introduction: Duchenne muscular Dystrophy (DMD) is a genetic disease of recessive inheritance linked to the X chromosome, caused by a mutation in the dystrophin gene. This mutation will result in absence of the dystrophin protein, leading to the degeneration of muscle skeletal. The disease is the most common childhood-onset form of muscular dystrophy and affects males almost exclusively. DMD symptoms onset occurs in early childhood, usually between the ages of three and five years, with progressive muscle weakness and loss of gait in adolescence, progressive cardiomyopathy, and respiratory fai
APA, Harvard, Vancouver, ISO, and other styles
7

Marin, Marija. "Immunogold localization of dystrophin in the erythrocytes of patients with Duchenne-Becker muscular dystrophy." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krause, C., S. Kranig, J. Pöschl, and H. Hudalla. "Frühe T-Zell Immundysregulation im Dystrophin defizienten Tiermodell." In 30. Kongress der Deutschen Gesellschaft für Perinatale Medizin – „Wandel als Herausforderung“. Georg Thieme Verlag, 2021. http://dx.doi.org/10.1055/s-0041-1739718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Franzmeier, Sophie, Jan Stöckl, Shounak Chakraborty, et al. "Complementary transcriptome and proteome analysis of dystrophin-deficient satellite cells." In 67. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/s-0044-1787318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Franzmeier, Sophie, Jan Stöckl, Shounak Chakraborty, et al. "Complementary transcriptome and proteome analysis of dystrophin-deficient satellite cells." In 67. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/s-0044-1787366.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Dystrophin"

1

Cox, Gregory A. Translational Research for Muscular Dystrophy. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada609750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cox, Gregory A. Translational Research for Muscular Dystrophy. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada564543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huard, Johnny, Eric Hoffman, John Day, Kevin Campbell, Xiao Xiao, and Paula Clemens. New Advanced Technology for Muscular Dystrophy. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada536121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mahoney, My G., Ulrich Rodeck, and Jouni Uitto. Molecular Characterization of Squamous Cell Carcinomas From Recessive Dystrophic Epidermolysis Bullosa. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada463709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cnaan, Avital. CINRG: Infrastructure for Clinical Trials in Duchenne Dystrophy. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada567633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cnaan, Avital. CINRG: Infrastructure for Clinical Trials in Duchenne Dystrophy. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada599521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mahoney, My G., Ulrich Rodeck, and Jouni Uitto. Molecular Characterization of Squamous Cell Carcinomas Derived from Recessive Dystrophic Epidermolysis Bullosa. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada446877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mahoney, My G., Ulrich Rodeck, and Jouni Uitto. Molecular Characterization of Squamous Cell Carcinomas Derived From Recessive Dystrophic Epidermolysis Bullosa. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada419358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muzafirovic, Armin. Muscular Dystrophy: Lifestyle Strategies to Improve Quality of Life. Iowa State University, 2023. http://dx.doi.org/10.31274/cc-20240624-1034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Paul T. Translational Studies of GALGT2 Gene Therapy for Duchenne Muscular Dystrophy. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada613577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!