Academic literature on the topic 'Dystrophin Glycoprotein Complex'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dystrophin Glycoprotein Complex.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dystrophin Glycoprotein Complex"
Peter, Angela K., Jamie L. Marshall, and Rachelle H. Crosbie. "Sarcospan reduces dystrophic pathology: stabilization of the utrophin–glycoprotein complex." Journal of Cell Biology 183, no. 3 (November 3, 2008): 419–27. http://dx.doi.org/10.1083/jcb.200808027.
Full textGumerson, Jessica D., and Daniel E. Michele. "The Dystrophin-Glycoprotein Complex in the Prevention of Muscle Damage." Journal of Biomedicine and Biotechnology 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/210797.
Full textOhlendieck, K., and K. P. Campbell. "Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice." Journal of Cell Biology 115, no. 6 (December 15, 1991): 1685–94. http://dx.doi.org/10.1083/jcb.115.6.1685.
Full textCulligan, Kevin, and Kay Ohlendieck. "Diversity of the Brain Dystrophin-Glycoprotein Complex." Journal of Biomedicine and Biotechnology 2, no. 1 (2002): 31–36. http://dx.doi.org/10.1155/s1110724302000347.
Full textSunada, Yoshihide, and Kevin P. Campbell. "Dystrophin-glycoprotein complex." Current Opinion in Neurology 8, no. 5 (October 1995): 379–84. http://dx.doi.org/10.1097/00019052-199510000-00010.
Full textOhlendieck, K., J. M. Ervasti, J. B. Snook, and K. P. Campbell. "Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma." Journal of Cell Biology 112, no. 1 (January 1, 1991): 135–48. http://dx.doi.org/10.1083/jcb.112.1.135.
Full textStraub, Volker, Jill A. Rafael, Jeffrey S. Chamberlain, and Kevin P. Campbell. "Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption." Journal of Cell Biology 139, no. 2 (October 20, 1997): 375–85. http://dx.doi.org/10.1083/jcb.139.2.375.
Full textStraub, Volker, and Kevin P. Campbell. "Muscular dystrophies and the dystrophin–glycoprotein complex." Current Opinion in Neurology 10, no. 2 (April 1997): 168–75. http://dx.doi.org/10.1097/00019052-199704000-00016.
Full textLapidos, Karen A., Rahul Kakkar, and Elizabeth M. McNally. "The Dystrophin Glycoprotein Complex." Circulation Research 94, no. 8 (April 30, 2004): 1023–31. http://dx.doi.org/10.1161/01.res.0000126574.61061.25.
Full textMurphy, Sandra, Margit Zweyer, Rustam R. Mundegar, Dieter Swandulla, and Kay Ohlendieck. "Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle." HRB Open Research 1 (May 30, 2018): 17. http://dx.doi.org/10.12688/hrbopenres.12846.1.
Full textDissertations / Theses on the topic "Dystrophin Glycoprotein Complex"
Hance, Jacqueline Elizabeth. "Identification of novel components of the dystrophin glycoprotein complex." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40057.pdf.
Full textJudge, Luke Milburn. "Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex in skeletal muscle /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/4989.
Full textCampos, Érica Carolina. "Isoproterenol induz a perda primária de distrofina: correlação com a injúria miocárdica." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/17/17143/tde-18082008-123133/.
Full textThis study tested the hypothesis that the dystrophin-glycoprotein complex that confers structural stability in cardiomyocytes was affected in the isoproterenol-induced myocardial ischemia. Materials and Methods: Male Wistar rats were divided in control group (SAL), injected subcutaneously with physiological saline, and isoproterenol-treated group (ISO), injected with isoproterenol (85mg/Kg) diluted in distilled water, in two consecutive days, separated by a 24-hour interval. These rats were killed 24 hours after the second injection of isoproterenol or physiological saline. The hearts were rapidly removed, rinsed in ice-cold 0.9% saline solution, weighed, and fixed as a whole in phosphate-buffered for 24 hours at 4oC. For morphometric analysis, the hearts cut into two fragments by a midventricular coronal section and embedded in paraffin. The absolute thicknesses of the septum and left and right ventricular walls and the areas of each ventricular chamber were measured. The hearts for Historesin embedding were frontally cut into anterior and posterior halves for analysis of myocytolytic areas. Hearts frontally cut were frozen for immunofluorescence study using primary antibodies against dystrophin, ?-1 integrin, ?- sarcomeric actin, ?-sarcoglycan, ?-dystroglycan, merosin laminin, albumin, CD68, CD45, CD4 e eNOS. The occurrence of apoptotic cells was evaluated by TUNEL method. The cardiac function, LV dimensions and wall motion segmented score were analyzed by echocardiography. For analysis of differences between the two groups the Student\'s t-test was performed and the level of significance of 5% was chosen to denote difference between means. Results and Conclusion: There was significant difference in the heart weight, in the heart ratio, in the LV area and right ventricular (RV) thicknesses between the two groups. No statistical difference was observed in the thicknesses of the free wall of the LV and septum, although tended to be lower in isoproterenol-treated myocardium. The percentage of myocytolysis in the LV, septum, and RV with myocytolysis in isoproterenol treated rats was: 26.89%, 36.12%, 28.15%, respectively. Immunofluorescence demonstrated that loss of dystrophin was the primary event in the myocytolytic process. Decreased expression of ?-dystroglycan, ?-sarcoglycan, ?-1 integrin and laminin occurred, appearing as epiphenomena. The eNOS expression was almost completely absent in the myocytolytic foci. eNOS expression was enhanced in blood vessels of cardiomyocytes through the entire myocardium of rats given isoproterenol. This is likely a compensatory response to the ischemic insult elicited by isoproterenol administration. In the myocytolytic foci a positive reaction for apoptosis was constantly and clearly noted in cardiomyocytes and macrophages. The echocardiography showed that diastolic and systolic LV dimensions in ISO-group were significantly higher in comparison with control group. The ejection fraction was not different between groups. The wall motion segmented score showed hypokinesis or akinesis in the apical segments in the hearts of ISO-group as compared with controls. These changes, related to ischemic injury, can explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol. Compensatory mechanisms in the short time of our experiment could maintain the normal cardiac function in spite of severe myocardial morphological changes.
Given, Alexis. "Models of Epsilon-Sarcoglycan Gene Inactivation and their Implications for the Pathology of Myoclonus Dystonia." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23790.
Full textSperringer, Justin Edward. "Chronic Dietary Supplementation of Branched-Chain Amino Acids Does Not Attenuate Muscle Torque Loss in a Mouse Model of Duchenne Muscular Dystrophy." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93577.
Full textDoctor of Philosophy
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive, progressive muscle-wasting disease characterized by mutations in the dystrophin gene. Duchenne muscular dystrophy is the most common and most severe form of inherited muscle diseases, with an incidence of 1 in 3,500 male births1,2. Mutations in the dystrophin gene result in non-functional dystrophin or the complete absence of the protein dystrophin, resulting in necrosis and fibrosis in the muscle, loss of movement and walking ability, cardiomyopathies, inadequate or failure of respiratory function, and decreased lifespan. Although there has been little research for effective nutritional strategies, dietary intervention may be effective as an adjuvant treatment and palliative care. The branched chain amino acids (BCAAs) are known to directly stimulate muscle protein synthesis by direct activation of the mechanistic target of rapamycin complex 1 (mTORC1). This study aimed to illustrate the differences between diseased and healthy mice and determine if BCAAs can reduce muscle torque loss. Twenty-five weeks of chronic, elevated BCAA supplementation had no impact on muscle function measures. Interestingly, mdx and WT animals had the same torque responses in the low stimulation frequencies (1 Hz – 30 Hz) compared to higher stimulation frequencies. Tetanus was reached at a much lower stimulation frequency in mdx animals compared to WT animals (100 Hz vs +150 Hz). The mdx mouse consistently had more cage activity in the light cycle X- and Y-planes. Interestingly, animals on the BCAA diet increased X-, Y-, and Z-plane activity in the dark cycles at four weeks while animals on the control diet more Z-plane activity at 25 weeks, although not significant. All three BCAAs were elevated in the plasma at 25 weeks, although only Leu was significantly elevated. The BCAAs had no effect on. The diaphragm and skeletal muscle masses were larger in mdx animals, and WT animals had a significantly larger epididymal fat pad. The active state of BCKDC determined by phosphorylation of the E1α enzyme was greater in WT animals in white skeletal muscle, but not red skeletal muscle. Protein synthesis effectors of the mTORC1 signaling pathway and autophagy markers were similar among groups. Wild type animals had increased mTORC1 effectors and animals on the BCAA diet had decreased autophagy markers, although not significant. Although BCAAs did not affect muscle function, fibrosis, or protein synthesis effectors, this study illustrates the functionality of mdx muscles over time. It would be interesting to see how the different muscle fiber types are affected by DMD, noting the differences between the diaphragm, heart, red muscle, and white muscle fibrosis markers. Although there was no increase in mTORC1 effectors with an elevated BCAA diet, it would be interesting to determine muscle protein synthesis, myofibrillar protein synthesis, and total protein turnover in the mdx mouse with an elevated BCAA diet, although the dietary intervention started when mice arrived at 4 weeks of age, earlier intervention may be beneficial early in the disease process.
Celes, Mara Rubia Nunes. "Remodelamento do complexo de glicoproteínas associadas à distrofina, do disco intercalar e das proteínas contráteis no coração de camundongos submetidos à sépsis induzida por ligação e perfuração do ceco." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/17/17143/tde-20082008-165637/.
Full textSepsis and septic shock represent a complex syndrome of systemic inflammatory response, with multiple physiological and immunological abnormalities, commonly caused by bacterial infection. The most important consequence of the response is the involvement of many organs and tissues. Cardiac dysfunction, caused by impairment in myocardial contractility, has been recognized as an important factor that contributes to the high mortality observed in sepsis. Evidence from our laboratory indicates that myocardial structural changes could be responsible for sepsis-induced myocardial dysfunction. Taking into account that the contractile machinery inside the myofibers must remain intimately connected with the membrane and extracellular matrix, the present investigation sought to evaluate changes in intercellular communications and mechanical coupling between the neighbor cardiomyocytes and the expression of the cell scaffold protein and extracellular matrix (specifically merosin laminin-2 chain) during the severe sepsis. Our results showed a decrease in the expression of proteins involved in formation of gap junctions (connexin-43) and adherens junctions (N-cadherin). These alterations may result in the loss of intercalated disc structural integrity, changing the mechanical and electrical-chemical coupling between neighboring cardiomyocytes. Additionally, we demonstrated the decrease of dystrophin and dystrophin-glycoprotein complex (DGC) components resulting from severe septic injury. The reduction or loss of dystrophin is the primary event that occurs followed by miofilamentar degeneration characterized by actin and myosin lysis. The decrease of glycoproteins associated with dystrophin: -dystroglican and laminin were considered secondary events. The results suggest that during experimental severe sepsis induced by cecal ligation and puncture (CLP), there is loss of important proteins involved in both the remodeling of the intercalated disc and the glycoproteins expression implicated in the mechanical link between the intracellular cytoskeleton and extracellular matrix. Although the functional studies are needed to determine the direct effect of these alterations on myocardium, we can suggest that myocardial structural changes may be partly responsible for sepsis-induced cardiac depression.
Kaakinen, M. (Mika). "Functional microdomains in the specialized membranes of skeletal myofibres." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514295171.
Full textTiivistelmä Luustolihaksen toimintojen perustana ovat supistumiskykyiset lihassolut, joiden kalvorakenne on järjestynyt erityisellä tavalla ohjaamaan supistusta. Tässä tutkimuksessa analysoitiin proteiini- ja lipidiperustaisten mikroalueiden järjestäytymistä ja tähän vaikuttavia tekijöitä luustolihassolun solukalvolla sekä lihassolun sisäisessä kalvojärjestelmässä, sarkoplasmisessa verkossa (SR). Ensin analysoitiin vesikanavatyyppiä 4 (AQP4), joka oligomerisoituessaan muodostaa erikokoisia mikroalueita. Havaittiin, että AQP4-mikroalueita esiintyy kaikkialla solukalvolla lukuun ottamatta eräitä erilaistuneita mikro- ja makroalueita. AQP4-oligomeerien jakauma solukalvon lateraalisessa osassa, sarkolemmalla, noudatti dystrofiini-glykoproteiinikompleksin jakaumaa. Fluoresoivan venus-AQP4-proteiinin avulla osoitettiin, että proteiinin liikkuvuus oli samanlainen solun sisään ulottuvissa poikkiputkistoissa ja sarkolemmalla, mutta liikkuvuutta rajoittavat tekijät olivat erilaisia näissä solukalvon osissa. Toiseksi analysoitiin kolesteroli- ja sfingolipidipitoisia mikroalueita, kalvolauttoja. Flotilliini-1- ja influenssaviruksen hemagglutiniini (HA) -proteiinia sisältäviä lauttoja esiintyi vain poikkiputkien suuaukkojen alueella, mutta lauttojen jakauma oli erilainen. Lauttojen lipidiympäristöllä ei ollut vaikutusta proteiinien sijaintiin. Tämä osoitettiin kolesterolin poistokokeilla sekä kokeilla, joissa käytettiin mutatoitua HA-proteiinia, joka ei hakeudu kolesteroliympäristöön. Kaveoliini-3-proteiinin sijainti poikkeaa edellä mainituista, ja kolesterolin poisto vaikutti merkittävästi sijainnin määräytymiseen. Kolmanneksi analysoitiin, miten karkean endoplasmakalvoston proteiinit ovat järjestäytyneet SR:ssä. Havaittiin, että endoplasmiset kalvoproteiinit eivät ole homogeenisesti levittäytyneet SR-kalvostoon vaan muodostavat pieniä mikroalueita. Detergenttiuuttoanalyysit osoittivat lisäksi, että näissä mikroalueissa on erilainen lipidikoostumus kuin SR:ssä yleensä. Huomattavaa oli myös, että mikroalueet olivat toiminnallisia kaikkialla SR-kalvostossa. Tulosten perusteella luustolihassolujen kalvojärjestelmä sisältää mikroalueita, joiden jakautuminen vaikuttaa hyvin organisoituneelta. Erityisesti solukalvon mikroalueet esiintyvät tietyillä spesifeillä alueilla, joissa niiden voidaan olettaa toimivan mm. erilaisissa solusignalointitapahtumissa ja paikallisessa ionipitoisuuksien säätelyssä. Eräissä tapauksissa lipidiympäristöllä on merkitystä mikroalueiden sijainnin määräytymisessä, mutta proteiinien sitoutuminen solukalvo- tai solukalvon alaisiin rakenteisiin saattaa myös olla määräävä tekijä
Hanft, Laurin Michelle. "A compensatory role for elevated cytoplasmic [gamma]-actin in dystrophin-glycoprotein complex deficient muscle." 2005. http://catalog.hathitrust.org/api/volumes/oclc/70853552.html.
Full textSharma, Pawan. "Role of caveolae and the dystrophin glycoprotein complex in airway smooth muscle phenotype and lung function." 2012. http://hdl.handle.net/1993/5275.
Full textBook chapters on the topic "Dystrophin Glycoprotein Complex"
Barresi, Rita, and Susan C. Brown. "Dystrophin and Its Associated Glycoprotein Complex." In Muscle Disease, 95–101. Oxford, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118635469.ch8.
Full text"Dystrophin-Glycoprotein Complex (DGC)." In Encyclopedia of Exercise Medicine in Health and Disease, 268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2314.
Full textKobayashi, Yvonne M., and Kevin P. Campbell. "Skeletal Muscle Dystrophin-Glycoprotein Complex and Muscular Dystrophy." In Muscle, 935–42. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-381510-1.00066-1.
Full textCerecedo, Doris. "Dystrophin–Glycoprotein Complex in Blood Cells." In Cytoskeleton - Structure, Dynamics, Function and Disease. InTech, 2017. http://dx.doi.org/10.5772/66857.
Full textErvasti, James M., and Kevin J. Sonnemann. "Biology of the Striated Muscle Dystrophin–Glycoprotein Complex." In International Review of Cytology, 191–225. Elsevier, 2008. http://dx.doi.org/10.1016/s0074-7696(07)65005-0.
Full textConference papers on the topic "Dystrophin Glycoprotein Complex"
Sharma, Pawan, Saeid Ghavami, Gerald L. Stelmack, Karol D. McNeill, Mark M. Mutawe, Helmut Unruh, and Andrew J. Halayko. "The Dystrophin Glycoprotein Complex (DGC) Regulates Spatial Organization And Function Of Caveolae In Human Airway Smooth Muscle Cells." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a5294.
Full text