Academic literature on the topic 'Dystrophin Glycoprotein Complex'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dystrophin Glycoprotein Complex.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dystrophin Glycoprotein Complex"

1

Peter, Angela K., Jamie L. Marshall, and Rachelle H. Crosbie. "Sarcospan reduces dystrophic pathology: stabilization of the utrophin–glycoprotein complex." Journal of Cell Biology 183, no. 3 (November 3, 2008): 419–27. http://dx.doi.org/10.1083/jcb.200808027.

Full text
Abstract:
Mutations in the dystrophin gene cause Duchenne muscular dystrophy and result in the loss of dystrophin and the entire dystrophin–glycoprotein complex (DGC) from the sarcolemma. We show that sarcospan (SSPN), a unique tetraspanin-like component of the DGC, ameliorates muscular dystrophy in dystrophin-deficient mdx mice. SSPN stabilizes the sarcolemma by increasing levels of the utrophin–glycoprotein complex (UGC) at the extrasynaptic membrane to compensate for the loss of dystrophin. Utrophin is normally restricted to the neuromuscular junction, where it replaces dystrophin to form a functionally analogous complex. SSPN directly interacts with the UGC and functions to stabilize utrophin protein without increasing utrophin transcription. These findings reveal the importance of protein stability in the prevention of muscular dystrophy and may impact the future design of therapeutics for muscular dystrophies.
APA, Harvard, Vancouver, ISO, and other styles
2

Gumerson, Jessica D., and Daniel E. Michele. "The Dystrophin-Glycoprotein Complex in the Prevention of Muscle Damage." Journal of Biomedicine and Biotechnology 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/210797.

Full text
Abstract:
Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle may contribute to a higher degree of muscle damage which eventually overwhelms muscle regeneration capacity. While increased susceptibility of muscle to mechanical injury is thought to be an important contributor to disease pathology, it is becoming clear that not all DGC-associated diseases share this supposed hallmark feature. This paper outlines experimental support for a function of the DGC in preventing muscle damage and examines the evidence that supports novel functions for this complex in muscle that when impaired, may contribute to the pathogenesis of muscular dystrophy.
APA, Harvard, Vancouver, ISO, and other styles
3

Ohlendieck, K., and K. P. Campbell. "Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice." Journal of Cell Biology 115, no. 6 (December 15, 1991): 1685–94. http://dx.doi.org/10.1083/jcb.115.6.1685.

Full text
Abstract:
Dystrophin, the protein product of the human Duchenne muscular dystrophy gene, exists in skeletal muscle as a large oligomeric complex that contains four glycoproteins of 156, 50, 43, and 35 kD and a protein of 59 kD. Here, we investigated the relative abundance of each of the components of the dystrophin-glycoprotein complex in skeletal muscle from normal and mdx mice, which are missing dystrophin. Immunoblot analysis using total muscle membranes from control and mdx mice of ages 1 d to 30 wk found that all of the dystrophin-associated proteins were greatly reduced (80-90%) in mdx mouse skeletal muscle. The specificity of the loss of the dystrophin-associated glycoproteins was demonstrated by the finding that the major glycoprotein composition of skeletal muscle membranes from normal and mdx mice was identical. Furthermore, skeletal muscle membranes from the dystrophic dy/dy mouse exhibited a normal density of dystrophin and dystrophin-associated proteins. Immunofluorescence microscopy confirmed the results from the immunoblot analysis and showed a drastically reduced density of dystrophin-associated proteins in mdx muscle cryosections compared with normal and dy/dy mouse muscle. Therefore, our results demonstrate that all of the dystrophin-associated proteins are significantly reduced in mdx skeletal muscle and suggest that the loss of dystrophin-associated proteins is due to the absence of dystrophin and not due to secondary effects of muscle fiber degradation.
APA, Harvard, Vancouver, ISO, and other styles
4

Culligan, Kevin, and Kay Ohlendieck. "Diversity of the Brain Dystrophin-Glycoprotein Complex." Journal of Biomedicine and Biotechnology 2, no. 1 (2002): 31–36. http://dx.doi.org/10.1155/s1110724302000347.

Full text
Abstract:
Duchenne muscular dystrophy (DMD), the most common inherited neuromuscular disorder, is characterized by progressive muscle wasting and weakness. One third of Duchenne patients suffer a moderate to severe, nonprogressive form of mental retardation. Mutations in the DMD gene are thought to be responsible, with the shorter isoforms of dystrophin implicated in its molecular brain pathogenesis. It is becoming clear that region-specific variations in dystrophin isoforms delegate the composition of the dystrophin-glycoprotein complex in brain, and hence, the function of the specific membrane assembly. Here we summarize the recent advances in the understanding of brain dystrophin, dystrophin-related proteins and dystrophin-associated proteins.
APA, Harvard, Vancouver, ISO, and other styles
5

Sunada, Yoshihide, and Kevin P. Campbell. "Dystrophin-glycoprotein complex." Current Opinion in Neurology 8, no. 5 (October 1995): 379–84. http://dx.doi.org/10.1097/00019052-199510000-00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ohlendieck, K., J. M. Ervasti, J. B. Snook, and K. P. Campbell. "Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma." Journal of Cell Biology 112, no. 1 (January 1, 1991): 135–48. http://dx.doi.org/10.1083/jcb.112.1.135.

Full text
Abstract:
mAbs specific for protein components of the surface membrane of rabbit skeletal muscle have been used as markers in the isolation and characterization of skeletal muscle sarcolemma membranes. Highly purified sarcolemma membranes from rabbit skeletal muscle were isolated from a crude surface membrane preparation by wheat germ agglutination. Immunoblot analysis of subcellular fractions from skeletal muscle revealed that dystrophin and its associated glycoproteins of 156 and 50 kD are greatly enriched in purified sarcolemma vesicles. The purified sarcolemma was also enriched in novel sarcolemma markers (SL45, SL/TS230) and Na+/K(+)-ATPase, whereas t-tubule markers (alpha 1 and alpha 2 subunits of dihydropyridine receptor, TS28) and sarcoplasmic reticulum markers (Ca2(+)-ATPase, ryanodine receptor) were greatly diminished in this preparation. Analysis of isolated sarcolemma by SDS-PAGE and densitometric scanning demonstrated that dystrophin made up 2% of the total protein in the rabbit sarcolemma preparation. Therefore, our results demonstrate that although dystrophin is a minor muscle protein it is a major constituent of the sarcolemma membrane in skeletal muscle. Thus the absence of dystrophin in Duchenne muscular dystrophy may result in a major disruption of the cytoskeletal network underlying the sarcolemma in dystrophic muscle.
APA, Harvard, Vancouver, ISO, and other styles
7

Straub, Volker, Jill A. Rafael, Jeffrey S. Chamberlain, and Kevin P. Campbell. "Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption." Journal of Cell Biology 139, no. 2 (October 20, 1997): 375–85. http://dx.doi.org/10.1083/jcb.139.2.375.

Full text
Abstract:
Genetic defects in a number of components of the dystrophin–glycoprotein complex (DGC) lead to distinct forms of muscular dystrophy. However, little is known about how alterations in the DGC are manifested in the pathophysiology present in dystrophic muscle tissue. One hypothesis is that the DGC protects the sarcolemma from contraction-induced damage. Using tracer molecules, we compared sarcolemmal integrity in animal models for muscular dystrophy and in muscular dystrophy patient samples. Evans blue, a low molecular weight diazo dye, does not cross into skeletal muscle fibers in normal mice. In contrast, mdx mice, a dystrophin-deficient animal model for Duchenne muscular dystrophy, showed significant Evans blue accumulation in skeletal muscle fibers. We also studied Evans blue dispersion in transgenic mice bearing different dystrophin mutations, and we demonstrated that cytoskeletal and sarcolemmal attachment of dystrophin might be a necessary requirement to prevent serious fiber damage. The extent of dye incorporation in transgenic mice correlated with the phenotypic severity of similar dystrophin mutations in humans. We furthermore assessed Evans blue incorporation in skeletal muscle of the dystrophia muscularis (dy/dy) mouse and its milder allelic variant, the dy2J/dy2J mouse, animal models for congenital muscular dystrophy. Surprisingly, these mice, which have defects in the laminin α2-chain, an extracellular ligand of the DGC, showed little Evans blue accumulation in their skeletal muscles. Taken together, these results suggest that the pathogenic mechanisms in congenital muscular dystrophy are different from those in Duchenne muscular dystrophy, although the primary defects originate in two components associated with the same protein complex.
APA, Harvard, Vancouver, ISO, and other styles
8

Straub, Volker, and Kevin P. Campbell. "Muscular dystrophies and the dystrophin–glycoprotein complex." Current Opinion in Neurology 10, no. 2 (April 1997): 168–75. http://dx.doi.org/10.1097/00019052-199704000-00016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lapidos, Karen A., Rahul Kakkar, and Elizabeth M. McNally. "The Dystrophin Glycoprotein Complex." Circulation Research 94, no. 8 (April 30, 2004): 1023–31. http://dx.doi.org/10.1161/01.res.0000126574.61061.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Murphy, Sandra, Margit Zweyer, Rustam R. Mundegar, Dieter Swandulla, and Kay Ohlendieck. "Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle." HRB Open Research 1 (May 30, 2018): 17. http://dx.doi.org/10.12688/hrbopenres.12846.1.

Full text
Abstract:
Background: In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods: The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results: Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration and counteract the dystrophic phenotype, were also shown to exist in high-molecular mass complexes. Conclusions: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dystrophin Glycoprotein Complex"

1

Hance, Jacqueline Elizabeth. "Identification of novel components of the dystrophin glycoprotein complex." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40057.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Judge, Luke Milburn. "Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex in skeletal muscle /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/4989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Campos, Érica Carolina. "Isoproterenol induz a perda primária de distrofina: correlação com a injúria miocárdica." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/17/17143/tde-18082008-123133/.

Full text
Abstract:
Este estudo teve como objetivo avaliar as alterações do complexo de glicoproteínas associadas à distrofina que conferem estabilidade estrutural aos cardiomiócitos na isquemia miocárdica induzida pelo isoproterenol. Materiais e Métodos: Ratos Wistar machos foram divididos em dois grupos: grupo controle (SAL), injeção subcutânea de salina, e grupo isoproterenol (ISO), injeção subcutânea de isoproterenol (85mg/kg) diluído em água destilada, em dois dias consecutivos separados por intervalo de 24hs. Os ratos foram mortos 24 horas após a segunda injeção de salina ou isoproterenol. Os corações foram rapidamente excisados, lavados em salina gelada, pesados e colocados em formol PBS por 24hs a 4ºC e incluídos em parafina ou Historesina. Para análise morfométrica, os corações foram cortados transversalmente na porção medioventricular, equidistante entre o ápice e a base, e incluídos em parafina. Áreas dos ventrículos direito e esquerdo, espessura de parede livre dos ventrículos e septo interventricular foram medidas. Os corações cortados frontalmente nas metades anterior e posterior e incluídos em Historesina foram utilizados para avaliação das áreas de miocitólise. Porções hemiventriculares foram congeladas para as reações de imunofluorescência com os seguintes marcadores: distrofina, ?-1 integrina, ?-actina sarcomérica, ?-sarcoglicana, ?-distroglicana, merosina laminina, albumina, CD68, CD45, CD4 e eNOS. A apoptose foi avaliada através do método de TUNEL. A função cardíaca, as dimensões das cavidades ventriculares e a mobilidade de parede foram analisadas através da ecocardiografia. A análise estatística foi realizada através do teste t de Student, com nível de significância de 5%. Resultados e Conclusão: Houve diferença significativa no peso do coração, na taxa de crescimento corporal, na área do ventrículo esquerdo e na espessura de parede do ventrículo direito entre os grupos. Não houve diferença estatística significativa na espessura da parede do ventrículo esquerdo e septo, mas observou-se tendência à diminuição. As áreas de miocitólise representaram 26,89%, 36,12%, 28,15% no ventrículo direito, septo e ventrículo esquerdo, respectivamente. A imunofluorescência mostrou que a distrofina foi a estrutura mais sensível ao dano provocado pelo isoproterenol, seguida pela perda completa da actina. A redução na expressão de ?-sarcoglicana, ?-distroglicana, ?-1 integrina e laminina, foram considerados como epifenômenos. A expressão de eNOS estava praticamente ausente nas áreas de miocitólise. A expressão aumentada de eNOS nos pequenos vasos ao redor das áreas de miocitólise sugere uma resposta compensatória à isquemia provocada pelo isoproterenol na tentativa de melhora do fluxo sangüíneo para as áreas de lesão. Foi observada alteração na permeabilidade sarcolemal nos cardiomiócitos dos animais tratados com isoproterenol com acúmulo de albumina no espaço intracelular. Observou-se que os cardiomiócitos e os macrófagos estavam constante e claramente marcados para apoptose nas áreas de miocitólise. Na ecocardiografia, os diâmetros sistólico e diastólico do ventrículo esquerdo foram significativemente maiores no grupo ISO em comparação com os controles. A fração de ejeção não foi diferente entre os grupos. O escore de mobilidade de parede mostrou hipocinesia ou acinesia nos segmentos apicais nos corações do grupo ISO. Essas mudanças, relacionadas à isquemia, podem explicar as graves alterações na integridade estrutural do sarcolema dos cardiomiócitos e a lesão induzida pelo isoproterenol. Mecanismos compensatórios no curto período de nosso experimento poderiam manter a função cardíaca normal apesar das graves alterações morfológicas encontradas.
This study tested the hypothesis that the dystrophin-glycoprotein complex that confers structural stability in cardiomyocytes was affected in the isoproterenol-induced myocardial ischemia. Materials and Methods: Male Wistar rats were divided in control group (SAL), injected subcutaneously with physiological saline, and isoproterenol-treated group (ISO), injected with isoproterenol (85mg/Kg) diluted in distilled water, in two consecutive days, separated by a 24-hour interval. These rats were killed 24 hours after the second injection of isoproterenol or physiological saline. The hearts were rapidly removed, rinsed in ice-cold 0.9% saline solution, weighed, and fixed as a whole in phosphate-buffered for 24 hours at 4oC. For morphometric analysis, the hearts cut into two fragments by a midventricular coronal section and embedded in paraffin. The absolute thicknesses of the septum and left and right ventricular walls and the areas of each ventricular chamber were measured. The hearts for Historesin embedding were frontally cut into anterior and posterior halves for analysis of myocytolytic areas. Hearts frontally cut were frozen for immunofluorescence study using primary antibodies against dystrophin, ?-1 integrin, ?- sarcomeric actin, ?-sarcoglycan, ?-dystroglycan, merosin laminin, albumin, CD68, CD45, CD4 e eNOS. The occurrence of apoptotic cells was evaluated by TUNEL method. The cardiac function, LV dimensions and wall motion segmented score were analyzed by echocardiography. For analysis of differences between the two groups the Student\'s t-test was performed and the level of significance of 5% was chosen to denote difference between means. Results and Conclusion: There was significant difference in the heart weight, in the heart ratio, in the LV area and right ventricular (RV) thicknesses between the two groups. No statistical difference was observed in the thicknesses of the free wall of the LV and septum, although tended to be lower in isoproterenol-treated myocardium. The percentage of myocytolysis in the LV, septum, and RV with myocytolysis in isoproterenol treated rats was: 26.89%, 36.12%, 28.15%, respectively. Immunofluorescence demonstrated that loss of dystrophin was the primary event in the myocytolytic process. Decreased expression of ?-dystroglycan, ?-sarcoglycan, ?-1 integrin and laminin occurred, appearing as epiphenomena. The eNOS expression was almost completely absent in the myocytolytic foci. eNOS expression was enhanced in blood vessels of cardiomyocytes through the entire myocardium of rats given isoproterenol. This is likely a compensatory response to the ischemic insult elicited by isoproterenol administration. In the myocytolytic foci a positive reaction for apoptosis was constantly and clearly noted in cardiomyocytes and macrophages. The echocardiography showed that diastolic and systolic LV dimensions in ISO-group were significantly higher in comparison with control group. The ejection fraction was not different between groups. The wall motion segmented score showed hypokinesis or akinesis in the apical segments in the hearts of ISO-group as compared with controls. These changes, related to ischemic injury, can explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol. Compensatory mechanisms in the short time of our experiment could maintain the normal cardiac function in spite of severe myocardial morphological changes.
APA, Harvard, Vancouver, ISO, and other styles
4

Given, Alexis. "Models of Epsilon-Sarcoglycan Gene Inactivation and their Implications for the Pathology of Myoclonus Dystonia." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23790.

Full text
Abstract:
Myoclonus Dystonia (MD) is an autosomal dominant movement disorder characterized by bilateral myoclonic jerks paired with dystonia 1. Mutations have been mapped to the ε-sarcoglycan (SGCE) gene in about 40% of patients 2,92. The purpose of this project was to examine the properties of SGCE in the central nervous system (CNS) and use this knowledge to elucidate the pathology of MD. Although Sgce is a member of the sarcoglycan complex (SGC) in other tissues, little is known about its interactions in the CNS. The vast majority of mutations in SGCE alter the translational reading frame. Proteins arising from these rare mutations are less stable than the wild type (WT) and undergo preferential degradation via the ubiquitin proteasome system 3. As this locus is maternally imprinted, patients with MD are effectively null for sgce expression 73,91. Therefore, Sgce knock out (KO) models should approximate MD conditions both in vivo and in vitro. As there are no current treatments for MD, in sight into the pathology of the disease will aid in eventual treatments and help bring patients some relief by finally understanding their disease. Since a large percentage of MD patients are without the sgce protein, identifying what this protein’s function is and how its absence effects normal processing in the brain should help to identify the underlying cellular pathology which produces the MD phenotype. This research was performed under the hypothesis that, in neuronal cells, sgce interacts with a group of proteins that together play a role in stabilization and localization of ion channels and signaling proteins at the cell membrane. The aims were to: (1) Build a MD mouse model with either a conditional knock-out (cKO) or a conditional gene repair (cGR) mutation; (2) Use neuroblastoma cells to identify the other proteins which interact with sgce in neurons, and; (3) Determine if there is a disruption of the localization of the sgce-complex members due to the loss of sgce. Recombineering was used to complete the constructs for two transgenic mouse models: One model for the KO of exon 4 of sgce and one for the cGR in intron 1. Primary neurosphere lines from two previously generated chimeras were developed, as well as from a WT mouse. These neurosphere cell lines allowed comparisons of RT-PCR results from a heterogeneous neurological cell population to neuroblastoma cell lines. mRNA is present in neuronal cells for many of the DGC associated proteins. It was confirmed that the KD of sgce results in a reduction of nNOS protein and in increased proliferation of NIE cells. By using a nitrite/nitrate assay as well as studies with L-NAME, it was confirmed that this increased proliferation was in fact due to a lack of nNOS function. These proliferation changes did not occur in N2A cells, which do not express high levels of nNOS during proliferation, further confirming nNOS’s role in the proliferation changes. Using qRT-PCR, KD of sgce was shown to result in significant changes in the transcript levels for many DGC associated proteins. This suggests that a DGC-like complex is forming in neuronal cells. Also, as a result of difficulties with the research, it became clear that over-expression of sgce causes cell death. This observation was quantified using cell counts and TUNEL staining, both showing significant results. Additionally, several new constructs were created which will hopefully be of use for future students wanting to study sgce’s functions. New shRNA targeting sgce and sgcb have been made and both constructs result in reducing the expression of sgce. Seven different flag-tagged sgces have been created and some of these have been transferred into a tet-inducible system, which should circumvent the problem of over-expression. Finally GFP-tagged constructs for sgce and sgcb have been made and pooled clones have been developed. These tools will hopefully enable future students to continue to tease apart sgce’s function(s).
APA, Harvard, Vancouver, ISO, and other styles
5

Sperringer, Justin Edward. "Chronic Dietary Supplementation of Branched-Chain Amino Acids Does Not Attenuate Muscle Torque Loss in a Mouse Model of Duchenne Muscular Dystrophy." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93577.

Full text
Abstract:
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive, progressive muscle-wasting disease characterized by mutations in the dystrophin gene. Duchenne muscular dystrophy is the most common and most severe form of inherited muscle diseases, with an incidence of 1 in 3,500 male births1,2. Mutations in the dystrophin gene result in non-functional dystrophin or the complete absence of the protein dystrophin, resulting in necrosis and fibrosis in the muscle, loss of ambulation, cardiomyopathies, inadequate or failure of respiratory function, and decreased lifespan. Although there has been little research for effective nutritional strategies, dietary intervention may be effective as an adjuvant treatment. In this study, wild type (WT) and mdx animals were provided either a control or elevated branched chain amino acid (BCAA) diet nocturnally for 25 weeks to determine if the elevated BCAAs would attenuate muscle torque loss. Twenty-five weeks of chronic, elevated BCAA supplementation had no impact on muscle function measures. Interestingly, mdx and WT animals had the same torque responses in the low stimulation frequencies (1 Hz – 30 Hz) compared to higher stimulation frequencies. Tetanus was reached at a much lower stimulation frequency in mdx animals compared to WT animals (100 Hz vs +150 Hz). The mdx mouse consistently had more cage activity in the light cycle X- and Y-planes. Interestingly, animals on the BCAA diet increased X-, Y-, and Z-plane activity in the dark cycles at four weeks while animals on the control diet more Z-plane activity at 25 weeks, although not significant. All three BCAAs were elevated in the plasma at 25 weeks, although only Leu was significantly elevated. The BCAAs had no effect on. The diaphragm and skeletal muscle masses were larger in mdx animals, and WT animals had a significantly larger epididymal fat pad. The active state of BCKDC determined by phosphorylation of the E1α enzyme was greater in WT animals in white skeletal muscle, but not red skeletal muscle. Protein synthesis effectors of the mTORC1 signaling pathway and autophagy markers were similar among groups. Wild type animals had increased mTORC1 effectors and animals on the BCAA diet had decreased autophagy markers, although not significant. Although BCAAs did not affect muscle function, fibrosis, or protein synthesis effectors, this study illustrates the functionality of mdx muscles over time. It would be interesting to see how the different muscle fiber types are affected by DMD, noting the differences between the diaphragm, heart, red muscle, and white muscle fibrosis markers. Although there was no increase in mTORC1 effectors with an elevated BCAA diet, it would be interesting to determine muscle protein synthesis, myofibrillar protein synthesis, and total protein turnover in the mdx mouse with an elevated BCAA diet, although the dietary intervention started when mice arrived at 4 weeks of age, earlier intervention may be beneficial early in the disease process.
Doctor of Philosophy
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive, progressive muscle-wasting disease characterized by mutations in the dystrophin gene. Duchenne muscular dystrophy is the most common and most severe form of inherited muscle diseases, with an incidence of 1 in 3,500 male births1,2. Mutations in the dystrophin gene result in non-functional dystrophin or the complete absence of the protein dystrophin, resulting in necrosis and fibrosis in the muscle, loss of movement and walking ability, cardiomyopathies, inadequate or failure of respiratory function, and decreased lifespan. Although there has been little research for effective nutritional strategies, dietary intervention may be effective as an adjuvant treatment and palliative care. The branched chain amino acids (BCAAs) are known to directly stimulate muscle protein synthesis by direct activation of the mechanistic target of rapamycin complex 1 (mTORC1). This study aimed to illustrate the differences between diseased and healthy mice and determine if BCAAs can reduce muscle torque loss. Twenty-five weeks of chronic, elevated BCAA supplementation had no impact on muscle function measures. Interestingly, mdx and WT animals had the same torque responses in the low stimulation frequencies (1 Hz – 30 Hz) compared to higher stimulation frequencies. Tetanus was reached at a much lower stimulation frequency in mdx animals compared to WT animals (100 Hz vs +150 Hz). The mdx mouse consistently had more cage activity in the light cycle X- and Y-planes. Interestingly, animals on the BCAA diet increased X-, Y-, and Z-plane activity in the dark cycles at four weeks while animals on the control diet more Z-plane activity at 25 weeks, although not significant. All three BCAAs were elevated in the plasma at 25 weeks, although only Leu was significantly elevated. The BCAAs had no effect on. The diaphragm and skeletal muscle masses were larger in mdx animals, and WT animals had a significantly larger epididymal fat pad. The active state of BCKDC determined by phosphorylation of the E1α enzyme was greater in WT animals in white skeletal muscle, but not red skeletal muscle. Protein synthesis effectors of the mTORC1 signaling pathway and autophagy markers were similar among groups. Wild type animals had increased mTORC1 effectors and animals on the BCAA diet had decreased autophagy markers, although not significant. Although BCAAs did not affect muscle function, fibrosis, or protein synthesis effectors, this study illustrates the functionality of mdx muscles over time. It would be interesting to see how the different muscle fiber types are affected by DMD, noting the differences between the diaphragm, heart, red muscle, and white muscle fibrosis markers. Although there was no increase in mTORC1 effectors with an elevated BCAA diet, it would be interesting to determine muscle protein synthesis, myofibrillar protein synthesis, and total protein turnover in the mdx mouse with an elevated BCAA diet, although the dietary intervention started when mice arrived at 4 weeks of age, earlier intervention may be beneficial early in the disease process.
APA, Harvard, Vancouver, ISO, and other styles
6

Celes, Mara Rubia Nunes. "Remodelamento do complexo de glicoproteínas associadas à distrofina, do disco intercalar e das proteínas contráteis no coração de camundongos submetidos à sépsis induzida por ligação e perfuração do ceco." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/17/17143/tde-20082008-165637/.

Full text
Abstract:
A sépsis e o choque séptico representam uma síndrome complexa de intensa resposta inflamatória sistêmica, com múltiplas anormalidades fisiológicas e imunológicas, comumente causadas por infecção bacteriana. A principal conseqüência dessa resposta é o comprometimento de muitos órgãos e tecidos. A disfunção cardíaca, decorrente de um prejuízo na contratilidade miocárdica, tem sido reconhecida como um fator importante que contribui para os altos índices de mortalidade observados na sépsis. Dados recentes do nosso laboratório indicam que alterações estruturais no miocárdio podem ser responsáveis pela disfunção cardíaca observada na sépsis. Considerando que a maquinaria contrátil interna das miofibras deve permanecer intimamente conectada com a membrana e a matriz extracelular, o presente estudo foi proposto para avaliar alterações nas comunicações intercelulares e acoplagem mecânica entre os cardiomiócitos vizinhos e avaliar a expressão de proteínas do arcabouço celular e da matriz extracelular (especificamente a laminina-?2) durante a sépsis grave. Nossos resultados mostraram que há uma diminuição na expressão das proteínas envolvidas na formação das gap junctions (conexina43) e junções aderentes (N-caderina), o que resultaria na perda da integridade estrutural dos discos intercalares, alterando o acoplamento mecânico e eletro-químico entre os cardiomiócitos vizinhos. Além disso, demonstramos que há redução na expressão de distrofina e das proteínas que constituem o complexo de glicoproteínas associadas a distrofina (CGD) durante a sépsis experimental. A redução ou perda da expressão de distrofina é o evento primário que ocorre seguido pela degeneração miofilamentar, caracterizada pela lise dos filamentos de actina e miosina. A diminuição na expressão das glicoproteínas associadas à distrofina: -distroglicana e laminina foram considerados eventos secundários. Os resultados sugerem que durante a sépsis induzida por ligação e perfuração do ceco (CLP), há perda de proteínas importantes envolvidas tanto no remodelamento do disco intercalar quanto na expressão de glicoproteínas envolvidas na ligação mecânica entre o citoesqueleto intracelular e a matriz extracelular. Embora estudos funcionais sejam necessários para determinar o efeito direto dessas alterações sobre o miocárdio podemos sugerir que as alterações estruturais são parcialmente responsáveis pela depressão miocárdica observada na sépsis.
Sepsis and septic shock represent a complex syndrome of systemic inflammatory response, with multiple physiological and immunological abnormalities, commonly caused by bacterial infection. The most important consequence of the response is the involvement of many organs and tissues. Cardiac dysfunction, caused by impairment in myocardial contractility, has been recognized as an important factor that contributes to the high mortality observed in sepsis. Evidence from our laboratory indicates that myocardial structural changes could be responsible for sepsis-induced myocardial dysfunction. Taking into account that the contractile machinery inside the myofibers must remain intimately connected with the membrane and extracellular matrix, the present investigation sought to evaluate changes in intercellular communications and mechanical coupling between the neighbor cardiomyocytes and the expression of the cell scaffold protein and extracellular matrix (specifically merosin laminin-2 chain) during the severe sepsis. Our results showed a decrease in the expression of proteins involved in formation of gap junctions (connexin-43) and adherens junctions (N-cadherin). These alterations may result in the loss of intercalated disc structural integrity, changing the mechanical and electrical-chemical coupling between neighboring cardiomyocytes. Additionally, we demonstrated the decrease of dystrophin and dystrophin-glycoprotein complex (DGC) components resulting from severe septic injury. The reduction or loss of dystrophin is the primary event that occurs followed by miofilamentar degeneration characterized by actin and myosin lysis. The decrease of glycoproteins associated with dystrophin: -dystroglican and laminin were considered secondary events. The results suggest that during experimental severe sepsis induced by cecal ligation and puncture (CLP), there is loss of important proteins involved in both the remodeling of the intercalated disc and the glycoproteins expression implicated in the mechanical link between the intracellular cytoskeleton and extracellular matrix. Although the functional studies are needed to determine the direct effect of these alterations on myocardium, we can suggest that myocardial structural changes may be partly responsible for sepsis-induced cardiac depression.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaakinen, M. (Mika). "Functional microdomains in the specialized membranes of skeletal myofibres." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514295171.

Full text
Abstract:
Abstract The function of skeletal muscle is to generate force and produce movement. These tasks are carried out by long multinucleated cells, the skeletal myofibres. The membrane system and the cytoskeleton of these cells are uniquely organized to respond rapidly to neuronal stimuli and to achieve efficient contraction. In the present study the organization and distribution of selected protein/lipid based microdomains that reside in the plasma membrane and sarcoplasmic reticulum of isolated rat skeletal myofibres, were investigated. Aquaporin 4 (AQP4) water channels are arranged as higher order oligomers of several sizes in the sarcolemma and in the T tubules. These oligomers, however, were absent from many specialized micro- and- macrodomains. The distribution of AQP4 coincided with that of a highly organized protein assembly, the dystrophin glycoprotein complex (DGC), in the sarcolemma. A chimaeric venus-AQP4 was equally mobile in the T tubules and sarcolemma, but the anchoring mechanisms of the protein appeared to be different. In contrast to AQP4, the proteins resident in cholesterol and sphingolipid-based microdomains, known as rafts, also occupied DGC deficient areas, which surround the T tubule openings. Indeed, flotillin-1 rafts were located in the neck portions of the T tubules. The rafts defined by the influenza haemagglutinin (HA) also resided in DGC deficient areas, but at the borders of the DGC area. Importantly, of the raft proteins, only the localization of caveolin 3 (CAV3) was dependent on the cholesterol enriched lipid environment, as evidenced by cholesterol depletion experiments and localization studies on a non-raft associated variant of HA. The organization and distribution of membrane associated rough ER (RER) proteins were also analysed. Biochemical detergent extraction analyses and immunofluorescence staining indicated that the ER proteins were assembled as microdomains within the sarcoplasmic reticulum (SR). The microdomains were distributed throughout the SR network and they were capable of protein translocation. Taken together, skeletal myofibres comprise visually distinct microdomains both in the plasma membrane and in the SR. In the plasma membrane, different types of microdomains are not homogenously distributed and function in diverse locations. This may have important physiological implications concerning, among other things, local regulation of ion concentrations and cell signalling cascades. Different constraints ranging from protein-protein interactions to the surrounding lipid environment are important for dictating the observed distribution patterns
Tiivistelmä Luustolihaksen toimintojen perustana ovat supistumiskykyiset lihassolut, joiden kalvorakenne on järjestynyt erityisellä tavalla ohjaamaan supistusta. Tässä tutkimuksessa analysoitiin proteiini- ja lipidiperustaisten mikroalueiden järjestäytymistä ja tähän vaikuttavia tekijöitä luustolihassolun solukalvolla sekä lihassolun sisäisessä kalvojärjestelmässä, sarkoplasmisessa verkossa (SR). Ensin analysoitiin vesikanavatyyppiä 4 (AQP4), joka oligomerisoituessaan muodostaa erikokoisia mikroalueita. Havaittiin, että AQP4-mikroalueita esiintyy kaikkialla solukalvolla lukuun ottamatta eräitä erilaistuneita mikro- ja makroalueita. AQP4-oligomeerien jakauma solukalvon lateraalisessa osassa, sarkolemmalla, noudatti dystrofiini-glykoproteiinikompleksin jakaumaa. Fluoresoivan venus-AQP4-proteiinin avulla osoitettiin, että proteiinin liikkuvuus oli samanlainen solun sisään ulottuvissa poikkiputkistoissa ja sarkolemmalla, mutta liikkuvuutta rajoittavat tekijät olivat erilaisia näissä solukalvon osissa. Toiseksi analysoitiin kolesteroli- ja sfingolipidipitoisia mikroalueita, kalvolauttoja. Flotilliini-1- ja influenssaviruksen hemagglutiniini (HA) -proteiinia sisältäviä lauttoja esiintyi vain poikkiputkien suuaukkojen alueella, mutta lauttojen jakauma oli erilainen. Lauttojen lipidiympäristöllä ei ollut vaikutusta proteiinien sijaintiin. Tämä osoitettiin kolesterolin poistokokeilla sekä kokeilla, joissa käytettiin mutatoitua HA-proteiinia, joka ei hakeudu kolesteroliympäristöön. Kaveoliini-3-proteiinin sijainti poikkeaa edellä mainituista, ja kolesterolin poisto vaikutti merkittävästi sijainnin määräytymiseen. Kolmanneksi analysoitiin, miten karkean endoplasmakalvoston proteiinit ovat järjestäytyneet SR:ssä. Havaittiin, että endoplasmiset kalvoproteiinit eivät ole homogeenisesti levittäytyneet SR-kalvostoon vaan muodostavat pieniä mikroalueita. Detergenttiuuttoanalyysit osoittivat lisäksi, että näissä mikroalueissa on erilainen lipidikoostumus kuin SR:ssä yleensä. Huomattavaa oli myös, että mikroalueet olivat toiminnallisia kaikkialla SR-kalvostossa. Tulosten perusteella luustolihassolujen kalvojärjestelmä sisältää mikroalueita, joiden jakautuminen vaikuttaa hyvin organisoituneelta. Erityisesti solukalvon mikroalueet esiintyvät tietyillä spesifeillä alueilla, joissa niiden voidaan olettaa toimivan mm. erilaisissa solusignalointitapahtumissa ja paikallisessa ionipitoisuuksien säätelyssä. Eräissä tapauksissa lipidiympäristöllä on merkitystä mikroalueiden sijainnin määräytymisessä, mutta proteiinien sitoutuminen solukalvo- tai solukalvon alaisiin rakenteisiin saattaa myös olla määräävä tekijä
APA, Harvard, Vancouver, ISO, and other styles
8

Hanft, Laurin Michelle. "A compensatory role for elevated cytoplasmic [gamma]-actin in dystrophin-glycoprotein complex deficient muscle." 2005. http://catalog.hathitrust.org/api/volumes/oclc/70853552.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Pawan. "Role of caveolae and the dystrophin glycoprotein complex in airway smooth muscle phenotype and lung function." 2012. http://hdl.handle.net/1993/5275.

Full text
Abstract:
Smooth muscle is a primary determinant of physiology as its ability to contract affords dynamic control of diameter of the hollow organs it encircles including the airways. Mature airway smooth muscle (ASM) cells are phenotypically plastic, enabling them to subserve contractile, proliferative, migratory and secretory roles that relates to its function in health and disease. ASM cells can control airway diameter both acutely, via reversible contraction, and chronically, by driving fixed changes in structure and function properties of the airway wall. However, the scope of research on ASM biology and function has broadened greatly in the past two decades, embracing the now recognized dynamic and multifunctional behavior, but there is always a need to investigate the role of new proteins regulating ASM phenotype in vitro and lung function in vivo. The multimeric dystrophin-glycoprotein complex (DGC) links the extracellular matrix (ECM) and actin cytoskeleton while caveolae form membrane arrays on ASM cells. Using ASM cells and tissues from human and canine and intact mouse for lung physiology, we investigated the role of DGC in phenotype maturation. We also investigated the mechanism for the organization of DGC with caveolae and further tested whether this is functionally important in mobilizing intracellular calcium in ASM cells, contraction of ASM tissue and finally its role in airway physiology. Our data demonstrate that the expression of DGC is an integral feature and a key determinant for phenotype maturation of human ASM cells. Our new data reveals an interaction between caveolin-1 and DGC and indicate that this association, in concert with anchoring to the actin cytoskeleton, underpins the spatial organization of caveolae on the membrane and has a functional role in receptor-mediated calcium release in ASM in vitro, ASM contraction ex vivo and lung function in vivo. Collectively our study indicates that the organization of caveolae and DGC, and its link from ECM to the actin cytoskeleton with in caveolae are a determinant of phenotype and functional properties of ASM, which underpins its role in physiology and pathophysiology of chronic airway diseases such as asthma.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dystrophin Glycoprotein Complex"

1

Barresi, Rita, and Susan C. Brown. "Dystrophin and Its Associated Glycoprotein Complex." In Muscle Disease, 95–101. Oxford, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118635469.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Dystrophin-Glycoprotein Complex (DGC)." In Encyclopedia of Exercise Medicine in Health and Disease, 268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kobayashi, Yvonne M., and Kevin P. Campbell. "Skeletal Muscle Dystrophin-Glycoprotein Complex and Muscular Dystrophy." In Muscle, 935–42. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-381510-1.00066-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cerecedo, Doris. "Dystrophin–Glycoprotein Complex in Blood Cells." In Cytoskeleton - Structure, Dynamics, Function and Disease. InTech, 2017. http://dx.doi.org/10.5772/66857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ervasti, James M., and Kevin J. Sonnemann. "Biology of the Striated Muscle Dystrophin–Glycoprotein Complex." In International Review of Cytology, 191–225. Elsevier, 2008. http://dx.doi.org/10.1016/s0074-7696(07)65005-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dystrophin Glycoprotein Complex"

1

Sharma, Pawan, Saeid Ghavami, Gerald L. Stelmack, Karol D. McNeill, Mark M. Mutawe, Helmut Unruh, and Andrew J. Halayko. "The Dystrophin Glycoprotein Complex (DGC) Regulates Spatial Organization And Function Of Caveolae In Human Airway Smooth Muscle Cells." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a5294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography