Journal articles on the topic 'Eμ-TCL1 mice'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Eμ-TCL1 mice.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gobessi, Stefania, Francesca Belfiore, Sara Bennardo, Brendan Doe, Luca Laurenti та Dimitar G. Efremov. "Expression of ZAP-70 Does Not Accelerate Leukemia Development and Progression in the Eμ-TCL1 Transgenic Mouse Model of Chronic Lymphocytic Leukemia". Blood 120, № 21 (2012): 925. http://dx.doi.org/10.1182/blood.v120.21.925.925.
Full textLarsson, Connie A., Kensuke Kojima, Yong Wang та ін. "BET Bromodomain Inhibition Reduces Leukemic Burden and Prolongs Survival In The Eμ-TCL1 Transgenic Mouse Model Of Chronic Lymphocytic Leukemia (CLL) Independent Of TP53 Mutation Status". Blood 122, № 21 (2013): 876. http://dx.doi.org/10.1182/blood.v122.21.876.876.
Full textBennardo, Sara, Stefano Iacovelli, Stefania Gobessi та ін. "The Nature of the Antigen Determines Leukemia Development and Behavior in the Eμ-TCL1 Transgenic Mouse Model of CLL". Blood 120, № 21 (2012): 181. http://dx.doi.org/10.1182/blood.v120.21.181.181.
Full textWu, Qingli, Zierold Claudia, and Erik A. Ranheim. "Dysregulation of Frizzled 6 Is a Critical Component of B Cell Leukemogenesis in a Mouse Model of Chronic Lymphocytic Leukemia." Blood 110, no. 11 (2007): 347. http://dx.doi.org/10.1182/blood.v110.11.347.347.
Full textBellone, Matteo, Paolo Dellabona, Arianna Calcinotto, et al. "CD4+ T Cells Sustain Aggressive Chronic Lymphocytic Leukemia through a CD40L-Independent Mechanism." Blood 134, Supplement_1 (2019): 683. http://dx.doi.org/10.1182/blood-2019-128246.
Full textAlhakeem, Sara S., Mary K. McKenna, Sunil K. Nooti, et al. "Suppression of Anti-Tumor Immunity in Chronic Lymphocytic Leukemia Via Interleukin-10 Production." Blood 128, no. 22 (2016): 3215. http://dx.doi.org/10.1182/blood.v128.22.3215.3215.
Full textMcKenna, Mary Kathryn, Sunil K. Nooti, Sara Samir Alhakeem, et al. "Role of Prostate apoptosis response-4 tumor suppressor in the survival and growth of Chronic Lymphocytic Leukemia." Journal of Immunology 196, no. 1_Supplement (2016): 72.15. http://dx.doi.org/10.4049/jimmunol.196.supp.72.15.
Full textMcClanahan, Fabienne, Cristina Ghirelli, Paul Greaves та ін. "Inhibitory Ligands CD200, CD270, CD274 and CD276 Are Expressed On Eμ-TCL1 Transgenic Mouse Splenocytes and Are of Potential Relevance to Impaired T-Cell Function in Vivo". Blood 120, № 21 (2012): 313. http://dx.doi.org/10.1182/blood.v120.21.313.313.
Full textKriss, Crystina L., Javier A. Pinilla-Ibarz, Adam W. Mailloux, et al. "Overexpression of TCL1 activates the endoplasmic reticulum stress response: a novel mechanism of leukemic progression in mice." Blood 120, no. 5 (2012): 1027–38. http://dx.doi.org/10.1182/blood-2011-11-394346.
Full textEnzler, Thomas, Arnon P. Kater, Weizhou Zhang та ін. "Chronic lymphocytic leukemia of Eμ-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression". Blood 114, № 20 (2009): 4469–76. http://dx.doi.org/10.1182/blood-2009-06-230169.
Full textNganga, Vincent K., Victoria L. Palmer, Hina Naushad та ін. "Accelerated progression of chronic lymphocytic leukemia in Eμ-TCL1 mice expressing catalytically inactive RAG1". Blood 121, № 19 (2013): 3855–66. http://dx.doi.org/10.1182/blood-2012-08-446732.
Full textWu, Qingli, and Erik A. Ranheim. "Upregulation of Genes Involved in the Beta-Catenin Signaling Pathway in a Mouse Model of Chronic Lymphocytic Leukemia." Blood 104, no. 11 (2004): 1121. http://dx.doi.org/10.1182/blood.v104.11.1121.1121.
Full textGrioni, Matteo, Arianna Brevi, Elena Cattaneo та ін. "CD4+ T cells sustain aggressive chronic lymphocytic leukemia in Eμ-TCL1 mice through a CD40L-independent mechanism". Blood Advances 5, № 14 (2021): 2817–28. http://dx.doi.org/10.1182/bloodadvances.2020003795.
Full textRamsay, Alan G., Gullu Gorgun, Tobias A. W. Holderried, et al. "A Mouse Model for Immunotherapeutic Reversal of Leukemia-Induced T Cell Dysfunction." Blood 112, no. 11 (2008): 30. http://dx.doi.org/10.1182/blood.v112.11.30.30.
Full textReinart, Nina, Malgorzata Ciesla, Cornelia Rudolph, et al. "Macrophage Migration Inhibitory Factor (MIF) Promotes the Development of Murine Chronic Lymphocytic Leukemia (CLL)." Blood 112, no. 11 (2008): 27. http://dx.doi.org/10.1182/blood.v112.11.27.27.
Full textGamal, Wael, Nienke B. Goedhart, Helga Simon-Molas, et al. "Reprogramming CLL T-Cell Mitochondrial Fitness Using PI3K Inhibition for Enhancing CAR T-Cell Therapy." Blood 144, Supplement 1 (2024): 4803. https://doi.org/10.1182/blood-2024-210992.
Full textScielzo, Cristina, Maria T. S. Bertilaccio, Giorgia Simonetti, et al. "HS1 has a central role in the trafficking and homing of leukemic B cells." Blood 116, no. 18 (2010): 3537–46. http://dx.doi.org/10.1182/blood-2009-12-258814.
Full textGamal, Wael, Melanie Mediavilla Varela, Angimar Uriepero Palma, et al. "Identifying the Role of Endoplasmic Reticulum Stress in CLL T-Cell Dysfunction." Blood 144, Supplement 1 (2024): 1848. https://doi.org/10.1182/blood-2024-210608.
Full textFerrer, Gerardo, Xiao-Jie Yan, Brendan Franca, et al. "Chronic Lymphocytic Leukemia Patients and Eµ-TCL1 Mice Share a Phenotype of Functional Granulocyte-like and Dysfunctional Monocyte-like Myeloid Derived Suppressor Cells." Blood 126, no. 23 (2015): 614. http://dx.doi.org/10.1182/blood.v126.23.614.614.
Full textAlhakeem, Sara Samir, Mary Kathryn McKenna, Beth W. Gachuki, et al. "The role of IL-10 in B-cell chronic lymphocytic leukemia cell survival." Journal of Immunology 196, no. 1_Supplement (2016): 211.17. http://dx.doi.org/10.4049/jimmunol.196.supp.211.17.
Full textEnzler, Thomas, Weizhou Zhang, Arnon P. Kater, et al. "Constitutive Baff Signalling Plays a Key Role in CLL Development by Promoting Tumor Cell Survival." Blood 112, no. 11 (2008): 28. http://dx.doi.org/10.1182/blood.v112.11.28.28.
Full textGobessi, Stefania, Sara Bennardo, Pablo G. Longo, Brendan Doe, and Dimitar G. Efremov. "Development of a Transgenic Mouse Model to Study the Role of ZAP-70 in the Development and Progression of Chronic Lymphocytic Leukemia." Blood 118, no. 21 (2011): 2830. http://dx.doi.org/10.1182/blood.v118.21.2830.2830.
Full textLee, Avery C., Sai R. Pingali, Javier A. Pinilla-Ibarz, Chih-Hang A. Tang, and Chih-Chi A. Hu. "Abstract 142: Loss of AID exacerbates the malignant progression of CLL." Cancer Research 82, no. 12_Supplement (2022): 142. http://dx.doi.org/10.1158/1538-7445.am2022-142.
Full textBondada, Subbarao, James P. Collard, Mary Kathryn McKenna, et al. "The role of the splenic microenvironment in Chronic Lymphocytic Leukemia." Journal of Immunology 204, no. 1_Supplement (2020): 163.6. http://dx.doi.org/10.4049/jimmunol.204.supp.163.6.
Full textMärklin, Melanie, Stefanie Bugl, Jonas S. Heitmann, et al. "Genetic Loss of NFAT2 Induces Profound Acceleration of CLL in the TCL1 Mouse Model." Blood 120, no. 21 (2012): 862. http://dx.doi.org/10.1182/blood.v120.21.862.862.
Full textMcKenna, Mary Kathryn, Sunil K. Noothi, Sara Samir Alhakeem, et al. "Splenic microenvironment is important in the survival and growth of Chronic Lymphocytic Leukemia in mice." Journal of Immunology 198, no. 1_Supplement (2017): 130.20. http://dx.doi.org/10.4049/jimmunol.198.supp.130.20.
Full textWoyach, Jennifer A., Matthew R. Stefanovski, Virginia Goettl, et al. "Global Inhibition of Bruton's Tyrosine Kinase (BTK) Delays the Development and Expansion of Chronic Lymphocytic Leukemia (CLL) in the TCL1 Mouse Model of Disease." Blood 120, no. 21 (2012): 183. http://dx.doi.org/10.1182/blood.v120.21.183.183.
Full textSchrage, Matthew I., David Kim, Jeffrey Calimlim, et al. "The PIM1 Oncogene Accelerates TCL1 Driven Lymphomagenesis in a Double-Transgenic Murine Model." Blood 112, no. 11 (2008): 1806. http://dx.doi.org/10.1182/blood.v112.11.1806.1806.
Full textMinden, Marcus Dühren-von, Thomas Wossning, Hassan Jumaa та Hendrik Veelken. "The Role of the BCR Class Expressed by Eμ-TCL1tg Mice and Human CLL". Blood 120, № 21 (2012): 182. http://dx.doi.org/10.1182/blood.v120.21.182.182.
Full textMotiwala, Tasneem, Nicola Zanesi, Jharna Datta, et al. "AP-1 elements and TCL1 protein regulate expression of the gene encoding protein tyrosine phosphatase PTPROt in leukemia." Blood 118, no. 23 (2011): 6132–40. http://dx.doi.org/10.1182/blood-2011-01-323147.
Full textHertlein, Erin K., Timothy L. Chen, David M. Lucas, et al. "NFkB p50 (Nfkb1) Contributes to Disease in the Eu-TCL1 Mouse Model of Chronic Lymphocytic Leukemia." Blood 126, no. 23 (2015): 1248. http://dx.doi.org/10.1182/blood.v126.23.1248.1248.
Full textDong, Shuai, John C. Byrd, and Amy J. Johnson. "Genetic Inhibition of PI3K p110delta Antagonizes Survival Signals and Induces Immune Activation in Chronic Lymphocytic Leukemia (CLL)." Blood 126, no. 23 (2015): 1711. http://dx.doi.org/10.1182/blood.v126.23.1711.1711.
Full textAlhakeem, Sara, Mary McKenna, Beth Gachuki, et al. "Constitutive IL-10 production by normal and malignant B-1 cells is dependent on B cell receptor signaling (IRM10P.620)." Journal of Immunology 194, no. 1_Supplement (2015): 131.18. http://dx.doi.org/10.4049/jimmunol.194.supp.131.18.
Full textOntiveros, Evelena, David Dae-Young Kim, Jeffrey M. Calimlim, et al. "The PIM1 Oncogene Accelerates TCL1 Driven Lymphomagenesis in a Double-Transgenic Murine Model." Blood 114, no. 22 (2009): 2968. http://dx.doi.org/10.1182/blood.v114.22.2968.2968.
Full textSuljagic, Mirza, Pablo G. Longo, Luca Laurenti, and Dimitar G. Efremov. "The Syk Inhibitor R788 (FosD) Inhibits Tumor Growth in the TCL1 Transgenic Mouse Model of CLL by Blocking Antigen-Dependent BCR Signaling." Blood 114, no. 22 (2009): 887. http://dx.doi.org/10.1182/blood.v114.22.887.887.
Full textRößner, Philipp M., Bola S. Hanna, Thorsten Zenz, Stephan Stilgenbauer, Peter Lichter, and Martina Seiffert. "The role of CXCR3 in the microenvironment of chronic lymphocytic leukemia." Journal of Immunology 196, no. 1_Supplement (2016): 73.12. http://dx.doi.org/10.4049/jimmunol.196.supp.73.12.
Full textSchulze-Edinghausen, Lena, Claudia Dürr, Selcen Öztürk, et al. "Dissecting the Prognostic Significance and Functional Role of Progranulin in Chronic Lymphocytic Leukemia." Cancers 11, no. 6 (2019): 822. http://dx.doi.org/10.3390/cancers11060822.
Full textChen, Shih-Shih, Rainer Claus, David M. Lucas, et al. "Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL." Blood 117, no. 3 (2011): 862–71. http://dx.doi.org/10.1182/blood-2010-05-284638.
Full textGamal, Wael, Melanie Mediavilla-Varela, Angimar Uriepero-Palma, Javier Pinilla-Ibarz, and Eva Sahakian. "Optimization of In Vitro Th17 Polarization for Adoptive Cell Therapy in Chronic Lymphocytic Leukemia." International Journal of Molecular Sciences 25, no. 12 (2024): 6324. http://dx.doi.org/10.3390/ijms25126324.
Full textLapalombella, Rosa, Virginia Goettl, Katie Williams, et al. "Significant in Vivo Efficacy of the SINE KPT-330 in Mouse Models of CLL." Blood 120, no. 21 (2012): 2452. http://dx.doi.org/10.1182/blood.v120.21.2452.2452.
Full textMaharaj, Kamira, John J. Powers, Alex Achille та ін. "The dual PI3Kδ/CK1ε inhibitor umbralisib exhibits unique immunomodulatory effects on CLL T cells". Blood Advances 4, № 13 (2020): 3072–84. http://dx.doi.org/10.1182/bloodadvances.2020001800.
Full textDrengler, Erin M., Audrey L. Smith, Sydney A. Skupa, Elizabeth Schmitz, Eslam Mohamed, and Dalia El-Gamal. "BET Protein Inhibition Relieves MDSC-Mediated Immune Suppression in Chronic Lymphocytic Leukemia." Hemato 6, no. 2 (2025): 14. https://doi.org/10.3390/hemato6020014.
Full textWidhopf, George F., Bing Cui, Esther Avery, et al. "ROR1 Expression Accelerates Leukemia Development in RORxTCL1 Transgenic Mice,." Blood 118, no. 21 (2011): 3905. http://dx.doi.org/10.1182/blood.v118.21.3905.3905.
Full textWhipp, Ethan C., Krithik Tella, Aidan Macaskill, et al. "Temporally Controlled MYC Overexpression in Chronic Lymphocytic Leukemia Accelerates Progression and Promotes Large B Cell Lymphoma Transformation." Blood 144, Supplement 1 (2024): 2978. https://doi.org/10.1182/blood-2024-210328.
Full textHayakawa, Kyoko, Anthony M. Formica, Joni Brill-Dashoff, et al. "Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression." Journal of Experimental Medicine 213, no. 13 (2016): 3007–24. http://dx.doi.org/10.1084/jem.20160712.
Full textRattmann, Ina, David Zhu, Carlo M. Croce, et al. "The Expression of the GTPase-Deficient, Hematopoietic-Specific RhoH GTPase Is Implicated in Development of Chronic Lymphocytic Leukemia (CLL)." Blood 110, no. 11 (2007): 339. http://dx.doi.org/10.1182/blood.v110.11.339.339.
Full textEgle, Alexander, Josefina D. Pinon, Christoph Heyder, et al. "T Cell Dynamics during the Pretumor and Tumor Phase in the Murine Tcl1 Transgenic Chronic Lymphocytic Leukemia Model." Blood 112, no. 11 (2008): 3145. http://dx.doi.org/10.1182/blood.v112.11.3145.3145.
Full textGhia, Paolo, Maria TS Bertilaccio, Cristina Scielzo, et al. "Novel Mouse Models of Chronic Lymphocytic Leukemia (CLL) Unravel the Molecular Mechanisms Controlling Bone Marrow Involvement by Leukemic B Cells." Blood 114, no. 22 (2009): 360. http://dx.doi.org/10.1182/blood.v114.22.360.360.
Full textPapait, Andrea, Tiziana Vaisitti, Sara Serra та ін. "Targeting the Adenosinergic Axis in the Eμ-TCL1 Chronic Lymphocytic Leukemia Mouse Model Offers Novel Therapeutic Opportunities". Blood 132, Supplement 1 (2018): 240. http://dx.doi.org/10.1182/blood-2018-99-118057.
Full textRivas, Jacqueline R., Sara S. Alhakeem, Joseph M. Eckenrode, et al. "Enhancing Anti-Tumor Immunity and Responses to Immune Checkpoint Blockade By Suppressing Interleukin-10 in Chronic Lymphocytic Leukemia." Blood 134, Supplement_1 (2019): 5486. http://dx.doi.org/10.1182/blood-2019-127178.
Full text