Academic literature on the topic 'Équations de Navier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équations de Navier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Équations de Navier"
Tchoshanov, Mourat, Olga Kosheleva, and Vladik Kreinovich. "From equations to tri-quations and multi-quations." International Journal of Contemporary Mathematical Sciences 11 (2016): 105–11. http://dx.doi.org/10.12988/ijcms.2016.51055.
Full textMusa Guliyeva, Esmira, and Nargiz Mehman Zeynalova. "Ekological quations in «Koran»." SCIENTIFIC WORK 58, no. 9 (October 10, 2020): 64–66. http://dx.doi.org/10.36719/2663-4619/58/64-66.
Full textMohammed, Bashar S., and Raymond Cheng Hsien Loong. "Structural Behavior of Reinforced Rubbercrete Beams in Shear." Applied Mechanics and Materials 752-753 (April 2015): 513–17. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.513.
Full textWU, Song, and Hai Jun WANG. "A modied Trapezoidal Broyden’s method for nonlineare quations." Журнал вычислительной математики и математической физики 61, no. 4 (2021): 571. http://dx.doi.org/10.31857/s0044466921040104.
Full textChemin, J. Y. "�quations aux d�riv�es partielles non semilin�aires." Duke Mathematical Journal 56, no. 3 (June 1988): 431–69. http://dx.doi.org/10.1215/s0012-7094-88-05619-0.
Full textAlinhac, Serge. "d'�quations d'ondes quasi-lin�aires en dimension deux, II." Duke Mathematical Journal 73, no. 3 (March 1994): 543–60. http://dx.doi.org/10.1215/s0012-7094-94-07322-5.
Full textAbdelmoula, Najoua. "Sym�trisation d'in�quations �lliptiques et applications g�om�triques." Mathematische Zeitschrift 199, no. 2 (June 1988): 181–90. http://dx.doi.org/10.1007/bf01159651.
Full textPáles, Zsolt. "Bounded Solutions and Stability of Functional Quations for two Variable Functions." Results in Mathematics 26, no. 3-4 (November 1994): 360–65. http://dx.doi.org/10.1007/bf03323060.
Full textBaleanu, Dumitru. "About Fractional Calculus of Singular Lagrangians." Journal of Advanced Computational Intelligence and Intelligent Informatics 9, no. 4 (July 20, 2005): 395–98. http://dx.doi.org/10.20965/jaciii.2005.p0395.
Full textAmrouche, Chérif, and Ahmed Rejaiba. "Navier-Stokes equations with Navier boundary condition." Mathematical Methods in the Applied Sciences 39, no. 17 (February 16, 2015): 5091–112. http://dx.doi.org/10.1002/mma.3338.
Full textDissertations / Theses on the topic "Équations de Navier"
Samson, Etienne. "Simulation de fluide avec des noyaux constants par morceaux." Mémoire, Universit?? de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/120.
Full textGecgel, Murat. "Parallel, Navier." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/12604807/index.pdf.
Full textdimensional laminar and turbulent flowfields over rotary wing configurations. The code employs finite volume discretization and the compact, four step Runge-Kutta type time integration technique to solve unsteady, thin&ndash
layer Navier&ndash
Stokes equations. Zero&ndash
order Baldwin&ndash
Lomax turbulence model is utilized to model the turbulence for the computation of turbulent flowfields. A fine, viscous, H type structured grid is employed in the computations. To reduce the computational time and memory requirements parallel processing with distributed memory is used. The data communication among the processors is executed by using the MPI ( Message Passing Interface ) communication libraries. Laminar and turbulent solutions around a two bladed UH &ndash
1 helicopter rotor and turbulent solution around a flat plate is obtained. For the rotary wing configurations, nonlifting and lifting rotor cases are handled seperately for subsonic and transonic blade tip speeds. The results are, generally, in good agreement with the experimental data.
BORDIGNON, ALEX LAIER. "NAVIER-STOKES EM GPU." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8928@1.
Full textNesse trabalho, mostramos como simular um fluido em duas dimensões em um domÃnio com fronteiras arbitrárias. Nosso trabalho é baseado no esquema stable fluids desenvolvido por Joe Stam. A implementação é feita na GPU (Graphics Processing Unit), permitindo velocidade de interação com o fluido. Fazemos uso da linguagem Cg (C for Graphics), desenvolvida pela companhia NVidia. Nossas principais contribuições são o tratamento das múltiplas fronteiras, onde aplicamos interpolação bilinear para atingir melhores resultados, armazenamento das condições de fronteira usa apenas um canal de textura, e o uso de confinamento de vorticidade.
In this work we show how to simulate fluids in two dimensions in a domain with arbitrary bondaries. Our work is based on the stable fluid scheme developed by Jo Stam. The implementation is done in GPU (Graphics Processinfg Unit), thus allowing fluid interaction speed. We use the language Cg (C for Graphics) developed by the company Nvídia. Our main contributions are the treatment of domains with multiple boundaries, where we apply bilinear interpolation to obtain better results, the storage of the bondaty conditions in a unique texturre channel, and the use of vorticity confinement.
Rejaiba, Ahmed. "Equations de Stokes et de Navier-Stokes avec des conditions aux limites de Navier." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3050/document.
Full textThis thesis is devoted to the study of the Stokes equations and Navier-Stokes equations with Navier boundary conditions in a bounded domain of . The work contains three chapters: In the first chapter, we consider the stationary Stokes equations with Navier boundary condition. We show the existence, uniqueness and regularity of the solution in the Hilbert case and in the -theory. We prove also the case of very weak solutions. In the second chapter, we focus on the Navier-Stokes equations with the Navier boundary condition. We show the existence of the weak solution in , with by a fixed point theorem over the Oseen equation. We show also the existence of the strong solution in . In chapter three, we study the evolution Stokes problem with Navier boundary condition. For this, we apply the analytic semi-groups theory, which plays a crucial role in the study of existence and uniqueness of solution in the case of the homogeneous evolution problem. We treat the case of non-homogeneous problem through imaginary powers of the Stokes operator
Cannone, Marco. "Ondelettes, paraproduits et Navier-Stokes." Paris 9, 1994. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1994PA090016.
Full textMallinger, François. "Couplage adaptatif Boltzmann Navier-Stokes." Paris 9, 1996. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1996PA090042.
Full textWe study external flows for semirarefied régimes at high mach number. We propose a domain décomposition strategy coupling Boltzmann and Navier-Stokes models. The coupling is done by boundary conditions. The Boltzmann and Navier-Stokes computational domains are defined automatically thanks to a critérium analysing the validity of the numerical Navier-Stokes solution. We propose therefore an adaptative coupling algorithm taking into account both the automatic définition of the computation domains and a time marching algorithm to couple the models. The whole strategy results from the transition between the microscopie model (Boltzmann) and the macroscopie model (Navier-Stokes). In order to generalize this adaptative coupling, we study this connection for diatomic gases. Finally, we justify the coupled problem from a mathematical view point
Landmann, Björn. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds-averaged Navier-Stokes equations." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-35199.
Full textLandmann, Björn. "A parallel discontinuous Galerkin code for the Navier-Stokes and Reynolds averaged Navier-Stokes equations." München Verl. Dr. Hut, 2007. http://d-nb.info/988422433/04.
Full textSahin, Pinar. "Navier-stokes Calculations Over Swept Wings." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607618/index.pdf.
Full textShuttleworth, Robert. "Block preconditioning the Navier-Stokes equations." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7002.
Full textThesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Books on the topic "Équations de Navier"
Demailly, Jean-Pierre. Analyse nume rique et e quations diffe rentielles. Les Ulis, France: EDP Sciences, 2006.
Find full textConstantin, P. Navier-Stokes equations. Chicago: University of Chicago Press, 1988.
Find full textKollmann, Wolfgang. Navier-Stokes Turbulence. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7.
Full textŁukaszewicz, Grzegorz, and Piotr Kalita. Navier–Stokes Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27760-8.
Full textZeytounian, Radyadour Kh. Navier-Stokes-Fourier Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20746-4.
Full textPlotnikov, Pavel, and Jan Sokołowski. Compressible Navier-Stokes Equations. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0367-0.
Full textSohr, Hermann. The Navier-Stokes Equations. Basel: Springer Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-0551-3.
Full textSohr, Hermann. The Navier-Stokes Equations. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8255-2.
Full textJacobs, Peter A. Single-block Navier-Stokes integrator. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Find full textJacobs, Peter A. Single-block Navier-Stokes integrator. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Find full textBook chapters on the topic "Équations de Navier"
Di Pietro, Daniele Antonio, and Jérôme Droniou. "Navier–Stokes." In The Hybrid High-Order Method for Polytopal Meshes, 421–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37203-3_9.
Full textSchröder, Valentin. "Navier-Stokes-Gleichungen." In Prüfungstrainer Strömungsmechanik, 529–55. Wiesbaden: Vieweg+Teubner, 2011. http://dx.doi.org/10.1007/978-3-8348-8274-5_16.
Full textSchröder, Valentin. "Navier-Stokes-Gleichungen." In Übungsaufgaben zur Strömungsmechanik 2, 445–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56056-3_7.
Full textTruesdell, C., and K. R. Rajagopal. "Navier-Stokes Fluids." In An Introduction to the Mechanics of Fluids, 143–95. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4846-6_8.
Full textSell, George R., and Yuncheng You. "Navier-Stokes Dynamics." In Dynamics of Evolutionary Equations, 359–455. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-5037-9_6.
Full textXu, Xiaoping. "Navier–Stokes Equations." In Algebraic Approaches to Partial Differential Equations, 269–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36874-5_9.
Full textCapiński, M., and N. J. Cutland. "Navier-Stokes Equations." In Advances in Analysis, Probability and Mathematical Physics, 20–36. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8451-7_2.
Full textKollmann, Wolfgang. "Navier–Stokes Equations." In Navier-Stokes Turbulence, 17–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31869-7_2.
Full textSiekmann, H. E. "NAVIER-STOKES-Bewegungsgleichung." In Springer-Lehrbuch, 147–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-10099-8_6.
Full textQuarteroni, Alfio. "Navier-Stokes equations." In Numerical Models for Differential Problems, 429–82. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5522-3_16.
Full textConference papers on the topic "Équations de Navier"
CHUANG, HSIN-KUNG, and OSAMA KANDIL. "Thickening oscillation of a delta wing using Navier-Stokes and Navier-displacement equations." In 16th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3373.
Full textBARTH, T., T. PULLIAM, and P. BUNING. "Navier-Stokes computations for exotic airfoils." In 23rd Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-109.
Full textHOLCOMB, J., and BAHMAN NAMDAR. "Coupled LEWICE/Navier-Stokes code development." In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-804.
Full textPierce, N., M. Giles, A. Jameson, L. Martinelli, N. Pierce, M. Giles, A. Jameson, and L. Martinelli. "Accelerating three-dimensional Navier-Stokes calculations." In 13th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1953.
Full textDENG, G., J. PIQUET, and P. QUEUTEY. "Navier-Stokes computations of vortical flows." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1628.
Full textISAAC, K., and J. MILES. "Navier Stokes simulation of waverider flowfields." In Flight Simulation Technologies Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-3066.
Full textCALAHAN, D. "A massively-parallel Navier-Stokes implementation." In 9th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1940.
Full textChristofides, P. D., and A. Armaou. "Nonlinear control of Navier-Stokes equations." In Proceedings of the 1998 American Control Conference (ACC). IEEE, 1998. http://dx.doi.org/10.1109/acc.1998.707028.
Full textChang, I.-Shih, Chau-Lyan Chang, and Sin-Chung Chang. "Unsteady Navier-Stokes Rocket Nozzle Flows." In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4353.
Full textSakai, Takeharu, and Joseph Olejniczak. "Navier-Stokes computations for arcjet flows." In 35th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3014.
Full textReports on the topic "Équations de Navier"
Martin, Daniel, and Phillip Colella. Incompressible Navier-Stokes with particles algorithm designdocument. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/926455.
Full textSrinivasan, G. R., and W. J. McCroskey. Navier-Stokes Calculations of Hovering Rotor Flowfields,. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada184784.
Full textReed, Helen L. Navier-Stokes Simulation of Boundary-Layer Transition. Fort Belvoir, VA: Defense Technical Information Center, May 1990. http://dx.doi.org/10.21236/ada226351.
Full textMurman, Earll M. Adaptive Navier-Stokes Calculations for Vortical Flows. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada266236.
Full textSelvam, R. P., and Zu-Qing Qu. Adaptive Navier Stokes Flow Solver for Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada424479.
Full textKilic, M. S., G. B. Jacobs, J. S> Hesthaven, and G. Haller. Reduced Navier-Stokes Equations Near a Flow Boundary. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada458888.
Full textNguyen, Phuc N. Use of Navier-Stokes Analysis in Section Design. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada242074.
Full textNewman, Christopher K. Exponential integrators for the incompressible Navier-Stokes equations. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/975250.
Full textElman, Howard C. Navier-Stokes Solvers and Generalizations for Reacting Flow Problems. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060752.
Full textElman, Howard, and David Silvester. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada599710.
Full text