Academic literature on the topic 'Earth compressed blocks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Earth compressed blocks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Earth compressed blocks"
Danso, Humphrey. "Influence of Compacting Rate on the Properties of Compressed Earth Blocks." Advances in Materials Science and Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/8780368.
Full textKerali, A. G. "In-service deterioration of compressed earth blocks." Geotechnical and Geological Engineering 23, no. 4 (August 2005): 461–68. http://dx.doi.org/10.1007/s10706-004-5116-1.
Full textMorel, Jean-Claude, Abalo Pkla, and Peter Walker. "Compressive strength testing of compressed earth blocks." Construction and Building Materials 21, no. 2 (February 2007): 303–9. http://dx.doi.org/10.1016/j.conbuildmat.2005.08.021.
Full textMa, Hongwang, Qi Ma, and Prakash Gaire. "Development and mechanical evaluation of a new interlocking earth masonry block." Advances in Structural Engineering 23, no. 2 (August 8, 2019): 234–47. http://dx.doi.org/10.1177/1369433219868931.
Full textB.O .Ugwuishiwu, B. O. Ugwuishiwu, B. O. Mama B.O. Mama, and N. M. Okoye N. M Okoye. "Effects of Natural Fiber Reinforcement on Water Absorption of Compressed Stabilized Earth Blocks." International Journal of Scientific Research 2, no. 11 (June 1, 2012): 165–67. http://dx.doi.org/10.15373/22778179/nov2013/54.
Full textYang, Xinlei, and Hailiang Wang. "Strength of Hollow Compressed Stabilized Earth-Block Masonry Prisms." Advances in Civil Engineering 2019 (February 5, 2019): 1–8. http://dx.doi.org/10.1155/2019/7854721.
Full textEgenti, Clement, and Jamal Khatib. "Affordable and Sustainable Housing in Rwanda." Sustainability 13, no. 8 (April 9, 2021): 4188. http://dx.doi.org/10.3390/su13084188.
Full textRussell, Stanley R., and Jana Buchter. "Waste Clay as a Green Building Material." Advanced Materials Research 261-263 (May 2011): 501–5. http://dx.doi.org/10.4028/www.scientific.net/amr.261-263.501.
Full textSturm, Thomas, Luís F. Ramos, and Paulo B. Lourenço. "Characterization of dry-stack interlocking compressed earth blocks." Materials and Structures 48, no. 9 (July 18, 2014): 3059–74. http://dx.doi.org/10.1617/s11527-014-0379-3.
Full textBezerra, Wesley V. D. C., and Givanildo A. Azeredo. "External sulfate attack on compressed stabilized earth blocks." Construction and Building Materials 200 (March 2019): 255–64. http://dx.doi.org/10.1016/j.conbuildmat.2018.12.115.
Full textDissertations / Theses on the topic "Earth compressed blocks"
Kennedy, Nicholas Edwards. "Seismic Design Manual for Interlocking Compressed Earth Blocks." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1049.
Full textRabie, Omar. "Revealing the potential of Compressed Earth Blocks : a visual narration." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43006.
Full textIncludes bibliographical references (leaves 63-64).
Compressed Earth Blocks (CEB) is a developed earth technology, in which unbaked brick is produced by compressing raw soil using manual, hydraulic, or mechanical compressing machines. Revealing the potential of an affordable sustainable material like CEB may help tackle today's fundamental challenges, social equity and environmental sustainability. For one year in India, I learned and practiced the basics of this technology in Auroville Earth Institute, and then conducted a group of design and construction experimentations for a natural resort project. Through these experimentations, I tried to reveal CEBs' capabilities through design innovation. The thesis captures my new understandings of the design competence of the material in relation to the design process, through narrating the story of this experience using images and a dialogue between the designer, mason, sponsor and the blocks themselves.
by Omar Rabie.
S.M.
Pringle, Sean Anthony. "Diagonal Tension Testing of Interlocking Compressed Earth Block Panels." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1588.
Full textZHEMCHUZHNIKOV, ALEXANDER. "INFLUENCE OF CLAY CONTENT AND SUCTION ON THE STRENGTH OF COMPRESSED EARTH BLOCKS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27018@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
Solo é um material de construção sustentável que tem sido utilizado por milhares de anos. As normas técnicas e recomendações existentes referente à construção de terra são baseadas em número limitado de estudos e dependem de materiais, condições climáticas e tradições locais. A compreensão dos parâmetros que influenciam o comportamento do solo compactado quando o mesmo utilizado em paredes e colunaas é essencial para a interpretação dos dados experimentais. Diversos estudos recentes analizaram taipa de pilão do ponto de vista da mecanica de solos nçao saturados, observando o decrescimo da resistência com a diminuição da sucção, causada por exemplo pelo aumento da humidade do ar. Porém, não hã uma pesquisa semelhante pertinente aos blocos de solo compactado. O objetivo do presente trabalho foi verificar a influência do teor de argila, dencidade e sucção na resistência dos blocos de solo compactado. Foram utiliazdas quatro dosagens de solo artificial que consistiu de areia, pó de quartzo e argila caulitinitca. Para cada dosagem, amostras estaticamente compactadas na umidade ótima e no ramo seco foram ensaiadas variando-se a sucção. Ao contrário dos resultados encontrados comunmente na literatura, a resistência das amostras diminuiu com o aumento da sucção, enquanto a influência das condições climáticas como umidade e temperatura foram mínimas. As conclusões feitas no presente trabalho podem ser utilizadas nos projetos de construção sustentável com emprego de blocos de solo compactado.
Soil is a sustainable construction material that has been used traditionally for thousands of years. In general, earth construction specifications are based on common knowledge. Existing recommendations tend to be supported by a limited number of studies and depend on local materials, climatic conditions and historical background. The lack of understanding of compacted soil behavior, in particularly its strength, may have prevented a wider application of earthen construction materials in housing. Understanding of the soil properties and parameters that influence its performance when used in walls and columns is essential for interpretation of experimental data. Recently a number of studies have analyzed rammed earth considering unsaturated soil mechanics, which suggest loss of strength following decrease in suction values, for example provoked by the increase in relative humidity. However, there is a lack of such research pertaining to compressed earth blocks (CEBs). The objective of this study was to verify the influence of clay content, density and suction on the strength of CEBs. Four soil mixes consisting of sand, quartz powder and kaolinitic clay were used. For each soil mix statically compacted samples with densities corresponding to optimum and dry of optimum moisture contents were tested for a range of suctions. Unlike reported in the literature, the results showed loss of strength following increase in suction values, while only small variations were registered for suctions corresponding to a wide range of RH and temperature conditions. The findings can be of use for specifications relating to construction of sustainable housing using CEBs.
Bowdey, Thomas S. "Lap Splice Development Length of Rebar in Stabilized Hollow Interlocking Compressed Earth Blocks." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1720.
Full textBanker-Hix, Wyatt Adair. "The Effect of Clay, Cement and Fibers on the Strength and Durability of Compressed Earth Blocks." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1233.
Full textChumbinho, Joana Martins. "Otimização de solos para a produção de blocos de terra compactada." Master's thesis, Universidade de Évora, 2017. http://hdl.handle.net/10174/21331.
Full textSousa, Soenia Marques Timoteo de. "Efeito da ativação alcalina dos aluminossilicatos nas propriedades mecânicas e microestruturais de compósitos argilosos prensados." Universidade Federal da Paraíba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/5328.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In the chain of energy and motor fuel, in agreement with the policy to adopt green technologies, Brazilian government has encouraged the installation of biodiesel plants to produce an alternative, less polluting and less cost fuel to replace diesel and gasoline. In Paraíba State, the Biodiesel Program was created by the Law 7761 of June 15, 2005. This program initially aims to accomplish two goals: generating clean energy and social inclusion of family farmers. A plant will be built in Campina Grande and will occupy a total area of 704 m2 with a production capacity of approximately 134,000 liters/day (40 million liters/year). These biodiesel plants generate by product in the production process. Some of then, as the water from purification of the biodiesel, have high pH. It is necessary to find a way to avoid that these waste causes high environmental impact. The alkaline activation of certain materials has been studied as an alternative to Portland cement binder. In this work clay-based alkaline activated composites were investigated, with the aim to produce construction blocks. Soil available locally and metakaolin were used. As alkaline activators the Na2SiO3 (sodium silicate) and the NaOH (sodium hydroxide) were obtained commercially, but the KOH (potassium hydroxide) was obtained from the wash water from biodiesel production process. The activators and some small percentage of metakaolin are mixed with the soil and water, and the mix was compressed by a static strength of about 2 MPa, which is commonly provided by hand presses for the fabricate compressed earth blocks. The results show the feasibility of such use of liquid waste from biodiesel. The mechanical strength depends on the concentration of metakaolin, which can reach up to 17 MPa for composites with 22% activated alkaline soil. The durability, physical properties and microstructures of samples with different compositions were also studied.
Na cadeia da energia e do combustível automotor, dentro da política mundial de adoção de tecnologias verdes, o governo brasileiro vem incentivado à instalação de usinas de biodiesel, material que está sendo empregado como uma alternativa, menos poluente e de menor custo em substituição ao diesel e à gasolina. Na Paraíba, o Programa de Biodiesel foi criado através da Lei Estadual 7.761 de 15 de junho de 2005. O projeto visa inicialmente cumprir duas metas: geração de energia limpa e inclusão social de agricultores familiares. Uma usina será construída em Campina Grande, com capacidade de produção de cerca de 134 mil litros/dia. Estas usinas geram, no processo produtivo, resíduos. Faz-se necessário encontrar uma alternativa para que os resíduos tenham o menor impacto possível no ambiente. Aqueles provenientes da purificação do biodiesel são alcalinos. A ativação alcalina de certos materiais tem sido estudada como um ligante alternativo ao cimento Portland. Neste trabalho estudou-se a formação de um compósito à base de argila alcalinamente ativada para confecção de blocos para construção, nos quais foi usado um solo local e metacaulinita. Como ativadores alcalinos empregaram-se o silicato de sódio, hidróxido de sódio e o hidróxido de potássio proveniente da água de lavagem de biodiesel. Os ativadores são misturados com o solo e a mistura recebe uma compactação estática da ordem de 2 MPa, que é a comumente fornecida por prensas manuais para a fabricação de blocos prensados de terra crua. Os resultados mostram a viabilidade desse tipo de emprego do resíduo líquido de biodiesel. A resistência mecânica depende do teor de ligantes, podendo atingir valores de até 17 MPa para compósitos com 22%de solo alcalinamente ativado. A durabilidade, as propriedades físicas e microestruturais de amostras com diferentes composições foram estudadas.
Rocha, Mafalda de Azevedo e. Castro Amaral. "Sustentabilidade e arquitetura bioclimática nos trópicos : tipologias sustentáveis e (re)desenho urbano em São Tomé e Principe." Master's thesis, Universidade de Lisboa. Faculdade de Arquitetura, 2015. http://hdl.handle.net/10400.5/8955.
Full textNamango, Saul Sitati. "Development of cost effective earthen building material for housing wall construction: investigations into the properties of compressed earth blocks stabilized with sisal vegetable fibres, cassava powder and cement compositions." [S.l.] : [s.n.], 2006. http://se6.kobv.de:8000/btu/volltexte/2006/6.
Full textBooks on the topic "Earth compressed blocks"
Rigassi, Vincent. Compressed earth blocks: Manual of production / Vincent Rigassi. [Ill.: Nicolas Schweizer ...]. Braunschweig: Vieweg, 1995.
Find full textCentre for the Development of Industry., ed. Compressed earth blocks: Production equipment. Brussels: Centre for the Development of Industry, 1994.
Find full textCompressed earth blocks: Selection of production equipment. Brussels: Centre for the Development of Industry, 1989.
Find full textBook chapters on the topic "Earth compressed blocks"
Saad, Ahmad S., Fahad M. Al-Enezi, Hamad A. Al-Sayab, Zuhair H. Al-Zayed, Fares H. Awwad, and Sarah N. Al-Muhanna. "Compressed Earth Blocks: A Sustainable Construction Alternative." In Gulf Conference on Sustainable Built Environment, 157–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39734-0_10.
Full textDarwish, Mohamed, Safwan Khedr, Fady Halim, and Rana Khalil. "Development and Performance of Manual Technique Used in Production of Compressed Earth Blocks." In Recent Technologies in Sustainable Materials Engineering, 1–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34249-4_1.
Full textShohug, Md Kamruzzaman, Md Jahangir Alam, and Arif Ahmed. "Feasibility of Using Compressed Earth Block as Partition Wall." In Advances in Structural Engineering, 2445–57. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2187-6_187.
Full textRabehi, Mohamed, and Rachid Rabehi. "Physico-mechanical Characterizations of the Compressed Earth Block (CEB) Stabilized with Lime-Based Fibers (Waste Tyre Rubber-Glass)." In Advances in Green Energies and Materials Technology, 41–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0378-5_6.
Full textKinuthia, J. M. "The durability of compressed earth-based masonry blocks." In Eco-Efficient Masonry Bricks and Blocks, 393–421. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-305-8.00018-8.
Full textRiza, F. V., and I. A. Rahman. "The properties of compressed earth-based (CEB) masonry blocks." In Eco-Efficient Masonry Bricks and Blocks, 379–92. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-305-8.00017-6.
Full text"Characterization of compressed earth blocks built with natural low-cost energy stabilizers." In Rammed Earth Conservation, 141–46. CRC Press, 2012. http://dx.doi.org/10.1201/b15164-25.
Full textOliveira, D. V., T. F. Miranda, L. F. Ramos, R. A. Silva, E. Soares, and D. Leitão. "Mechanical performance of compressed earth block masonry using granitic residual soils." In Brick and Block Masonry, 865–72. CRC Press, 2016. http://dx.doi.org/10.1201/b21889-108.
Full textUzoegbo, H. C. "Dry-stack and compressed stabilised earth-block construction." In Nonconventional and Vernacular Construction Materials, 205–49. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-08-100038-0.00008-1.
Full textUzoegbo, H. C. "Dry-stack and compressed stabilized earth-block construction." In Nonconventional and Vernacular Construction Materials, 305–50. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102704-2.00012-3.
Full textConference papers on the topic "Earth compressed blocks"
Lawson, William D., Chaitanya Kancharla, and Priyantha W. Jayawickrama. "Engineering Properties of Unstabilized Compressed Earth Blocks." In Geo-Frontiers Congress 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41165(397)274.
Full textShadravan, Shideh, Matthew D. Reyes, Daniel J. Butko, Lisa M. Holliday, Kenneth R. Hines, and Juvenal Huizar. "Sustainability of Compressed Earth Block Construction: Comparative Analysis of Compressed Stabilized Earth Blocks and Traditional Wood Framed Single Family Residences." In AEI 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480502.030.
Full textNitiffi, Riccardo, Maura Imbimbo, and Ernesto Grande. "Numerical Seismic Assessment of Masonry Made of Compressed Earth Blocks." In IABSE Symposium, Nantes 2018: Tomorrow’s Megastructures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/nantes.2018.s23-157.
Full textFerraresi, Carlo, Walter Franco, and Giuseppe Quaglia. "Concept and Design of Float-Ram: A New Human Powered Press for Compressed Earth Blocks." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70384.
Full textFerraresi, C., W. Franco, and G. Quaglia. "Human Powered Press for Raw Earth Blocks." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62691.
Full textLahdili, Mohamed, Fatima-Ezzahra El Abbassi, Siham Sakami, and Ahmed Aamouche. "The improvement of mechanical and thermal behavior of local compressed Earth blocks." In AMT2020: THE 6TH INTERNATIONAL CONGRESS ON THERMAL SCIENCES. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0051327.
Full textGowda, Rakshith P. C., and Claudia E. Zapata. "Effect of Bagasse Fiber on the Properties of Compressed Cement Stabilized Earth Blocks." In Geotechnical and Structural Engineering Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479742.120.
Full textGapuz, Emerson O., and Jason Maximino C. Ongpeng. "Optimizing compressed earth blocks mix design incorporating rice straw and cement using artificial neural network." In 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM ). IEEE, 2017. http://dx.doi.org/10.1109/hnicem.2017.8269450.
Full textDonkor, Peter, Esther Obonyo, Fabio Matta, and Ece Erdogmus. "Effect of Polypropylene Fiber Length on the Flexural and Compressive Strength of Compressed Stabilized Earth Blocks." In Construction Research Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413517.068.
Full textNSHIMIYIMANA, PHILBERT, CÉSAIRE HEMA, OUSMANE ZOUNGRANA, ADAMAH MESSAN, and LUC COURARD. "THERMOPHYSICAL AND MECHANICAL PROPERTIES OF COMPRESSED EARTH BLOCKS CONTAINING FIBRES: BY-PRODUCT OF OKRA PLANT AND POLYMER WASTE." In ECO-ARCHITECTURE 2020. Southampton UK: WIT Press, 2020. http://dx.doi.org/10.2495/arc200121.
Full text