Contents
Academic literature on the topic 'Eau – Épuration – Biofiltration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eau – Épuration – Biofiltration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Eau – Épuration – Biofiltration"
Selas, Bertrand. "Elimination des micro-organismes par filtration en écoulement insaturé dans le cadre de l'assainissement autonome." Nantes, 2002. http://www.theses.fr/2002NANT2013.
Full textThe object of this study is to define the prevalent phenomena in the retention of micro-organisms in porous environments in unsaturated condition. The applications take place in one-site wastewater treatment, where the secondary treatment is carried out by effluent streaming on the original ground or reconstituted filters. The processes of treatment, the health risks as well as the various mechanisms of interactions between micro-organisms and unsaturated filter mediums are developed in the bibliographical study
Guibert, Denis. "Étude de l'influence de la configuration et du mode opératoire sur le fonctionnement d'un réacteur aéré à fibres creuses immergées." Toulouse, INSA, 2000. http://www.theses.fr/2000ISAT0042.
Full textThibault, Thomas. "Capture passive du phosphore d'une eau usée municipale en contexte de biofiltration." Master's thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/25558.
Full textPhosphorus discharges in aquatic systems have the potential to lead to eutrophication of a waterbody. Moreover, this nutrient is the main cause of cyanobacteria’s bloom (blue-green algae), whose degradation liberates toxic compounds (cyanotoxins), harmful to animal and human’s health. Phosphorus contained in municipal wastewater will soon be subject to a tightening of discharge requirements which will make unsuitable a lot of currently used wastewater treatment plant. Researches have been realized to develop a simple treatment on the operational aspect is effective enough to reduce wastewater’s phosphorus concentration from 5.0 mg Ptot/l to 0.3 mg Ptot/l. The principle of the chosen method consists in the use of a filter media that allows passive phosphorus entrapment. This filter media is made of wood’s by-products which are activated by impregnation of iron hydroxide, a substance having a strong chemical affinity with phosphorus. Works were first allowed to target a process to effectively activate wood’s by-products according to a procedure that has been developed. Thereafter, different experimental settings have been developed in order to be able to activate sufficient amounts of filter media to perform column tests. A first series of tests was performed on biofiltration columns. Observed performances were interesting, but not sufficient to achieve the target value of 0.5 mg Ptot / l. Additional tests were therefore performed in order to optimize the use of the filter media. Based on the knowledge gained from these optimization tests, column trials have lowered the phosphorus concentration of a solution containing 5 mg Ptot/l to values below 0.2 mg Ptot/l over a period of 80 days. These tests showed that the filter media was able to accumulate an amount of phosphorus in the range of 13,5 mg Ptot/gdry, which is very effective for this kind of process.
Roy-Dumesnil, Gabriel. "Capture passive du phosphore d'une eau usée municipale en contexte de biofiltration." Master's thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27548.
Full textHamidou, Soureyatou. "Capture passive du phosphore d'une eau usée municipale en contexte de biofiltration : impact des nitrates sur la performance." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/40157.
Full textIn excessive quantities, phosphorus is responsible for eutrophication of water surfaces. Thereby, phosphorus discharge standards for municipal wastewater are subject to a tightening. Researches have focused on the development of a passive phosphorus entrapment process characterized by biofilters with active wood-based media impregnated with iron hydroxide. Phosphorus removal is done by sorption which includes adsorption, reductive dissolution and exchange of ions. This MSc thesis is a continuation of the abovementioned studies. The objective is to evaluate the influence of nitrates on the phosphorus removal performance. Columns tests were performed with anaerobic activated wood-based media and immersion over a period of 150 days. Columns were fed for 30 days with a synthetic solution of 5 mg P/L. Different concentrations of nitrate (5, 10 and 25 mg N-NO₃/L) were then applied on three columns (C₂, C₃ and C₄), column C₁ serving as a control. The results demonstrate that the addition of nitrate reduces the phosphorus removal performance of biofilters. Phosphorus tracking shows that the concentration of P at the outlet of the biofilters exceeds the target of 0.3 mg P/L, 30 days after nitrate injection started for column C₂ and 15 days later for columns C₃ and C₄. Addition of nitrate increases the oxidoreduction potential. This results in an inhibition of the reductive dissolution, characterized by a decrease in the release of ferrous ions. Simultaneous denitrification occurs within the columns. It is both biological and chemical through the oxidation of ferrous ions by NO₂, produced during biological denitrification. Furthermore, bacterial identification tests have highlighted the presence of iron-related bacteria, denitrifying bacteria, sulfur oxidizing bacteria, sulfate reducing bacteria, biofilmproducing bacteria and a variety of heterotrophic microorganisms such as Pseudomonas and enteric bacteria in biofilters.
Lay-Son, Aguilera Meiling. "Epuration des eaux usées par lombrifiltration." Montpellier 2, 2003. http://www.theses.fr/2003MON20019.
Full textMarin, Uribe Esteban. "Traitement des effluents de fromageries fermières par biofiltration." Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27753.
Full textIn Quebec, the dairy industry is an important sector of the provincial economy. In Canada, near to 60 % of cheese fabrication unities are located in the province of Quebec and more than two billions of liters of milk are converted into cheese every year. In 2015, the number of Quebec’s dairy farms rose the number of 5 766. On average, a farm has got a livestock of 60 cows and delivers around 500 000 liters of milk per year. Furthermore, a cow’s production over five becomes milk for consumption, which is simply homogenised and pasteurized. What is left is converted essentially into cheese, cream, yogurt and butter. A very important production of wastes coming from this industry has been put forward in some areas of Quebec, due to the rising cheese production. Those wastes carry water contamination problems, such as the eutrophication of water bodies by high loads of organic pollutants, suspended solids and nutriments linked to this kind of industrial waste. A considered solution is to treat wasted water before spreading them into water sources in order to reduce the contaminating loads. A form of treatment in-situ is to install, at the farm, a biological treatment system of cheese dairy effluents. To do this, the present study suggests a system by biofiltration. The purpose of this study is therefore to evaluate the performance of the treatment of effluents from cheese dairies by the use of a biofilter. More specifically, this master degree’s project involves the star-up, the development and the operation of a pilot biofilter where the whey (waste component) is separated from cheese dairy effluents to feed (affluent) the biofiltration system. A second objective is the treatment process evaluation. Satisfying removal performances were confirmed in terms of chemical oxygen demand (CDO), total suspended solids (TSS) and total nitrogen (TN). This biofilter is capable of operating with positive removal efficiencies of above 90 %. Biofiltration is therefore a good technique with a lot of potential, simple and effective to treat the liquid effluents of the cheese dairies. Moreover, the installation of the pilot biofilter is easy and its operation is autonomous without the need of the regular assistance of a technician. Key-words: biofilter, biofiltration, whey, cheese dairy effluents
Petitjean, Alain Bernard Nicolas. "Modélisation des transferts réactifs diphasiques dans les filtres verticaux pour le traitement des eaux résiduaires urbaines." Strasbourg, 2011. http://www.theses.fr/2011STRA6175.
Full textOxygen renewal, as a prominent phenomenon for aerobic bacterial activity, deeply impacts Vertical Flow Constructed Wetland (VFCW) treatment efficiency. We introduce a multiphase model able to simulate multi-component transfer in VFCWs. It is based on a two-phase flow module, and a transport module. The flow module can quantify both water and air velocities throughout the filter during operation. The reactive transport module follows dissolved and gaseous oxygen concentrations, and the transport of solutes such as ammonium and readily biodegradable COD (Chemical Oxygen Demand). The consumption of components is governed by Monod-type kinetics. Heterotrophic and autotrophic bacteria, which are responsible for COD and ammonium degradation respectively, are part of the model components. The kinetics are based on the Constructed Wetlands Model 1. The results from the simulation tool were compared with existing experimental data, and two kinds of operation with VFCWs were investigated. The authors show strong interplay between oxygen renewal and bacterial consumption in case of sequential batch feeding with transient flooding of surface. Oxygen renewal is essentially convection mediated in such operation, while convection is not significant in non-flooding operation. Simulated bacterial patterns are impacted by the operation, both quantitatively and spatially. From a modelling point of view, the authors highlight some limitations of the biological model : the description of bacterial lysis processes needs to be enhanced, as well as ammonium adsorption to organic matter
Samie, Guillaume. "Modélisation d'une station par biofiltration." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26447/26447.pdf.
Full textVigne, Emmanuelle. "Étude et modélisation dynamique d'un procédé par biofiltration en nitrification tertiaire." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24963/24963.pdf.
Full textNitrogen removal in wastewater treatment plants becomes more and more used due to the harmful impact of nitrogen on the natural environment. After medium and highly loaded secondary treatment, practitioners could use biofiltration for tertiary nitrification, which is an intensive process adapted in areas with strong land pressures. This technology can remove very strong loading rate in a restrained space by its capacity to developp an important amount of active biomass into the filtering media. Simulation of such technique’s behaviour is not direct, and few studies led to a useful tool for engineers. However, its use is necessary in order to validate design in real operating conditions and dynamic conditions. The main objective of this work concerned the study and validation of a biofiltration model which already exists but has still never been tested with real data in tertiary nitrification treatment. In order to reach this objective, the behaviour of a semi-industrial pilot plant, fed by real domestic effluent from an activated sludge plant, was studied. In order to operate in dynamic conditions, different daily volumetric nitrogen loading rates were applied, in which dynamic peak-loads were carried out. The calibration and the validation of the model parameters were done thanks to on-line ammonia and nitrate analysers during one year and more, in association with a calibration procedure and a sensitivity analysis. The protocol required the implementation of specific tests for characterization of the biofilm inside the filtering media. These tests increased the number of the observed state variables to compare with the model predictions. That allows a better evaluation of the model robustness. At the same time, the dynamics of processes taking part in the nitrogen removal into the biofilm were investigated thanks to these specific tests. So, parameters which influence the nitrogen removal, overall performance, activity and quantification of autotrophic biomass, its solids retention time or its repartition inside the filtering media, could be determined. Combination of experimental observations and numerical modelling highlighted the capacity of the biofiltration model to provide good predictions on real nitrogen removal performances. Furthermore, this study allowed to evaluate mechanisms included in the model and their limitations with different operating conditions applied in the system. Finally, weaknesses of the model concerning solids compounds and the evolution of head loss in the pilot plant were established.