Dissertations / Theses on the topic 'Eau souterraine – Protection – Québec (Province)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Eau souterraine – Protection – Québec (Province).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dagenais, Marie-Pierre. "Controverse et conflit sur l'utilisation de l'eau souterraine : l'exemple de Franklin." Master's thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24469/24469.pdf.
Full textBonton, Alexandre. "Étude spatiotemporelle de la qualité de l'eau souterraine sur l'aire d'alimentation d'un captage municipal en milieu agricole." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27049/27049.pdf.
Full textA sound scientific basis for decision-making about land management and groundwater protection includes a proper understanding of the relationships between agricultural activities and the quality of pumped water at a municipal well. There is a need to assess both nitrate and bacterial contamination in a capture area, and to ensure that regulations through protection areas are adapted to prevent risks to consumer health. For this purpose, field monitoring and numerical simulations were performed on the actual case of a municipal well in an agricultural area in the province of Québec (Canada). A number of 38 piezometers were installed within the capture area in order to monitor physico-chemical and bacteriological parameters in groundwater. At the same time, a three-dimensional Water flow and Nitrate transport Global Model (WNGM) in unconfined aquifer was developed in order to simulate nitrate concentrations in the aquifer and in the municipal well, in relation with agricultural practice. Model calibration was performed using water level and nitrate concentration measured in the aquifer. The simulations of several scenarios provided a better understanding of past trends of nitrate concentrations in the municipal well, as well as predictions of nitrate concentrations in the municipal well assuming different land management practices within the capture area. The results of physico-chemical monitoring demonstrate the impact of agricultural activities on groundwater quality, particularly on nitrate levels. The results of bacteriological monitoring show a significant variability of bacteria content in groundwater. Finally, the results of the numerical simulation demonstrate that modelling is able to provide valid and useful prediction of nitrate levels in the municipal well, and that better agricultural practice can improve significantly groundwater quality at the well.
Gravel, Christian. "Impact des pressions agricoles sur la qualité de l'eau des réseaux d'aqueducs municipaux du Québec alimentés en eau souterraine." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23654/23654.pdf.
Full textGraf, Tobias. "Physically-based assessment of intrinsic groundwater resource vulnerability." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26110.
Full textApproaches that rely on process-based models to assess groundwater vulnerability, as opposed to empirical relationships, have recently gained more attention as they have the potential to provide a general framework for all types of (re)source and stress relations. A comprehensive and sustainable management system is needed, based on integrated surface and groundwater models, for effective surface and groundwater protection on a scientific defensible basis. Using a process-based model, an approach to assess intrinsic groundwater vulnerability is proposed and demonstrated for the Saint-Charles River catchment, Québec. A fully integrated 2D surface and 3D groundwater flow model is implemented to simulate quasi steady-state flow in the catchment. Groundwater transit times, which represent an intrinsic system characteristic, are simulated with the flow model. They are then combined with future DPSIR (Driving forces - Pressures - State - Impact - Responses) vulnerability scenarios to assess the system sensitivity. Climate change (decreasing precipitation) and land use change (urbanization) scenarios are simulated. Sensitivity coefficients are calculated for multiple state variables and form the basis for the system vulnerability prediction, with system threshold values of well-being. The scenarios are then compared with a MCDA (Multi-Criteria Decision Analysis) framework, which provides a common evaluation basis, accounting for quantitative (e.g. highly vulnerable catchment percentage) and non-quantitative (scenario relevance and probability) criteria. The MCDA ranks vulnerability and response investigation for the urbanization scenario with highest priority. When combined, the physical and generic framework-based vulnerability approaches represent a powerful tool for analyzing human- environmental interactions and impacts. An integrated surface and groundwater consideration is essential because the vulnerability is a function of the nature and origin of pressure (i.e. scenario specific) and the state variable chosen. Most system changes and impacts can be measured, analyzed and validated within a calibrated model for (quasi) steady-state conditions. The reliability of predicted system vulnerabilities is mainly subject to conceptual and parameter uncertainties and can suffer from the non-unique model calibration issues. Future work should focus on improving the combined approach by providing a clear guidance for the vulnerability evaluation with a threshold rating system which classifies the system damage state in space and time.
Das Hauptaugenmerk rezenter Ansätze zur Grundwasser vulnerabilitäts Kartierung liegt auf Prozessbasierten Modellen auf der Grundlage eines allgemein umfassenden, universellen Rahmenwerkes. Zunehmender Focus liegt dabei auf der Entwicklung eines nachhaltigen Management Systems mit integrierter Betrachtung von Oberflächen- und Untergrundwasser. Ein prozessbasierter Modell Ansatz zur Bestimmung der intrinsischen Grundwasser Vulnerabilität ist hier vorgestellt und dessen Anwendung für das Grundwassereinzugsgebietes des Saint-Charles River, Québec, demonstriert. Ein integriertes, hydrogeologisches 2D Oberflächen und 3D Untergrund Modell wurde zu diesem Zweck erstellt, und auf dessen Basis das quasi stationäre Strömungsregimes des ausgewählten Einzugsgebietes simuliert. Grundwasser Verweilzeiten, als intrinsische System Charakteristik, sind mithilfe des Strömungsmodells berechnet. In Verbindung mit prognostischen DPSIR (Driving forces - Pressures - State - Impact - Responses) Vulnerabilität Szenarien dienen diese zur Berechnung der räumlichen Verteilung der System Sensitivitätskoeffizienten. Als Szenarien sind klimatischer Wandel (Niederschlagsabnahme) und landnutzungs Änderungen (Urbanisierung) betrachtet. Die Berechnung der Sensitivitätskoeffizienten beruht dabei auf verschiedenen System Zustandsvariablen und dient als Grundlage für die darauf aufbauenden, Grenzwert abhängigen Vulnerabilitätskoeffizienten. Ein Vergleich der unterschiedlichen Vulnerabilität Szenarien auf der Grundlage einer gemeinsamen Bewertungsbasis und unter Einbeziehung von quantitativen (z.B. prozentuale Verteilung der Einzugsgebiet Vulnerabilität) sowie nicht-quantitativen (z.B. Szenario Relevanz und Wahrscheinlichkeit) Kriterien ist mithilfe einer Multikriteriellen Entscheidungsanalyse (MCDA) erreicht. Das Urbanisierung Szenario ist dabei als Priorität bezüglich der Vulnerabilitätsbewertung sowie der Notwendigkeit weiterer (Gegenmaßnahmen) Untersuchungen eingestuft.Der kombinierte Ansatz eines physikalisch basierten Models auf der Grundlage eines allgemeinen Rahmenwerkes zeigt großes Potential für die Analyse und Interpretation von Wechselwirkungen zwischen Mensch und Umwelt. Eine integrierte Betrachtung von Oberflächen und Grundwasser erweist sich dabei als Essentiell, da die System Vulnerabilität sowohl von den betrachteten System Zustandsvariablen, als auch vom Szenario spezifischen Ursprung und der Art des betrachteten System Stresses abhängt. Die meisten Szenario abhängigen Systemänderungen innerhalb eines hydrogeologischen Systems können dabei auf der Grundlage eines kalibrierten, (quasi) stationären Models gemessen, analysiert und verifiziert werden. Die Verlässlichkeit der prognostizierten System Vulnerabilitäten ist dabei wesentlich bestimmt durch Faktoren wie dem Model Konzept und Parameter Ungewissheiten, sowie der Model Kalibrierung. Focus zukünftiger Arbeiten sollte auf der Verbesserung des vorgestellten kombinierten Ansatzes liegen, unter Einbeziehung eines Grenzwert Kataloges zur räumlichen und zeitlichen Definition des Systemzustandes.
Sylvestre, Bruno. "Portrait of municipal groundwater catchment protection in small Quebec municipalities." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/24032/24032.pdf.
Full textJanos, Débora. "Regional groundwater flow dynamics and residence times in Chaudière-Appalaches, Québec, Canada : insights from numerical simulations." Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27813.
Full textDans le cadre du projet PACES III pour la région de Chaudière-Appalaches, situé au sud de la ville de Québec, au Canada, l'étude présente une analyse approfondie de l’influence des dynamiques d’écoulement sur la qualité des eaux souterraines dans un contexte régional. L’écoulement régional, le transport d’âge et l'impact d'une faille sur la qualité de l'eau souterraine sont étudiés par l’entremise de modèles numériques bidimensionels. La combinaison des connaissances hydrogéologiques physiques et chimiques, y compris une analyse des concentrations de ¹⁴C dans les eaux souterraines échantillonnées, a conduit à l’ébauche d'un modèle conceptuel de l’écoulement régional. Ce dernier est mis à l’essais pas l’entremise d’un modèle d'écoulement numérique suivant une ligne d’écoulement régionale dans le plan 2D vertical à l’aide du logiciel FLONET. Le modèle est d'abord calibré à l’aide d’une méthode semi-automatisé qui utilise le logiciel PEST en comparant les charges simulés à la piézométrie régionale, et est validé par la comparaison des flux simulés à la recharge. Bien que le modèle affiche l’existence d’un écoulement régional profond, la région à l’étude apparaît être dominée par des systèmes d'écoulements locaux à des échelles maximales d'environ 5 km, avec un écoulement significatif dans le roc fracturé peu profond. L’écoulement actif se limitant à une profondeur maximale de 40 m à 60 m du roc fracturé, confirme que la géochimie des eaux souterraines échantillonnées à partir de puits résidentiels est susceptible d'être affectée par les eaux faisant parti de l’écoulement intermédiaire et régional. Le transport advectif-dispersif de l'âge est ensuite simulé avec le simulateur de transport TR2 et comparé aux temps de déplacement advectifs le long des lignes d’écoulements et à l'âge ¹⁴C des eaux échantillonnées. Enfin, l’influence de la faille de la Rivière Jacques Cartier sur le contexte hydrogéologique régional est étudiée à travers divers scénarios hypothétiques de perméabilité de faille.
As part of the PACES III project in the Chaudière-Appalaches region, south of Quebec City, Quebec, Canada, the study herein presents insights into the extent to which regional groundwater quality is shaped by flow dynamics. In this context, 2D numerical modelling is used to simulate regional flow, transport of groundwater age and the possible influence of a fault on groundwater quality. Combining physical and chemical hydrogeological knowledge, including an analysis of ¹⁴C concentrations in sampled groundwater, leads to the development of a regional conceptual flow model. The conceptual model is tested by representing the system with a two-dimensional numerical flow model oriented in the vertical plane roughly south-north towards the St. Lawrence River using the FLONET code. The model is first calibrated to regional piezometry through a semi-automated workflow using PEST and is then validated with average recharge values. Although some evidence for deeper regional flow exists, the area appears to be dominated by local flow systems on maximum length scales of about 5 km, with significant flow through the shallow fractured sedimentary rock aquifer. This regional scale flow model is also supported by the local hydrogeochemical signatures. Active flow appears contained within the top 40 m to 60 m of the fractured bedrock, which confirms that the geochemical signatures of groundwater sampled from residential wells are likely affected by the slow moving waters of the intermediate and regional flow systems. Advective-dispersive transport of groundwater age is then simulated with the TR2 transport model and compared with advective travel times and sampled ¹⁴C water ages. Finally, the possible role of the Jacques-Cartier River fault on regional flow dynamics is investigated by testing various fault permeability configurations.
Cochand, Marion. "Étude hydrogéochimique des eaux souterraines dans un environnement pergélisolé en voie de dégradation, Umiujaq, Nunavik, Québec." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/36715.
Full textLa première partie, chapitre 2, résume l’état actuel des connaissances sur l’hydrogéochimie des eaux souterraines dans les régions affectées par le pergélisol et sur les impacts potentiels de la dégradation du pergélisol sur la qualité des eaux souterraines. Les caractéristiques hydrogéochimiques des eaux souterraines dans les zones de pergélisol dépendent des mêmes réactions que dans les régions où il n’y a pas de pergélisol. Cependant, le pergélisol agit comme une couche confinante qui peut influencer la chimie des eaux souterraines en empêchant la recharge directe des aquifères et en augmentant le. Un temps de résidence, favorisant ainsi plus long augmente également les interactions eau-roche. Un des impacts majeurs des changements climatiques sur les eaux souterraines sera associé à la perte de cette couche confinante. Les futures études en lien avec l’hydrogéologie en zone de pergélisol devraient donc inclure une meilleure caractérisation hydrogéochimique insitu afin de mieux évaluer l’impact du réchauffement climatique sur les eaux souterraines. La deuxième partie, chapitre 3, utilise l’hydrogéochimie comme outil pour mieux comprendre la dynamique de la recharge et développer un modèle conceptuel pour l’écoulement des eaux souterraines dans la vallée de Tasiapik. Cette étude se base sur l’analyse d’échantillons de précipitations, d’eau souterraine, de glace du pergélisol, de lacs de thermokarst et de cours d’eau. L’hydrogéochimie des eaux souterraines dans le bassin versant est typique d’eaux jeunes, avec une faible minéralisation. Cela implique des circulations et des temps de résidence relativement courts. Ce jeu de données hydrogéochimiques pourra servir de référence pour documenter les impacts des changements climatiques sur le système hydrogéologique et l’interprétation qui en est tirée permettra de mieux comprendre la dynamique des eaux souterraines d’aquifères en régions froides.
L’eau souterraine dans le bassin versant d’Umiujaq répond aux normes de qualité canadiennes et québécoises pour l’eau potable. Cependant, la distance entre la vallée et la communauté rendent le site peu propice pour l’alimentation en eau d’Umiujaq. Ces résultats sont encourageants pour l’utilisation d’eau souterraine comme ressource ailleurs au Nunavik et dans les régions circumpolaires. La vulnérabilité de cette ressource potentielle doit néanmoins être considérée et la délimitation de zones de protections en fonction de l’état du pergélisol doit être envisagée pour éviter toute contamination de cette ressource fragile. En résumé, cette étude a apporté des données détaillées sur l’hydrogéochimie des eaux souterraines en zone de pergélisol discontinu qui combinées à des modèles hydrogéologiques et thermiques, ont permis de mieux comprendre les interactions entre les eaux souterraines et le pergélisol dans un environnement vulnérable soumis à des pressions économiques et climatiques.
The first part, Chapter 2, provides a summary of the current state of knowledge of groundwater hydrogeochemistry in permafrost-affected areas and reviews the potential impacts of permafrost degradation on groundwater quality. The hydrogeochemical characteristics of groundwater in permafrost areas depend on the same reactions as in permafrost-free areas. As a confining layer, permafrost can influence groundwater chemistry by limiting recharge and exchanges between the soil, surface water and groundwater. Longer residence times also increase water-rock interactions. One of the most important impacts of climate change on groundwater will probably be associated with the loss of the confining layer. In permafrost areas, there is a general lack of detailed hydrogeological studies which use direct groundwater sampling. Future studies related to hydrogeology in permafrost areas should therefore include better in-situ hydrogeochemical characterization to assess the potential for using groundwater as the climate warms. The second part, Chapter 3, uses hydrogeochemistry as a tool to better understand recharge dynamics and to develop a conceptual model for groundwater flow in the Tasiapik Valley, Umiujaq. This study is based on the analysis of samples taken from precipitation, groundwater, ice from permafrost mounds and from thermokarst lakes and streams. Groundwater hydrogeochemistry in the watershed is typical for young waters, with low mineralization. This implies relatively short flow paths (on the order of 100-1000 m) and short residence times. This hydrogeochemical dataset will provide a reference for documenting the impacts of climate change on the hydrogeological system and will improve our understanding of groundwater dynamics in cold-region aquifers.
Groundwater in the Umiujaq watershed meets Canadian and Quebec drinking water quality standards. However the distance between the valley and the Umiujaq community makes the site unfavourable as a local water supply. These results are promising for the use of groundwater as a water supply elsewhere in Nunavik and in circumpolar regions. The vulnerability of this potential resource must nevertheless be taken into account and the delineation of protection zones considering the state of permafrost must be considered to avoid contamination of this fragile resource. Finally, this study provides detailed baseline data on groundwater hydrogeochemistry in a discontinuous permafrost zone. This data, combined with hydrogeological and thermal models, will provide a better understanding of the interactions between groundwater and permafrost in a sensitive environment undergoing significant climate change and economic development.
Arctic and subarctic regions are particularly vulnerable to climate change. Higher air temperatures, for example, lead to permafrost warming which decreases its thickness and spatial coverage. Permafrost degradation has consequences on ecosystems, landscapes, the stability of soils, buildings and infrastructure, as well as on local populations and their way of life. The effect of permafrost degradation on groundwater is likely to result in the loss of the confining layer formed by permafrost, thereby promoting aquifer recharge and modifying interactions between surface water and groundwater. However, the effect of permafrost degradation on groundwater quality and availability is still largely unknown. With increasing concerns of rapid global warming, this thesis was motivated by the lack of information on groundwater in discontinuous permafrost regions and the potential of groundwater as a drinking water resource for communities in Nunavik (Quebec, Canada). This project focuses on understanding groundwater flow and groundwater quality in the Tasiapik Valley, a small watershed located in a discontinuous permafrost zone near Umiujaq, Nunavik, Quebec. Insights into the hydrogeological system are provided by conducting a comprehensive hydrogeochemical analysis of groundwater, surface water, precipitation and water contained in ice-rich permafrost. The thesis is divided into two parts. The first part (Chapter 2) presents a review of the existing scientific literature on groundwater hydrogeochemistry. The second part (Chapter 3) presents a specific hydrogeochemical study of groundwater in the Tasiapik Valley. The thesis also includes a general Introduction (Chapter 1), Synthesis (Chapter 4) and Conclusions (Chapter 5).
Montcoudiol, Nelly. "Contribution de l'hydrogéochimie à la compréhension des écoulements d'eaux souterraines en Outaouais, Québec, Canada." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25858.
Full textThroughout most of the Outaouais Region, groundwater is an essential resource for both for domestic and agricultural use (except in the city of Gatineau which uses surface water). The study area lies in the Canadian Shield, and includes a fractured silicate bedrock aquifer which is covered by sediments from the last glacial-deglacial period. In this context, improving our understanding of aquifers is vital for a sustainable use of this resource. To fulfill this objective, a conceptual model was proposed based on the interpretation of geochemical data coupled to numerical modelling. Silicate weathering, seawater intrusion by the former Champlain Sea and subsequent cation exchange in marine clays affecting groundwater quality in confined aquifers, and mixing between waters of different ages are identified by a multivariate statistical analysis as the principal geochemical processes. At the local scale, a stable isotope signature similar to current precipitation and the presence of tritium indicate relatively short residence times in the first 100 m below ground surface, which was confirmed by numerical flow and age modelling. The occurrence of helium 4 is attributed to diffusion from deeper older groundwater within lower hydraulic conductivity zones. Some mixing due to sampling in open boreholes may also have occurred. In the unconfined aquifer, 14C activities appear to be the result of such as equilibration of recharge water with soil CO2 in open conditions coupled to silicate weathering by fossil CO2 or carbonate dissolution under closed conditions, rather than from radioactive decay. Finally, chloride transport simulations show that remnants of the Champlain Sea would still be found in marine clays and in the less permeable zones of the confined aquifer whereas groundwater characterised by cation exchange are found in more permeable zones. The study has helped characterize regional groundwater quality in the upper fractured zone of the Canadian Shield and in the Quaternary sediments of the Outaouais region. It has shown the importance of local scale groundwater flow systems and relatively rapid flow in the upper part of the bedrock which need to be considered when assessing the vulnerability of these regional groundwater resources.
Tardif, Françoise. "Cheminements de l'eau dans un contexte de protection de source d'eau potable." Master's thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66432.
Full textBrun, Koné Mathy Yasmina. "Développement d'un modèle numérique d'écoulement 3D des eaux souterraines du bassin versant de la Rivière Chaudière, Québec." Master's thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/24027.
Full textA joint hydrogeological assessment study between Université Laval and the Geological Survey of Canada (GSC) has been conducted in the Chaudière River watershed. The main objective of the study was to gain further understanding into the groundwater resources within the region. The watershed extends over ~ 6700 km2 from the United States border northwards to the Saint Lawrence River in the province of Québec (Canada). Groundwater is an important source of drinking water as well as for irrigation and industrial use, however the supply is finite and there are potential risks of conflicts arising from different users. It is thus important to understand the aquifer systems throughout the watershed in order to avoid possible conflicts and to help decision makers to better manage the resource. Within the catchment, up to 65% of the population relies on groundwater as the primary drinking water resource, whereby most of the water is used for agricultural purposes. The regional aquifer system is dominated by the underlying rock substratum of the Appalachian province and Quaternary aquifer units. The degree of confinement of the fractured aquifers is controlled by the overlying glacial, marine and fine lacustrine sediments of variable thicknesses. The groundwater circulation within the fractured aquifers predominantly takes place in the uppermost part of the fractured water-bearing units, where fracture density is highest. As a first step, the hydraulic properties of the fractured basement were defined, for which the hydraulic conductivity (K) of the formations can be considered as the most important hydraulic characteristic. A literature review of the available reports as well as the SIH and the MDDEFP data bases was performed in order to assemble the data. Additional field work was completed by the GSC during the spring of 2007 to supplement the data base. Most of the values of the hydraulic conductivity K were taken from the existing reports while others were estimated from the SIH data base. The data base contains 1333 values which were evaluated using Bradbury’s method, of which 83 satisfied the “quality criteria”, since they respected suggested conditions regarding the minimum pumping (which was not met in 94% of the cases). The geometric mean value of the measured hydraulic conductivities was 5x10-6 m/s with a standard deviation of 0.60. The maximum difference between the hydraulic conductivities of the different lithological units was about a factor of 100x. A 3D numerical finite element model was built with the Watflow model (Molson et al., 2002) for simulating the regional groundwater flow system. The model domain extends over the entire watershed and is subdivided into 28 layers, 18 for the unconsolidated deposits and 10 within the basement rock. The 3D triangular prismatic mesh contains 1,694,672 nodes and 3,344,516 elements. The topographic DEM (digital elevation model) forms the uppermost surface of the model. For the model boundary conditions, the Chaudière River and major tributaries and lakes are set as first-type boundaries with constant hydraulic heads. The model base, as well as the lateral limits, are considered as no-flow boundaries. The net recharge over the model surface was estimated using the infiltration model HELP, combined with estimates of the surface-distributed local water withdrawals. The major pumping wells are represented in the model domain as point sinks. The horizontal hydraulic conductivity together with the vertical anisotropy values for each formation were used as the model calibration parameters, using the observation data from 68 observation wells. The results of the calibration of the model showed that the mass balance error is close to zero which implies that the sum of inflows is equal to the sum of outflows. Different scenarios with recharge variations were simulated with the calibrated model. The simulations allowed identifying the principal sensitive zones which need piezometric and water quality control. It was also possible to determine the areas most sensitive to climate variations. Changes in the rate of pumping and recharge (± 20%) did not have a significant impact on the modeled system mainly in relation to groundwater level (observed variations were ≤5m).
Vachon, Martin. "Les conflits sociaux dans la protection de l'environnement : L'exemple d'un comité de bassin versant dans la région Chaudière-Appalaches." Thesis, Université Laval, 2004. http://www.theses.ulaval.ca/2004/22233/22233.pdf.
Full textParhizkar, Masoumeh. "Modelling coupled surface water-groundwater flow and heat transport in a catchment in a discontinuous permafrost zone in Umiujaq, Northern Québec." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/66690.
Full textGroundwater systems are expected to respond to climate change in a complex way. In cold regions, simulating the effect of climate change requires a state-of-the-art integrated hydrologic model. In this research, a fully coupled 3D numerical model has been developed to simulate groundwater-surface water flow and heat transport in a 2-km² catchment in Umiujaq, Nunavik (northern Quebec), Canada. The catchment is located in a discontinuous permafrost zone. It contains a lower aquifer, consisting of a thick coarse-grained glaciofluvial layer, overlain by a frost-susceptible silty marine unit and a perched upper aquifer. Detailed field investigations have been carried out to characterize the catchment, including its hydraulic and thermal properties and the subsurface geology. Three different calibration methods using the inverse calibration code PEST were used to calibrate the 3D flow model against measured hydraulic heads, assuming a fixed distribution of low hydraulic conductivity for discontinuous permafrost blocks. Heat transfer was not considered for this calibration. Results showed that using simplified calibration methods, such as the zoning method, is not efficient in this study area, which is highly heterogeneous. Using a more detailed calibration, such as the pilot-points method of PEST, gave a better fit to observed values. However, the computational time was significantly higher. In subsequent simulations, which included heat transport, different approaches for assigning initial temperatures during model spin-up were investigated. Results show that including the spin-up process in the simulations produces more realistic simulated temperatures. Furthermore, the spin-up improves the model fit to deeper subsurface temperatures because areas of the subsurface below the depth where seasonal surface temperature variations penetrate require longer simulation times to reach equilibrium with the applied boundary conditions. Applying the annual average surface temperature as the boundary condition to the heat transport simulation provided a better fit to observed values in the summer compared to winter. During winter, because of different snow thicknesses throughout the catchment, using a uniform surface temperature results in a poor fit to observed values. v Simulations show that warm water entering the subsurface increases the subsurface temperature in the recharge areas. As groundwater flows through the subsurface, it loses thermal energy. Therefore, discharging water is cooler than recharging water. This causes the rate of temperature rise to be lower in discharge areas than in recharge areas. The modelling results have helped provide insights into 3D simulation of coupled water flowheat transfer processes. Furthermore, it will help users of cryo-hydrogeological models in understanding effective parameters in development and calibration of model to develop their own site-specific models.
Lemaire, Daniel. "Modélisation numérique de l'écoulement souterrain non saturé dans une croûte argileuse altérée susceptible aux glissements superficiels." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25759/25759.pdf.
Full textMessaoud, Hamdi. "Aspects hydrogéologiques et suivi de la qualité des eaux souterraines du bassin versant du lac Saint-Augustin : impacts des sels de déglaçage." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26127.
Full textThe lake Saint-Augustin has mutated into an hyper-eutrophic lake rich in phosphorus as it was during the last decades rejection victim of agricultural and urban waste. Similarly, the water quality has been the victim of massive use of road salt (NaCl) which aimed to maintain the highway - 40 (Felix Leclerc) during periods of frost and since its construction in 1974. The lake in question is powered mainly by the groundwater flow in glaciofluvial sediments. This water flow follows the NW-SE direction on the north shore of the lake below approximately 2 Km stretch of Highway Felix Leclerc. Thus, this flow brings dissolved salts as well in groundwater than in the lake. The characterization of this flow showed that the annual flow of groundwater towards the lake accounted for 8% of the annual volume stored in the aquifer of the lake Saint- Augustin watershed. It should be mentioned that a large part of this volume is discharged obviously in locations other than the lake. The monitoring of groundwater quality, in 2013, at several sampling points revealed that they were contaminated with road salt as the specific conductivity at 25° C and salt concentrations exceeded the thresholds recommended by the MDDEFP. Two chemical facies characterized these waters. One was bicarbonate-calcium and the other was a chloride-sodium. In addition, a mass balance has been developed. He had a target to estimate the transport of salts to the lake. The review concluded that the annual mass of chloride in groundwater was twice that of sodium. This depletion is generated by reactions of basic exchanges were effected between calcium and sodium in the existing surrounding soils. The masses of these salts undergo dilution process in groundwater and lake. However, long-term impacts may represent hazards and should be reviewed.
Dagenais, Sophie. "Coupled cryo-hydrogeological modelling of permafrost dynamics at Umiujaq, Quebec, Canada." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31265.
Full textA 2D numerical model has been developed to assess the impacts of groundwater flow on permafrost dynamics under a warming climate in northern Québec. The conceptual model developed herein focuses on a small permafrost mound located in the discontinuous permafrost zone near the Inuit community of Umiujaq, Nunavik, Québec. At the study site, permafrost is found in marine silt overlying a deep confined sand and gravel aquifer with active groundwater flow. To better understand the cryo-hydrogeological system, the HEATFLOW numerical code was used to simulate coupled groundwater flow and heat transport by conduction and advection along a 2D cross-section through the permafrost mound and oriented along the assumed direction of groundwater flow. The model was first calibrated manually using temperature profiles in the permafrost mound measured along thermistor cables over the past 10 years and using observed heat fluxes near the ground surface. A second simulation was then performed assuming only conductive heat transfer and neglecting groundwater flow. A comparison between both simulations reveals the important role of groundwater flow on permafrost dynamics at the Umiujaq site. As groundwater flow brings warmer water from recharge areas into the deep confined aquifer, it contributes significantly to warming of the system relative to conduction alone, and significantly decreases permafrost thickness. However, the simulation showed that thermal energy is also lost along the flowpath below the permafrost base which induces a cooling in the discharge areas in comparison to the recharge areas. The future system behavior is then predicted by taking into account a climate change scenario based on increases in temperature and precipitation. The predictive simulation suggests that permafrost will thaw from the base at a rate of about 80 cm per year, and from the permafrost table at a rate of 12 cm per year, until completely thawed by about 2040.
Murray, Renaud. "Bilan hydrologique d'un bassin versant dans la région d'Umiujaq au Québec nordique." Master's thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27364.
Full textNunavik’s communities rely mainly on surface water. Several constraints, such as treatment costs and drying-up in the winter, motivate the search for an alternative. The availability of groundwater in the northern region is limited, due to the presence of permafrost. Moreover, the sustainable exploitation of groundwater in the Nordic region remains to be demonstrated, as groundwater recharge processes and the dynamics of groundwater flows are different from those observed in temperate regions. The main objective of the project is to assess the availability of groundwater for drinking water supply of a northern community. The water budget of a 2.1 km2 watershed in the Tasiapik Valley near the Umiujaq community (Nunavik) was carried out between July 2014 and July 2015. The total precipitation was evaluated using environment Canada data’s for a sum of 520 mm. Potential and actual evapotranspiration were calculated using the Hydro-Québec equations (Bisson and Roberge, 1983) and Budyko (1974) for respective values of 330 mm and 192 mm. The installation of a gauging channel in the main stream made it possible to evaluate the discharge at the outlet for a total of 280 mm. Storage in surface and underground reservoirs were estimated by closing the surface water budget and represents 48 mm. Groundwater recharge was characterized according to the Darcy method by the instrumentation of four sites covered by different vegetation. Thus, the average recharges over the entire catchment area represents 207 mm, which corresponds to about 40% of the total precipitation. In addition, the watershed experiences one recharge episode per year, which is different from the two episodes normally observed in southern Québec. The reason behind this phenomenon is firstly related to a shorter summer and to the late melting of snow caused by the type of vegetation. Then, the base flow is estimated by the hydrograph separation technic. The average calculated flow rate correspond to an equivalent of water of 193 mm. This represents 69% of the total flow, which is characteristic of regions without permafrost. This result, however, is not surprising considering that permafrost is present in small quantity in the watershed and is found exclusively in the form of isolated mounds. As a result, its impact on underground flows is limited, not to mention the fact that it is present in a layer of silt that is poorly permeable, even in the absence of permafrost. On the other hand, discharge at the outlet is influenced by groundwater from other watersheds, which partly explains the high value obtained. The transfer of groundwater between catchments, which is obtained by closing the groundwater water budget, corresponds to a water supply of 34 mm coming from the adjacent catchments. This estimate seems consistent with the characteristics of the study site. Indeed, the latter is located in a valley surrounded by a cuesta and a hill both having an important relief. These characteristics mean that the groundwater watershed is larger than the surface watershed. Groundwater discharges can also be used to estimate the amount of water that can be used for sustainable development. The equivalent water of this parameter has a value of 193 mm, which represents 405 300 000 litres of water. The watershed therefore contains enough of this resource to meet the village's needs, since the community uses about 18,370,450 litres of water per year, or 4.5% of the available resource. The field campaigns also allowed the sampling in order to analyze the chemistry of water. These results were then compared with the maximum acceptable drinking water concentrations from the Government of Quebec's Drinking Water Quality Regulation (MDDELCC, 2016) and the aesthetic objectives of Health Canada (2016). The conclusion is that the water is drinkable, but that it exceeds the limit with respect to manganese, which is not a problem, since this element is mostly harmful to the laundry and for plumbing equipment. However, some elements have not been analyzed and a thorough examination of the bacteriological standards is necessary in order to determine with certainty the potability of this groundwater.
Jean, Myriam. "La gestion des eaux pluviales comme outil de protection de la qualité de l'eau des lacs de villégiature." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37612.
Full textFabien-Ouellet, Gabriel. "Mesures sismiques à faible profondeur : Une approche intégrée." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30405/30405.pdf.
Full textLevesque, Dany. "Développement d'un processus de transfert des connaissances sur les eaux souterraines vers les intervenants en aménagement du territoire de Chaudière-Appalaches." Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/28061.
Full textIn 2008, in the Province of Quebec, Canada, a systematic groundwater resources assessment program was put in place by the provincial government with the objective to allow groundwater management and protection. However, regional groundwater stakeholders involved in management and protection must be able to understand and use such knowledge. This study was carried out in the region of Chaudière-Appalaches (14,600 km²), which was covered by the aquifer assessment program. Twenty-eight (28) respondents from regional county municipalities, watershed organizations and municipalities took part in one-on-one semi-directed interviews to talk about their perceptions of groundwater, and to assess the capability of water stakeholders to carry out groundwater resources management. Results showed that stakeholders’ general knowledge had evolved in the past years. However, respondents voiced the need for knowledge transfer through a simplified groundwater atlas and collaborative workshops. Besides knowledge transfer, respondents also need to have their roles in groundwater management better defined. The ACCES-CA workshop was conducted in three sub-regions where clarifications were given about groundwater perceptions, concepts and vocabulary, resource status, regional priorities, and governance. Results from the workshop demonstrate that all exercises were appreciated and useful to participants. However, the groundwater governance and management topic remains unclear for many, and clarifications concerning stakeholders’ roles in groundwater management will be required.