Academic literature on the topic 'Ecology and Evolutionary Biology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ecology and Evolutionary Biology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ecology and Evolutionary Biology"

1

McPeek, Mark A., and Thomas E. Miller. "Evolutionary Biology and Community Ecology." Ecology 77, no. 5 (July 1996): 1319–20. http://dx.doi.org/10.2307/2265528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Greene, Harry W., Richard A. Seigel, Joseph T. Collins, and Susan S. Novak. "Snakes: Ecology and Evolutionary Biology." Copeia 1987, no. 3 (August 5, 1987): 833. http://dx.doi.org/10.2307/1445695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

White, J. "Snakes: Ecology and evolutionary biology." Toxicon 28, no. 6 (January 1990): 744. http://dx.doi.org/10.1016/0041-0101(90)90272-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cook, L. M., and D. J. Futuyma. "Evolutionary Biology." Journal of Applied Ecology 24, no. 3 (December 1987): 1085. http://dx.doi.org/10.2307/2404007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pigliucci, Massimo. "Ecology and Evolutionary Biology of Arabidopsis." Arabidopsis Book 1 (January 2002): e0003. http://dx.doi.org/10.1199/tab.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anderson, E. N. "Indigenous Knowledge, Ecology, and Evolutionary Biology." Ethnobiology Letters 2 (May 11, 2011): 3–5. http://dx.doi.org/10.14237/ebl.2.2011.36.

Full text
Abstract:
Review of Indigenous Knowledge, Ecology, and Evolutionary Biology. Raymond Pierotti. 2011. Routledge (Taylor & Francis Group), New York. Pp. Xv + 264, Bibliography, index. ISBN13: 978-0-415-87924-8 (hbk), 978-0-203-84711-4 (ebk).
APA, Harvard, Vancouver, ISO, and other styles
7

Collins, James P., John Beatty, and Jane Maienschein. "Introduction: Between ecology and evolutionary biology." Journal of the History of Biology 19, no. 2 (1986): 169–80. http://dx.doi.org/10.1007/bf00138874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qian, H., and L. Jiang. "Phylogenetic community ecology: integrating community ecology and evolutionary biology." Journal of Plant Ecology 7, no. 2 (January 24, 2014): 97–100. http://dx.doi.org/10.1093/jpe/rtt077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Templeton, Alan R. "Evolutionary Biology." Ecology 66, no. 5 (October 1985): 1691. http://dx.doi.org/10.2307/1938036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heltne, Paul. "Basic Concepts of Ecology and Evolutionary Biology." Hastings Center Report 28, no. 6 (November 1998): S12. http://dx.doi.org/10.2307/3528275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ecology and Evolutionary Biology"

1

Gregg, Tamara. "Predator-prey ecological and evolutionary dynamics: The cost of a counter-defense drives the evolutionary outcome." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103650.

Full text
Abstract:
In this thesis I explore the co-evolutionary dynamics of defences and counter-defences in a predator-prey interaction. I hypothesize that the cost of defences and counter-defences result in the cycling of these traits under all circumstances: directional selection alternate between increasing and decreasing trait values (defense of the prey and counter-defense of the predator). Using Taricha granulosa and Thamnophis sirtalis as an example of a predator-dangerous prey system, I modeled the ecological and evolutionary dynamics of predator-prey interactions and analyzed the results from equations and simulations. The cost of counter-defence influenced evolutionary dynamics most: high or low values of cost stabilized the evolutionary dynamics to constant phenotypes; intermediate values of cost destabilized the equilibrium causing cycling or diversification. Contrary to what I hypothesized, under most parameter values the predator-prey system does not cycle. My study shows predator-dangerous prey coevolutionary dynamics are always mostly influenced by predator parameters.
Dans cette thèse, j'explore les dynamiques évolutives de défense et contre-défense dans un système de prédateurs et proies. Je fais l'hypothèse que les coûts associés aux traits de défense et contre-défense ont pour conséquence des cycles évolutifs de ces traits dans tous les environnements : la sélection directionnelle fluctue pour augmenter et diminuer les valeurs de traits (défense de la proie et contre-défense du prédateur). En utilisant Taricha granulosa et Thamnophis sirtalis comme exemple de système des prédateurs-proies, j'ai modélisé leur dynamiques écologiques et évolutives et j'ai étudié le système de façon analytique et par des simulations. Le coût des contre-défenses est le facteur le plus important pour déterminer les dynamiques évolutives : des valeurs fortes ou faibles du coût stabilisent les dynamiques évolutives sur des phénotypes constants; des valeurs intermédiaires du coût déstabilisent l'équilibre en engendrant des cycles ou de la diversification. Contrairement à mon hypothèse de départ, le système de prédateurs et proies ne produit pas de cycle évolutif pour la plupart des valeurs de paramètres. Mon étude montre que les interactions entre les prédateurs et les proies dangereuses sont toujours surtout influencées par les paramètres du prédateur.
APA, Harvard, Vancouver, ISO, and other styles
2

Osmond, Matthew. "Eco-evolutionary rescue: an adaptive dynamic analysis." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107917.

Full text
Abstract:
Populations exposed to changing environments often decline in abundance and may therefore find themselves at risk of extinction. Safe abundances can be regained, and persistence secured, when populations can adapt fast enough. Here I ask how population and environmental factors determine a population's ability to persist in changing environments by adapting genetically. In Chapter 2 I investigate the response to a gradual, directional change in the environment and in Chapter 3 I investigate the response to a sudden, sustained shift. Chapter 3 also discusses the effects of interspecific competition. In both chapters I use the canonical equation of adaptive dynamics, which allows me to derive analytical expressions while including ecological process neglected in previous theory; in particular, I consider logistic population growth, frequency-dependent intraspecific competition, and interspecific competition. I use computer simulations to examine the accuracy of my analytical results when the simplifying assumptions of adaptive dynamics are relaxed. Chapter 2 derives the trait lag which maximizes the rate of evolution and also computes this maximum. Populations with higher mutational input experiencing stronger selection have the ability to adapt faster. Computer simulations show that the derived maximum rate of evolution is a good predictor of extinction across a wide range of parameter values, including those that deviate from the assumptions of adaptive dynamics. Chapter 3 first uncovers an expression for the population trait value across time and then uses this expression to calculate the time a population is below a threshold abundance, the 'time at risk'. The population trait value approaches the fitness peak quickly at first, and the rate declines exponentially. Populations with greater mutational input and maximum abundance, and those which are initially better adapted spend less time at risk. The time at risk is maximized at intermediate selection strengths, as strong selection lowers abundance and weak selection slows adaptation. Simulations show good alignment when mutations are rare and population sizes small. Interspecific competition lowers the abundance of the focal population, generally increasing the time at risk, but this can be compensated for under particular scenarios by increased selection pressure. Interspecific competition can sometimes speed adaptation and foster persistence. The ecological and evolutionary response of natural populations to environmental change depends on complex ecological interactions. Theory and experiments which include such interactions are needed for accurate descriptions of genetic adaptation to environmental change, in both the lab and in the wild.
Les populations exposées à des environnements changeants déclinent souvent en abondance et peuvent ainsi être confrontées à un risque d'extinction. Des abondances suffisantes peuvent être retrouvées, ainsi qu'une persistance durable, quand les populations peuvent s'adapter suffisamment vite. Dans cette étude, je me demande comment les facteurs des populations et de l'environnement déterminent la capacité des populations à persister dans des environnements changeants grâce à une adaptation génétique. Dans le chapitre 2, j'étudie la réponse à un changement graduel et directionnel de l'environnement, et dans le chapitre 3, j'étudie la réponse à un changement soudain et soutenu. Le chapitre 3 discute également les effets de la compétition interspécifique. Dans les deux chapitres, j'utilise l'équation canonique des dynamiques adaptatives, ce qui me permet d'en dériver des expressions analytiques ainsi que d'y inclure des processus écologiques négligés dans les théories précédentes; en particulier, je considère la croissance logistique des populations, la compétition intraspécifique fréquence-dépendante, et la compétition interspécifique. J'utilise des simulations informatiques pour examiner l'exactitude de mes résultats analytiques lorsque les hypothèses simplificatrices des dynamiques sont relâchées. Le chapitre 2 dérive le retard de trait, ce qui maximise le taux d'évolution, et aussi calcule ce maximum. Les populations avec le plus grand apport de mutation rencontrant une sélection plus forte ont la capacité de s'adapter plus vite. Les simulations informatiques montrent que le taux maximal d'évolution est un bon prédicteur de l'extinction pour une large gamme de valeur de paramètres, incluant ceux qui dévient des hypothèses de dynamiques adaptatives. Le chapitre 3 dérive, tout d'abord, une expression pour la valeur de trait de population au cours du temps et, ensuite, utilise cette expression pour calculer le temps durant lequel une population se trouve sous le seuil d'abondance, le « temps du risque ». La valeur de trait de population s'approche, tout d'abord, du pic de fitness, puis le taux décline de manière exponentielle. Les populations avec un plus grand apport de mutation et une abondance maximale, et celles qui sont initialement mieux adaptées passent moins de temps dans la zone à risque. Le temps du risque est maximal à des intensités de sélection intermédiaires, puisque de fortes sélections diminuent l'abondance et de faibles sélections ralentissent l'adaptation. Les simulations montrent un bon alignement quand les mutations sont rares et les tailles des populations sont petites. La compétition interspécifique diminue l'abondance de la population focale, en accroissant généralement le temps du risque, mais cela peut être compensé pour des scénarios particuliers par un accroissement de la pression de sélection. La réponse écologique et évolutive des populations naturelles à un changement environnemental dépend de phénomènes écologiques complexes. Les théories et les expériences qui incluent de tels phénomènes sont nécessaires pour des descriptions précises de l'adaptation génétique à un changement environnemental, à la fois en laboratoire et dans la nature.
APA, Harvard, Vancouver, ISO, and other styles
3

Pillay, Pradeep. "The ecological and evolutionary assembly of trophic metacommunities." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96666.

Full text
Abstract:
Despite the important role spatial processes play in natural communities, far too little theoretical work has been devoted to exploring how complex food web communities may be assembled in space, and how the spatial structure of trophic interactions may provide a stabilizing mechanism for complex food web networks. In this thesis I develop a food web metacommunity model based on a classic Levins-type patch-dynamic model which views trophic interactions between species as occurring in a spatially subdivided habitat. I then use this model to explore both simple and complex trophic networks in an ecological and evolutionary context. I first review and evaluate previous attempts at defining a patch-dynamic metacommunity model of trophic interactions. After correcting the flaws in previously published models I develop a corrected model and apply it to simple trophic configurations. I show how the stability of simple trophic interactions, like omnivory loops, depends upon the interacting effects of space and network configuration. I then use the model to study the evolution of dispersal in a simple predator-prey system. Specifically, I investigate how both predator and prey dispersal rates will evolve in response to increasing patch extinction rates caused by locally strong top-down predator effects. I show how the predator's evolutionarily stable (ESS) dispersal rate will increase, as expected, in response to increasing local extinction, while the prey's ESS dispersal rate exhibits a counterintuitive nonmonotonic response – actually decreasing for some ranges of extinction. I explain how the prey's counterintuitive response arises because of the way trophic interactions between species play out at different spatial scales. After applying the model to simple networks I then explore the assembly of complex food webs. I show that, under very simple assumptions, diverse and complex food web networks can be assembled through the creation of network branches which provide opportunities for the build-up species and multiple food chain paths in the food web. I also show how these network branches can emerge simply as the result of the spatial distribution of trophic interactions, and the structural support provided by omnivory and generalist feeding links. I then attempt to determine if natural food webs show a relationship between biodiversity and network branching. To this end I examine a set of empirical food webs and observe a striking linear scaling relationship between food web size and the degree of branching in the minimum spanning tree of a food web. This empirical corroboration of the theory suggests that the theory reported here may be of value as a guide to how space and dispersal interact to structure natural food webs at large scales.
Malgré l'importance des processus spatiaux dans les communautés écologiques naturelles, peu de théories examinent le rôle de l'espace dans l'assemblage et la stabilisation des réseaux trophiques complexes. Dans cette thèse, je développe un modèle de réseau trophique spatial (métacommunauté) fondé sur un model dynamique de métapopulation du type Levins, où les interactions trophiques entres les espèces ont lieu au sein d'une série de populations locales. Ce modèle de métacommunauté me permet d'examiner les réseaux trophiques simples et complexes dans un contexte écologique et évolutif.Dans le premier chapitre, je résume et critique les modèles actuels de métacommunauté du type Levins incorporant les interactions trophiques dans un contexte spatial. Après avoir identifié les erreurs de ces modèles, je développe un modèle corrigé afin d'examiner des réseaux trophiques simples. Je montre que la stabilité des interactions trophiques simples (telles que les boucles omnivores) dépend de l'interaction entre la structure spatiale et la topologie du réseau trophique. Dans le deuxième chapitre, j'utilise ce modèle afin de déterminer l'évolution du taux de dispersion du prédateur et de sa proie lorsque la prédation favorise l'extinction des populations locales. Je montre que face à une augmentation du taux d'extinction, le taux de dispersion évolutivement stable du prédateur augmente de façon monotone alors que celui de la proie varie de façon non-monotone et diminue pour certains niveaux d'extinction. Je démontre que cette réponse contre-intuitive de la proie est due à la structure spatiale des interactions trophiques entre les espèces.Dans le troisième chapitre, j'utilise le modèle afin d'étudier l'assemblage de réseaux trophiques complexes dans l'espace. Je montre que l'addition de branches dans le réseau trophique (ramification) permet l'accumulation d'espèces dans des chaînes alimentaires distinctes et la création de réseaux trophiques complexes. Je démontre que cette ramification du réseau trophique est due à la distribution spatiale des interactions trophiques ainsi que le support structurel apporté par les boucles omnivores et généralistes.Dans le quatrième chapitre, j'essaye de déterminer si la relation entre la biodiversité et la ramification des réseaux trophiques observée dans le modèle est applicable aux réseaux trophiques naturels. Je montre qu'il existe une forte relation linéaire entre la taille des réseaux trophiques naturels et le nombre de branches qui caractérise leur arbre couvrant minimum. Cette vérification empirique du modèle indique que la théorie développée dans cette thèse pourrait permettre de mieux comprendre les rôles que jouent l'espace et de la dispersion dans l'assemblage et la structure des réseaux trophiques naturels à grandes échelles.
APA, Harvard, Vancouver, ISO, and other styles
4

Kylafis, Grigorios. "Niche construction, facilitation and their ecological and evolutionary consequences." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97086.

Full text
Abstract:
Organisms modify their environment through their activities and by doing so, they modify evolutionary pressures acting on them, as well as the ecological conditions under which they grow and reproduce. Niche construction, as defined by Odling-Smee et al. (2003), is a concept that captures the reciprocal organism-environment interaction from an evolutionary perspective. However, niche construction in the sense of biotically-driven improvement of the ecological environment has been poorly explored to date. I derive a consumer-resource model to investigate the consequences of niche construction for its agent. I show that niche construction is a mechanism by which a species enhances its ecological persistence, via positive ecological feedbacks, and partially regulates its environment against external changes, via adaptive feedbacks. Next, I integrate niche construction into traditional competition models. A species that improves the level of a limiting niche factor via niche construction simultaneously competes with adjacent species via deteriorating impacts on the level of the same or other limiting niche factors. I observe that the interplay between niche improving and niche deteriorating impacts modifies the potential for species coexistence. Moreover, I show that the niche constructing species has a facilitative effect on the equilibrium abundance of its competitor. The prevalence of the facilitative effect, however, depends on both species' competitive hierarchies and the fertility of the ecosystem. Finally, I derive a model to investigate the evolution of the strength of facilitation between two competing species, when one species improves abiotic conditions to the advantage of its competitor but without any benefit to itself. In this case, I predict that high strength of facilitation evolves in productive ecosystems. Overall, my thesis provides a novel framework for the investigation of niche improving and niche deteriorating impacts and their combined effects on species coexistence, community structure and ecosystem functioning.
Par leurs activités, les êtres vivants changent leur environnement, modifiant ainsi les pressions évolutives qui les affectent, ainsi que les conditions écologiques présidant à leur croissance et leur reproduction. Telle que définie par Odling-Smee et al (2003), la construction de niche est un concept qui recouvre l'interaction réciproque entre l'organisme et son environnement selon une perspective évolutive. Cependant, la notion de construction de niche comme amélioration de l'environnement écologique par les êtres vivants est encore peu explorée. J'ai construit un modèle d'un consommateur et de sa ressource, afin d'explorer les conséquences de la construction de niche sur l'agent de cette construction. J'ai montré que la construction est un mécanisme grâce auquel une espèce persiste plus longtemps dans l'écosystème, via des feedbacks écologiques positifs, et régule son environnement face aux changements externes, via des feedbacks adaptifs. Par la suite, j'ai intégré la construction de niche à des modèles traditionnels de compétition. Une espèce qui, par construction de niche, augmente le niveau d'un facteur limitant, entre simultanément en compétition avec les espèces voisines par sa détérioration du niveau de ce facteur ou d'autres facteurs limitants. J'ai constaté que ce jeu entre impacts positifs et négatifs sur la niche écologique modifie le potentiel de coexistence entre les espèces. De plus, j'ai montré que l'espèce qui construit sa niche a un effet facilitateur sur l'abondance de son compétiteur à l'équilibre. Cependant, l'importance de cet effet facilitateur dépend de la hiérarchie entre les capacités compétitives des deux espèces et de la productivité de l'écosystème. Enfin, j'ai construit un modèle pour examiner comment évolue l'intensité de la facilitation entre deux espèces en compétition, lorsqu'une des espèces améliore les conditions abiotiques pour l'autre espèce, sans aucun bénéfice pour elle-même. Dans ce cas, je prédis l'évolution d'un effet de facilitation fort dans les écosystèmes productifs. Globalement, ma thèse fournit un cadre de travail nouveau pour explorer les impacts amélioratifs et détérioratifs de la construction de niche, ainsi que leurs effets combinés sur la coexistence des espèces, la structure des communautés et le fonctionnement des écosystèmes.
APA, Harvard, Vancouver, ISO, and other styles
5

Low-Décarie, Etienne. "Ecological and evolutionary response of phytoplankton to rising CO2." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121204.

Full text
Abstract:
Atmospheric CO2 concentration has risen to a landmark high of 400 ppm, a level not seen on earth for the past million years, and is expected to continue to increase over the course of this century. Besides its indirect effect on climate, this change will directly affect all photosynthetic organisms, including phytoplankton, through an increased availability of carbon. Through laboratory and field experiments, I investigated the ecological and evolutionary response of phytoplankton communities to rising atmospheric CO2. The rise in atmospheric CO2 is occurring at the same time as increases in the availability of a number of nutrients. In a series of mesocosm experiments in a lake, I found that elevated CO2 can act synergistically with increased nutrient availability to increase phytoplankton growth. Elevated CO2 could thus exacerbate the effect of traditional drivers of eutrophication. Major taxonomic groups of phytoplankton differ in their ability to take up and utilize CO2. In an experiment with six species of phytoplankton belonging to three major taxa (cyanobacteria, diatoms and chlorophytes), I found that these physiological differences lead to predictable changes in community dynamics. Chlorophytes, the type most limited by current CO2 levels, benefit from rising CO2 at the expense of cyanobacteria. The applicability of these findings to natural systems was confirmed in the series of mesocosm experiments. In these experiments, the increase in the frequency of chlorophytes with rising CO2 was observed at both high and low nutrient levels. The increased growth rate with the addition of nutrients and CO2, the physiological differences between major groups of phytoplankton and the associated changes in community compositions may be altered by evolutionary change after sufficiently long exposure of these organisms to elevated CO2. I tested for the probability of evolutionary change in response to elevated CO2 by exposing the previous six species and Chlamydomonas reinhardtii to elevated CO2 for over 750 generations. I found no evidence of evolutionary change, which indicates that predictions of the ecological impact of rising CO2 on phytoplankton based on the current physiology of phytoplankton will remain valid even after hundreds of generations. As phytoplankton are the base of most aquatic food webs and important drivers of the global carbon cycle, this work provides a crucial element for predicting the future state of aquatic systems and global geochemistry undergoing global change.
La concentration de CO2 dans l'atmosphère a atteint un niveau record de 400 ppm. Un niveau si élevé n'a pas été atteint lors des derniers millions d'années. Les prédictions actuelles indiquent que la concentration atmosphérique de CO2 va continuer à augmenter tout au long de ce siècle. J'ai utilisé des expériences de laboratoire et des expériences de terrain pour étudier la réponse écologique et évolutive du phytoplancton au changement de concentration de CO2. L'augmentation de la disponibilité de plusieurs autres nutriments se déroule en même temps que l'augmentation de CO2 dans l'atmosphère. Dans une série d'expériences utilisant des mésocosmes en milieu naturel, j'ai constaté que la croissance du phytoplancton augmentait plus avec l'addition simultanée de CO2 et de nutriments qu'avec l'addition uniquement de nutriments. L'augmentation de CO2 atmosphérique pourrait donc exacerber les problèmes d'eutrophisation des milieux aquatiques. Les regroupements taxonomiques importants de phytoplanctons se distinguent par leur capacité d'absorber et d'utiliser le CO2. Dans une expérience de laboratoire, ces différences physiologiques entre six espèces de phytoplancton appartenant à trois (des cyanobactéries, des diatomées et des chlorophytes) ont pour conséquences un changement prévisible des dynamiques écologiques au sein de la communauté de phytoplanctons. La proportion dans la communauté de chlorophytes, le groupe dont la croissance est la plus limitée par les niveaux présents de CO2, augmente avec l'augmentation de CO2, et ce, aux dépens de la proportion de cyanobactéries. Les changements écologiques au niveau de l'augmentation du taux de croissance et les changements des proportions de différents types dans les communautés de phytoplanctons pourraient être altérés par des changements évolutifs lors de l'exposition prolongée du phytoplancton à une concentration de CO2 élevée. J'ai évalué la probabilité d'une réponse évolutive causée par une concentration de CO2 élevée en exposant les six espèces de l'expérience précédente et Chlamydomonas reinhardtii à un niveau de CO2 élevé pour plus de 750 générations. Je n'ai trouvé aucune preuve de changement évolutif, ce qui indique que les prédictions basées sur les caractéristiques physiologiques actuelles des phytoplanctons demeureront valides pour plusieurs centaines de générations. Puisque les phytoplanctons sont à la base de toutes les chaines alimentaires aquatiques importantes et des contributeurs importants aux différents cycles géochimiques planétaires, les recherches présentées dans cette thèse fournissent un élément crucial pour la prédiction de l'état futur des milieux aquatiques et de la géochimie mondiale.
APA, Harvard, Vancouver, ISO, and other styles
6

Burgos, Luis Patricio. "The Thermal Ecology of Sceloporus occidentalis." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/2062.

Full text
Abstract:
With temperatures rising globally, assessing the possible impacts of the changing climate becomes more and more urgent. Ectotherms are excellent indicators of potential climatic ramifications on biodiversity because of their heavy reliance on the environment for their thermoregulation. Studies have historically looked at thermal tolerance values to establish predictive models for population and species extinctions. In chapter 1, we looked at recent studies that suggest that thermal tolerance may be a plastic trait and test the effects empirically. Most studies are based on captive lizards acclimated to laboratory conditions that do not necessarily reflect natural environments, and if thermal tolerance is plastic and affected by the recent thermal history of the animal, then the data may not be accurate. We tested the critical thermal maximum of the western fence lizard, Sceloporus occidentalis, in all four seasons, both under field (same-day) and short (two-day) lab-acclimated conditions. We found that thermal tolerance varied seasonally, with the lowest values in the summer in both same-day and two-day acclimated lizards. Additionally, we found that the thermal tolerance of lizards tested on the same day was higher in spring than in fall, but two days of acclimation to lab conditions eliminated this difference. We also tested the thermal tolerance of lizards housed at several constant acclimation temperatures for one or three weeks and compared these values to those of lizards housed in a terrarium allowing thermoregulation, and to same-day lizards. While the thermal tolerance of all lab-acclimated lizards was higher than that of same-day lizards, there was no significant difference in thermal tolerance among any of the acclimation treatments. Overall, our results show that thermal tolerance may be plastic in some situations in S. occidentalis, but that this species overall shows little plasticity in response to acclimation. In chapter 2, we evaluated the thermal environment of S.occidentalis using operative temperature models. Using operative temperature models combined with field lizard body temperatures and a lab-determined selected body temperature range, we evaluated the thermal environment of Sceloporus occidentalis to identify habitat quality, thermoregulatory effectiveness, and thermal exploitation index. Additionally, we used two predictive climate change models at a 1°C and 2°C increase to project the potential changes in habitat quality in the future. The thermal quality was highest for shady microhabitats, lowest for sunny microhabitats, and intermediate for mixed sunny/shady microhabitats. S. occidentalis were able to maintain their body temperatures in their Tset range for 6 hours, indicating the ability to exploit multiple microhabitats. Neither climate change scenario (1°C or 2°C increase) placed S. occidentalis at risk of extinction, likely because the coastal field site has a relatively mild climate. However, both scenarios greatly decreased the thermal quality of the environment, causing S. occidentalis to lose up to 2.5 hours of activity time per day. This highlights that even animals that inhabit mild climates are likely to experience sub-lethal effects of climate change.
APA, Harvard, Vancouver, ISO, and other styles
7

Abbot, Douglas Kilpatrick. "Evolutionary genetics of gall-forming aphids: Population and behavioral processes." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/279854.

Full text
Abstract:
I investigated patterns of genetic variation in the North American gall-forming aphid, Pemphigus obesinymphae. In Chapters 2a and 2b, I developed and then implemented clone-specific molecular markers to investigate clonal mixing in P. obesinymphae . During its gall-forming phase, P. obesinymphae clones produce aggressive larval "soldiers", which altruistically defend their colonies from natural enemies. I showed that movement occurs between galls, indicating that P. obesinymphae colonies are not pure clones. I also showed that intruders behave selfishly, by not defending unrelated clones, and by accelerating development into reproductive adults. These results reveal a greater degree of complexity and conflict in aphid social groups than previously known. In Chapter 2c, I surveyed molecular variation in P. obesinymphae and its bacterial endosymbiont, Buchnera aphidicola. I found levels of variation at two Buchnera loci to be similar to those estimated from a previous study on a distantly-related aphid, Uroleucon ambrosiae. In the western US, P. obesinymphae and B. aphidicola were nearly monomorphic, and in the eastern US, estimates of synonymous divergence ranged from 0.08 to 0.16%. Most polymorphisms in sub-populations at low frequencies, indicating a recent purge of ancestral polymorphism. These results emphasize the importance of aphid population biology in shaping evolutionary patterns in B. aphidicola. In Chapter 2d, I explored the role of life cycle variation in speciation between Pemphigus aphids. P. obesinymphae and P. populi-transversus are closely-related and sympatric on the cottonwood, Populus deltoides (Salicaceae), but they have distinctly different life cycles. P. populi-transversus has a sexual stage that occurs in the fall, while P. obesinymphae produces sexuales in late spring. Field evidence indicates that intermediate phenotypes rarely occur, and mitochondrial and bacterial endosymbiont DNA sequences show no maternal gene flow between the two species. I considered the possibility of an initial allopatric phase in the divergence, and discuss the sequence of evolutionary changes that likely led to the sympatric divergence of P. populi-transversus and P. obesinymphae. The most plausible interpretation of available data is that a shift in timing of the life cycle in an ancestral population spurred divergence between the species pair.
APA, Harvard, Vancouver, ISO, and other styles
8

Ramirez, Aaron Robert. "Comparative Ecophysiology and Evolutionary Biology of Island and Mainland Chaparral Communities." Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3720783.

Full text
Abstract:

The unique nature of island ecosystems have fascinated generations of naturalists, ecologists, and evolutionary biologists. Studying island systems led to the development of keystone biological theories including: Darwin and Wallace's theories of natural selection, Carlquist's insights into the biology of adaptive radiations, MacArthur and Wilson's theory of island biogeography, and many others. Utilizing islands as natural laboratories allows us to discover the underlying fabric of ecology and evolutionary biology. This dissertation represents my attempt to contribute to this long and storied scientific history by thoroughly investigating two aspects of island biology: 1. the role of island climate in shaping drought tolerance of woody plants, and 2. the absence of mammalian herbivores from insular environments and its effects on woody plant defenses.

These goals were accomplished by quantifying functional trait patterns, seasonal water relations, and plant defenses among closely-related species pairs of chaparral shrubs from matched field sites on Santa Catalina Island and the adjacent Santa Ana Mountains in southern California. This experimental design allowed me to test for repeated evolutionary divergences across island and mainland environments and to examine the evolutionary trade-offs between traits.

Chapter 1 focuses on differences in dry season water availability and hydraulic safety between island and mainland chaparral shrubs by measuring seasonal water relations and cavitation resistance. My results suggest that island plants are more buffered than mainland relatives from the harsh summer drought conditions that characterize the Mediterranean type climate region of California. Furthermore, island plants exhibit increased hydraulic safety margins that suggest island plants may fare better than mainland relatives during episodes of increasing aridity.

Chapter 2 examines an exhaustive suite of 12 functional traits that characterize the drought-related functional strategies of island and mainland chaparral shrubs. Island plants have more mesomorphic leaf and canopy traits than mainland relatives. However, stem hydraulic traits are surprisingly similar between the island and mainland environments despite large differences in seasonal water relations. The differences between patterns at the leaf and stem levels may be related to the existence of evolutionary correlations for leaf traits but not for stem traits. Multivariate principal component analyses suggest that island plants are employing a very different suite of functional traits than their mainland relatives that allows them to take advantage of the more moderate conditions that characterize the island environment without sacrificing increased vulnerability to drought at the stem level.

Chapter 3 tests the hypothesis that the absence of mammalian herbivores throughout most of Santa Catalina Island's history has selected for plants that are less defended and more palatable than mainland relatives that have experienced more consistent browsing pressure. My results confirm that island plants have fewer morphological defenses and are more preferred by mammalian herbivores compared to close relatives from the mainland. These findings also suggest that island plants are more vulnerable to browsing by introduced mammalian herbivores. This vulnerability should be taken into account when making management decisions concerning introduced herbivores on islands.

In conclusion, chaparral shrubs on Santa Catalina Island have different levels of drought tolerance and herbivore defenses compared to mainland relatives that affect how they are likely to be impacted by climate change and other anthropogenic alterations of the insular environment. Furthermore, the pattern of evolutionary divergences between island and mainland plants reported in this dissertation offer new insights into how drought tolerance and herbivore defenses are shaped by environmental factors.

APA, Harvard, Vancouver, ISO, and other styles
9

Machovina, Brian. "The Role of Agriculture and Food Consumption in Tropical Conservation." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1841.

Full text
Abstract:
A growing human population, shifting human dietary habits, and climate change are negatively affecting global ecosystems on a massive scale. Expanding agricultural areas to feed a growing population drives extensive habitat loss, and climate change compounds stresses on both food security and ecosystems. Understanding the negative effects of human diet and climate change on agricultural and natural ecosystems provides a context within which potential technological and behavioral solutions can be proposed to help maximize conservation. The purpose of this research was to (1) examine the potential effects of climate change on the suitability of areas for commercial banana plantations in Latin America in the 2050s and how shifts in growing areas could affect protected areas; (2) test the ability of small unmanned aerial vehicles (UAVs) to map productivity of banana plantations as a potential tool for increasing yields and decreasing future plantation expansions; (3) project the effects on biodiversity of increasing rates of animal product consumption in developing megadiverse countries; and (4) estimate the capacity of global pasture biomass production and Fischer-Tropsch hydrocarbon synthesis (IGCC-FT) processing to meet electricity, gasoline and diesel needs. The results indicate that (1) the overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19% by 2050 because of a hotter and drier climate, but all current banana exporting countries are predicted to maintain some suitable areas with no effects on protected areas; (2) Spatial patterns of NDVI and ENDVI were significantly positively correlated with several metrics of fruit yield and quality, indicating that UAV systems can be used in banana plantations to map spatial patterns of fruit yield; (3) Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing biodiverse tropical countries. Reducing global animal product consumption should therefore be at the forefront of strategies aimed at reducing biodiversity loss; (4) Removing livestock from global pasture lands and instead utilizing the biomass production could produce enough energy to meet 100% of the electricity, gasoline, and diesel needs of over 40 countries with extensive grassland ecosystems, primarily in tropical developing countries.
APA, Harvard, Vancouver, ISO, and other styles
10

Inglis, Robert Fredrik. "The evolutionary ecology of spiteful bacteriocin production." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:524eaef3-0336-4127-9cd1-60d84a00f2e3.

Full text
Abstract:
Understanding the conditions that favour the evolution and maintenance of spiteful bacteriocin production combines two important questions from the fields of social evolution and microbiology. Spiteful behaviours, though, initially thought to be rare represent an important class of interactions between bacteria through the production of bacteriocins. Bacteriocins can be considered spiteful as they are costly to produce (in many cases requiring lysis) and are costly to sensitive bacteria (i.e. they are lethal). However, much about the ecology of spiteful behaviours and bacteriocin production remains unclear. Mathematical models have given us important insights into some conditions that should favour bacteriocin production, but few empirical studies exist supporting these results. In this thesis I use the bacterium Pseudomonas aeruginosa (a prolific producer of bacteriocins), to examine conditions that favour bacteriocin production. I also investigate more specific elements about this system and toxin production in general. I find that bacteriocin production in P. aeruginosa closely follows predictions made from mathematical models under a range of different conditions (e.g. frequency, scale of competition, multiple social traits). I also find that resistance can evolve to bacteriocins and biological mechanisms such as the neutralisation of one’s own toxin can have important consequences. Finally, I consider bacteriocin as a policing trait testing predictions about the role that linkage plays in policing. This work represents a comprehensive study into the importance of bacteriocin production in bacteria.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ecology and Evolutionary Biology"

1

Pianka, Eric R. Evolutionary ecology. 5th ed. New York: HarperCollins, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Evolutionary ecology. 6th ed. San Francisco, Calif: Benjamin Cummings, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Evolutionary ecology. 4th ed. New York: Harper & Row, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bulmer, M. G. Theoretical evolutionary ecology. Sunderland, Mass: Sinauer Associates, Inc, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Theoretical evolutionary ecology. Sunderland, Mass: Sinauer Associates, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

W, Fox Charles, Roff Derek A. 1949-, and Fairbairn Daphne J, eds. Evolutionary ecology: Concepts and case studies. Oxford: Oxford University Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Indigenous knowledge, ecology, and evolutionary biology. New York: Routledge, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Horne, David J., and Koen Martens, eds. Evolutionary Biology and Ecology of Ostracoda. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1508-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Discovering evolutionary ecology: Bringing together ecology and evolution. Oxford: Oxford University Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Warburg, M. R. Evolutionary biology of land isopods. Berlin: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ecology and Evolutionary Biology"

1

Mueller, Laurence D. "The Evolutionary Ecology of Drosophila." In Evolutionary Biology, 37–98. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-6980-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salick, Jan. "Crop Domestication and the Evolutionary Ecology of Cocona (Solanum sessiliflorum Dunal)." In Evolutionary Biology, 247–85. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3336-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hall, Brian K. "Evolution as the Control of Development by Ecology." In Evolutionary Developmental Biology, 297–306. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-3961-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Levy, Roie, and Elhanan Borenstein. "Reverse Ecology: From Systems to Environments and Back." In Evolutionary Systems Biology, 329–45. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3567-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bertmar, Gunnar. "General Ecology of Primitive Fishes." In Evolutionary Biology of Primitive Fishes, 11–29. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-9453-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaur, Jasleen, and Rupesh Kariyat. "Role of Trichomes in Plant Stress Biology." In Evolutionary Ecology of Plant-Herbivore Interaction, 15–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46012-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Städler, T., and P. Jarne. "Population biology, genetic structure, and mating system parameters in freshwater snails." In Evolutionary Ecology of Freshwater Animals, 231–62. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8880-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schweitzer, Jennifer A., Michael Van Nuland, and Joseph K. Bailey. "Intraspecific Plant–Soil Feedbacks Link Ecosystem Ecology and Evolutionary Biology." In Aboveground–Belowground Community Ecology, 69–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91614-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Butlin, Roger K., and Paolo Menozzi. "Open questions in evolutionary ecology: do ostracods have the answers?" In Evolutionary Biology and Ecology of Ostracoda, 1–14. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1508-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

van Harten, Dick. "Variable noding in Cyprideis torosa (Ostracoda, Crustacea): an overview, experimental results and a model from Catastrophe Theory." In Evolutionary Biology and Ecology of Ostracoda, 131–39. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1508-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ecology and Evolutionary Biology"

1

"Schedule and abstract book for the Tenth Annual Undergraduate Research Conference at the Interface of Biology and Mathematics." In Annual Undergraduate Research Conference at the Interface of Biology and Mathematics. National Institute for Mathematical and Biological Synthesis (NIMBioS), 2018. http://dx.doi.org/10.7290/aurcibm10.

Full text
Abstract:
Collection of abstracts from the tenth Annual Undergraduate Research Conference at the Interface of Biology and Mathematics. Plenary speaker: Holly Gaff, Biological Sciences, Old Dominion University. Featured speaker: Nina Fefferman, Ecology & Evolutionary Biology, Mathematics, University of Tennessee, Knoxville.
APA, Harvard, Vancouver, ISO, and other styles
2

Shumaev, K. B., O. V. Kosmachevskaya, E. I. Nasybullina, and A. F. Topunov. "THE ORIGIN AND EVOLUTION OF THE SIGNAL FUNCTION OF NITRIC OXIDE." In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.247-251.

Full text
Abstract:
The article discusses the evolutionary aspects of the functioning of nitric oxide (NO) in various organisms. As a signaling molecule, NO is widely distributed in both prokaryotes and eukar-yotes. The diverse action of NO is due to the formation of its biologically active metabolites. The formation of these NO derivatives was associated with the evolution of energy homeosta-sis and protection of living systems from oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
3

Ammunét, Tea. "Evolutionary ecology of an invasive geometrid." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chick, Lacy D. "Ecology and evolutionary history shape the thermal niche." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.114113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barrientos, Rafael, Fernando Ascensão, Marcello D'Amico, Luís Borda-de-Água, and Henrique Miguel Pereira. "Where is Road Ecology going?" In 5th European Congress of Conservation Biology. Jyväskylä: Jyvaskyla University Open Science Centre, 2018. http://dx.doi.org/10.17011/conference/eccb2018/107540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aimé, Emilie. "Publishing in high-quality ecology journals." In 5th European Congress of Conservation Biology. Jyväskylä: Jyvaskyla University Open Science Centre, 2018. http://dx.doi.org/10.17011/conference/eccb2018/109116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burnham, Kurt. "Ecology and Biology of Gyrfalcons in Greenland." In Gyrfalcons and Ptarmigan in a Changing World. The Peregrine Fund, 2011. http://dx.doi.org/10.4080/gpcw.2011.0209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yunyi Yan and Baolong Guo. "Particle Swarm Optimization inspired by r- and K-Selection in ecology." In 2008 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2008. http://dx.doi.org/10.1109/cec.2008.4630936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seising, Rudolf. "Fuzziness in evolutionary biology." In NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2008. http://dx.doi.org/10.1109/nafips.2008.4531318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Athanassiou, Christos. "Biology and ecology of stored-product psocid pests." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.89482.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ecology and Evolutionary Biology"

1

Valenzuela, Nicole M. Evolutionary Ecology of Freshwater Turtles. Ames: Iowa State University, Digital Repository, 2007. http://dx.doi.org/10.31274/farmprogressreports-180814-298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boore, Jeffrey. Why Evolutionary Biology and Genome Sciences Need Each Other. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/840341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agrawal, Ajay, John McHale, and Alexander Oettl. Collaboration, Stars, and the Changing Organization of Science: Evidence from Evolutionary Biology. Cambridge, MA: National Bureau of Economic Research, November 2013. http://dx.doi.org/10.3386/w19653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ray, Gary L. Invasive Animal Species in Marine and Estuarine Environments: Biology and Ecology. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada430308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muir, John A., and Paul E. Hennon. A synthesis of the literature on the biology, ecology, and management of western hemlock dwarf mistletoe. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2007. http://dx.doi.org/10.2737/pnw-gtr-718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Author, Not Given. 1996 Gordon Research Conference on Archaea - Ecology, Metabolism, and Molecular Biology, to be held July 14-19, 1996. Final progress report. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/764001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Molina, Randy, Thomas O'Dell, Daniel Luoma, Michael Amaranthus, Michael Castellano, and Kenelm Russell. Biology, ecology, and social aspects of wild edible mushrooms in the forests of the Pacific Northwest: a preface to managing commercial harvest. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1993. http://dx.doi.org/10.2737/pnw-gtr-309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kistler, Harold Corby, and Talma Katan. Identification of DNA Unique to the Tomato Fusarium Wilt and Crown Rot Pathogens. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571359.bard.

Full text
Abstract:
Wilt and crown rot are two important diseases of tomato caused by different strains ("formae speciales") of the fungus, Fusarium oxysporum. While both pathogens are members of the same fungal species, each differs genetically and resistance to the diseases is controlled by different genes in the plant. Additionally, the formae speciales differ in their ecology (e.g. optimal temperature of disease development) and epidemiology. Nevertheless, the distinction between these diseases based on symptoms alone may be unclear due to overlapping symptomatology. We have found in our research that the ambiguity of the pathogens is further confounded because strains causing tomato wilt or crown rot each may belong to several genetically and phylogenetically distinct lineages of F. oxysporum. Furthermore, individual lineages of the pathogen causing wilt or crown rot may themselves be very closely related. The diseases share the characteristic that the pathogen's inoculum may be aerially dispersed. This work has revealed a complex evolutionary relationship among lineages of the pathogens that makes development of molecular diagnostic methods more difficult than originally anticipated. However, the degree of diversity found in these soil-borne pathogens has allowed study of their population genetics and patterns of dispersal in agricultural settings.
APA, Harvard, Vancouver, ISO, and other styles
9

Yurovskaya, M. V., and A. V. Yushmanova. Complex Investigations of the World Ocean. Proceedings of the VI Russian Scientific Conference of Young Scientists. Edited by D. A. Alekseev, A. Yu Andreeva, I. M. Anisimov, A. V. Bagaev, Yu S. Bayandina, E. M. Bezzubova, D. F. Budko, et al. Shirshov Institute Publishing House, April 2021. http://dx.doi.org/10.29006/978-5-6045110-3-9.

Full text
Abstract:
The collection contains materials of the VI All-Russian Scientific Conference of Young Scientists "Complex Investigations of the World Ocean", dedicated to the discussion of the main scientific achievements of young specialists in the field of oceanology, modern methods and means of studying the World Ocean. Within the framework of the conference, issues of modern oceanology were considered in sections: ocean physics, ocean biology, ocean chemistry, marine geology, marine geophysics, marine ecology and environmental management, oceanological technology and instrumentation, as well as interdisciplinary physical and biological research of the ocean. Along with the coverage of the results obtained in the course of traditional oceanological expeditionary research, attention was paid to the development of modern methods of studying the ocean: numerical modeling and remote sensing methods of the Earth from space.
APA, Harvard, Vancouver, ISO, and other styles
10

Mayfield, Colin. Higher Education in the Water Sector: A Global Overview. United Nations University Institute for Water, Environment and Health, May 2019. http://dx.doi.org/10.53328/guxy9244.

Full text
Abstract:
Higher education related to water is a critical component of capacity development necessary to support countries’ progress towards Sustainable Development Goals (SDGs) overall, and towards the SDG6 water and sanitation goal in particular. Although the precise number is unknown, there are at least 28,000 higher education institutions in the world. The actual number is likely higher and constantly changing. Water education programmes are very diverse and complex and can include components of engineering, biology, chemistry, physics, hydrology, hydrogeology, ecology, geography, earth sciences, public health, sociology, law, and political sciences, to mention a few areas. In addition, various levels of qualifications are offered, ranging from certificate, diploma, baccalaureate, to the master’s and doctorate (or equivalent) levels. The percentage of universities offering programmes in ‘water’ ranges from 40% in the USA and Europe to 1% in subSaharan Africa. There are no specific data sets available for the extent or quality of teaching ‘water’ in universities. Consequently, insights on this have to be drawn or inferred from data sources on overall research and teaching excellence such as Scopus, the Shanghai Academic Ranking of World Universities, the Times Higher Education, the Ranking Web of Universities, the Our World in Data website and the UN Statistics Division data. Using a combination of measures of research excellence in water resources and related topics, and overall rankings of university teaching excellence, universities with representation in both categories were identified. Very few universities are represented in both categories. Countries that have at least three universities in the list of the top 50 include USA, Australia, China, UK, Netherlands and Canada. There are universities that have excellent reputations for both teaching excellence and for excellent and diverse research activities in water-related topics. They are mainly in the USA, Europe, Australia and China. Other universities scored well on research in water resources but did not in teaching excellence. The approach proposed in this report has potential to guide the development of comprehensive programmes in water. No specific comparative data on the quality of teaching in water-related topics has been identified. This report further shows the variety of pathways which most water education programmes are associated with or built in – through science, technology and engineering post-secondary and professional education systems. The multitude of possible institutions and pathways to acquire a qualification in water means that a better ‘roadmap’ is needed to chart the programmes. A global database with details on programme curricula, qualifications offered, duration, prerequisites, cost, transfer opportunities and other programme parameters would be ideal for this purpose, showing country-level, regional and global search capabilities. Cooperation between institutions in preparing or presenting water programmes is currently rather limited. Regional consortia of institutions may facilitate cooperation. A similar process could be used for technical and vocational education and training, although a more local approach would be better since conditions, regulations and technologies vary between relatively small areas. Finally, this report examines various factors affecting the future availability of water professionals. This includes the availability of suitable education and training programmes, choices that students make to pursue different areas of study, employment prospects, increasing gender equity, costs of education, and students’ and graduates’ mobility, especially between developing and developed countries. This report aims to inform and open a conversation with educators and administrators in higher education especially those engaged in water education or preparing to enter that field. It will also benefit students intending to enter the water resources field, professionals seeking an overview of educational activities for continuing education on water and government officials and politicians responsible for educational activities
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography