Contents
Academic literature on the topic 'Ecoulement fluides incompressibles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ecoulement fluides incompressibles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ecoulement fluides incompressibles"
Ghezal, A., B. Porterie, and J. C. Loraud. "Ecoulement confine d'un fluide visqueux incompressible autour d'un obstacle cylindro-conique en mouvement helicoidal." Mechanics Research Communications 16, no. 3 (May 1989): 183–89. http://dx.doi.org/10.1016/0093-6413(89)90056-6.
Full textDissertations / Theses on the topic "Ecoulement fluides incompressibles"
Bresch, Didier. "Sur les fluides incompressibles : ecoulement en eau peu profonde, estimations d'energie, fluides non newtoniens." Clermont-Ferrand 2, 1997. http://www.theses.fr/1997CLF21982.
Full textSchneider, Lauriane. "Développement d'un modèle numérique pour l'écoulement triphasique de fluides incompressibles." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAH002/document.
Full textNumerical simulation has become a crucial tool in addressing water-resource management and other environmental problems such as polluted sites monitoring. The aim of this work is to model the flow of a dense non aqueous phase liquid (DNAPL) in the subsurface by developing a numerical code to simulate three-phase (DNAPL, water, and gas), incompressible flow in porous media. The mathematical model for multiphase flow in porous media is generally composed of a system of one pressure and two saturation equations. Our approach is based on a global pressure model : it leads to a partial decoupling of the pressure and the saturation equation and is more efficient from the computational point of view. The new model is discretized by a Mixed Hybrid Finite Elements Method (MHFEM), Discontinuous Galerkin Finite Elements (DGFEM), IMPES resolution method. In this work, the DGFEM scheme is combined with a generalised Godunov scheme to solve the convective part of the saturation equation. An immiscible two-phase flow with predominant gravity effects and whithout capillary effects has been modelled. It has been shown that the saturation profile of a displacing non-aqueous phase liquid (NAPL) in an initially water-saturated porous medium depends strongly on the ratio between the total specific discharge and the density difference between the NAPL and water. The 2D-code enabled a simulation of a large-scale gravity drainage. Finally, a non-linear three-phase 1D flow formulation using Method of Lines (MOL) has been introduced. Unstable oscillatory behavior of the system when the initial state are in the elliptic region of the ternary diagram is examined. Non-equilibrium formulation and construction of relative permeability model satisfying the Total-Differential are foreseen
Guaus, Anaïs. "Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/203/.
Full textA compliant wall is a wall that is flexible enough to be deformed by the stress created by a flow. It is now proven that the stability of a flow over a compliant wall can be considerably modified compared with the rigid-wall case. In particular, the destabilization of Tollmien-Schlichting waves, responsible for the transition to turbulence when the flow is only weakly perturbed, can be delayed. In this study, the linear stability of two flow configurations containing curved compliant walls, a curved channel flow and a Taylor-Couette flow, has been investigated. Both flows are exposed to a centrifugal instability mechanism which promotes the apparition of contra-rotative vortices. At the moment there are very few studies concerning the influence of compliant walls on the centrifugal instabilité mechanisms. The compliant walls are modelled as thin cylindrical shells supported by a rigid outer frame through arrays of springs and dampers; this is often referred to as Kramer-type coating. In addition to the numéral resolution of an eigenvalue problem, an asymptotical study of the flow stability in the curved channel has been performed for the case of large-wavelength transverse perturbations. Results show that only very flexible walls have an influence on the flow stability, mainly by destabilizing the large-wavelength perturbations. The generation of four hydroelastic modes is allowed by wall compliance where these instabilities can precede the centrifugal one. Additionally, exchanges between stable hydroelastic and centrifugal modes have been observed
Ismail, Mourad. "Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés : application aux écoulements fluides tridimensionnels." Phd thesis, Paris 6, 2004. https://theses.hal.science/tel-00006401.
Full textIsmail, Mourad. "Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés : application aux écoulements fluides tridimensionnels." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00006401.
Full textOguic, Romain. "Une méthode multidomaine parallèle pour les écoulements incompressibles en géométries cylindriques : applications aux écoulements turbulents soumis à la rotation." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4343.
Full textThis work deals with the study of rotating incompressible flows with a high accurate solver in semi complex geometries. The numerical method used in this work combines compact schemes, a direct multidomain projection method and an efficient axis treatment based on parity conditions in Fourier space. The use of cylindrical coordinates introduces this mathematical singularity. In order to reduce the calculation time, the solver was parallelized with an hybrid MPI-OpenMP parallelization. First, the spatial and temporal accuracies of the numerical method and the scalability of the solver were checked. Then, the capability of the algorithm to deal with more complex flows was verified. Vortex breakdown flows and turbulent pipe flow were studied. In the second step, typical flows of turbomachineries and rotating systems were considered. The first flow was an incompressible isothermal turbulent flow in a high pressure compressor of gas turbine. The different simulations highlighted the rotation effects on the flows, especially on the instabilities appearing along the walls and the coherent structures. The second considered flow was a turbulent impinging jet on a rotating disk with heat transfer in a small aspect ratio cavity. The hydrodynamic fields and heat transfer near the rotor were analyzed in detail. Finally, a preliminary investigation of an impinging jet on a non-rotating disk in a larger aspect ratio cavity with a coupling between conduction and convection transfer was carried out
PONSONNAILLE, OLIVIER. "Ecoulement permanent d'un fluide incompressible entre deux cones solidaires en rotation." Paris 11, 1997. http://www.theses.fr/1997PA112345.
Full textSapa, Bertrand. "Contribution à l'extension d'un schéma incompressible pour les flammes à bas nombre de Froude." Phd thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2011. http://www.theses.fr/2011ESMA0004.
Full textAs a first step for fire simulation, an extension of the incompressible scheme and adaptations for the free boundary limits have been developed in Code_Saturne, EDF R&D's fluid mechanic software. This numerical approach is aimed to handle unsteady low Froude number flames dominated by natural convection. The turbulence model is a k − ε with gravity effects. The combustion model uses an infinitely fast one-step reaction with a presumed probability density function. The radiative transfer equation is solved with the discrete ordinates method. The radiative properties are computed thanks to a wide band model. Nucleation, growth, agglomeration and oxidation of soot are treated with a semi-empirical model. The model was applied to steady thermal plumes and a helium plume, configurations closed to fire. Benefits from tested closures on buoyant production term are negligible and suggest that closure of turbulent fluxes is more important. However, benefits from the weakly compressible scheme is significant, in particular on unsteady behaviour. The computed, time-averaged velocity and temperature profiles are compared with experimental data, and a relatively good agreement is attained. Then the model was applied to a pool fire and a compartment fire. With the pool fire, using a fine mesh is needed to balance a lack of turbulence production and get a good prediction on fire characteristics. This conclusion is moderate for the compartment fire. Although the mesh used is coarse, the predictions are reasonable, due to the strong influence of radiation from smoke and walls
BELDI, ABDENNACER. "Etude de la deformation d'une capsule quasi-spherique placee dans un ecoulement instationnaire de fluide visqueux incompressible." Paris 6, 1986. http://www.theses.fr/1986PA066533.
Full textMohamed, Ali Debyaoui. "Contribution à la modélisation mathématique et numérique pour des modèles d'écoulement non-linéaires dispersifs en eaux peu profondes." Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0002.
Full textThis work focuses on the modeling and mathematical analysis of asymptotic models used in oceanography describing long wave propagation.This thesis aims to derive and justify new asymptotic models taking into account the variation in topography and cross-section.To do so, several hypotheses are formulated on water depth and cross-sectional deformations. The first part of this thesis is to put the problem into equations, and to find asymptotic models and study them mathematically, see the linear analysis of dispersion and shoaling.In the second part, a one-dimensional model of section-averaged long waves is developed. Three-dimensional equations of motion of non-viscous and incompressible fluids are first integrated over a cross-section of the channel, resulting in the SGN-type equations. Therefore, the new model is adequate to describe fully non-linear and weakly dispersive waves along a channel of an arbitrary and non-uniform cross-section. Specifically, the new model extends the Saint-Venant model to cross-section mean and generalizes the Serre-Green-Naghdi equations to any cross-section.This new model has been reformulated in a way more appropriate for numerical resolution by maintaining the same order of accuracy as the original and improving its propertiesof dispersion. Finally, we present some numerical simulations to study the influence of the change of section on the propagation of a solitary wave.The last part of this thesis is devoted to the numerical simulation of the SGN model with a new reformulation