Dissertations / Theses on the topic 'Ecoulement fluides incompressibles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Ecoulement fluides incompressibles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bresch, Didier. "Sur les fluides incompressibles : ecoulement en eau peu profonde, estimations d'energie, fluides non newtoniens." Clermont-Ferrand 2, 1997. http://www.theses.fr/1997CLF21982.
Full textSchneider, Lauriane. "Développement d'un modèle numérique pour l'écoulement triphasique de fluides incompressibles." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAH002/document.
Full textNumerical simulation has become a crucial tool in addressing water-resource management and other environmental problems such as polluted sites monitoring. The aim of this work is to model the flow of a dense non aqueous phase liquid (DNAPL) in the subsurface by developing a numerical code to simulate three-phase (DNAPL, water, and gas), incompressible flow in porous media. The mathematical model for multiphase flow in porous media is generally composed of a system of one pressure and two saturation equations. Our approach is based on a global pressure model : it leads to a partial decoupling of the pressure and the saturation equation and is more efficient from the computational point of view. The new model is discretized by a Mixed Hybrid Finite Elements Method (MHFEM), Discontinuous Galerkin Finite Elements (DGFEM), IMPES resolution method. In this work, the DGFEM scheme is combined with a generalised Godunov scheme to solve the convective part of the saturation equation. An immiscible two-phase flow with predominant gravity effects and whithout capillary effects has been modelled. It has been shown that the saturation profile of a displacing non-aqueous phase liquid (NAPL) in an initially water-saturated porous medium depends strongly on the ratio between the total specific discharge and the density difference between the NAPL and water. The 2D-code enabled a simulation of a large-scale gravity drainage. Finally, a non-linear three-phase 1D flow formulation using Method of Lines (MOL) has been introduced. Unstable oscillatory behavior of the system when the initial state are in the elliptic region of the ternary diagram is examined. Non-equilibrium formulation and construction of relative permeability model satisfying the Total-Differential are foreseen
Guaus, Anaïs. "Analyse linéaire des instabilités dans les écoulements incompressibles à parois courbes compliantes." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/203/.
Full textA compliant wall is a wall that is flexible enough to be deformed by the stress created by a flow. It is now proven that the stability of a flow over a compliant wall can be considerably modified compared with the rigid-wall case. In particular, the destabilization of Tollmien-Schlichting waves, responsible for the transition to turbulence when the flow is only weakly perturbed, can be delayed. In this study, the linear stability of two flow configurations containing curved compliant walls, a curved channel flow and a Taylor-Couette flow, has been investigated. Both flows are exposed to a centrifugal instability mechanism which promotes the apparition of contra-rotative vortices. At the moment there are very few studies concerning the influence of compliant walls on the centrifugal instabilité mechanisms. The compliant walls are modelled as thin cylindrical shells supported by a rigid outer frame through arrays of springs and dampers; this is often referred to as Kramer-type coating. In addition to the numéral resolution of an eigenvalue problem, an asymptotical study of the flow stability in the curved channel has been performed for the case of large-wavelength transverse perturbations. Results show that only very flexible walls have an influence on the flow stability, mainly by destabilizing the large-wavelength perturbations. The generation of four hydroelastic modes is allowed by wall compliance where these instabilities can precede the centrifugal one. Additionally, exchanges between stable hydroelastic and centrifugal modes have been observed
Ismail, Mourad. "Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés : application aux écoulements fluides tridimensionnels." Phd thesis, Paris 6, 2004. https://theses.hal.science/tel-00006401.
Full textIsmail, Mourad. "Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés : application aux écoulements fluides tridimensionnels." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00006401.
Full textOguic, Romain. "Une méthode multidomaine parallèle pour les écoulements incompressibles en géométries cylindriques : applications aux écoulements turbulents soumis à la rotation." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4343.
Full textThis work deals with the study of rotating incompressible flows with a high accurate solver in semi complex geometries. The numerical method used in this work combines compact schemes, a direct multidomain projection method and an efficient axis treatment based on parity conditions in Fourier space. The use of cylindrical coordinates introduces this mathematical singularity. In order to reduce the calculation time, the solver was parallelized with an hybrid MPI-OpenMP parallelization. First, the spatial and temporal accuracies of the numerical method and the scalability of the solver were checked. Then, the capability of the algorithm to deal with more complex flows was verified. Vortex breakdown flows and turbulent pipe flow were studied. In the second step, typical flows of turbomachineries and rotating systems were considered. The first flow was an incompressible isothermal turbulent flow in a high pressure compressor of gas turbine. The different simulations highlighted the rotation effects on the flows, especially on the instabilities appearing along the walls and the coherent structures. The second considered flow was a turbulent impinging jet on a rotating disk with heat transfer in a small aspect ratio cavity. The hydrodynamic fields and heat transfer near the rotor were analyzed in detail. Finally, a preliminary investigation of an impinging jet on a non-rotating disk in a larger aspect ratio cavity with a coupling between conduction and convection transfer was carried out
PONSONNAILLE, OLIVIER. "Ecoulement permanent d'un fluide incompressible entre deux cones solidaires en rotation." Paris 11, 1997. http://www.theses.fr/1997PA112345.
Full textSapa, Bertrand. "Contribution à l'extension d'un schéma incompressible pour les flammes à bas nombre de Froude." Phd thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2011. http://www.theses.fr/2011ESMA0004.
Full textAs a first step for fire simulation, an extension of the incompressible scheme and adaptations for the free boundary limits have been developed in Code_Saturne, EDF R&D's fluid mechanic software. This numerical approach is aimed to handle unsteady low Froude number flames dominated by natural convection. The turbulence model is a k − ε with gravity effects. The combustion model uses an infinitely fast one-step reaction with a presumed probability density function. The radiative transfer equation is solved with the discrete ordinates method. The radiative properties are computed thanks to a wide band model. Nucleation, growth, agglomeration and oxidation of soot are treated with a semi-empirical model. The model was applied to steady thermal plumes and a helium plume, configurations closed to fire. Benefits from tested closures on buoyant production term are negligible and suggest that closure of turbulent fluxes is more important. However, benefits from the weakly compressible scheme is significant, in particular on unsteady behaviour. The computed, time-averaged velocity and temperature profiles are compared with experimental data, and a relatively good agreement is attained. Then the model was applied to a pool fire and a compartment fire. With the pool fire, using a fine mesh is needed to balance a lack of turbulence production and get a good prediction on fire characteristics. This conclusion is moderate for the compartment fire. Although the mesh used is coarse, the predictions are reasonable, due to the strong influence of radiation from smoke and walls
BELDI, ABDENNACER. "Etude de la deformation d'une capsule quasi-spherique placee dans un ecoulement instationnaire de fluide visqueux incompressible." Paris 6, 1986. http://www.theses.fr/1986PA066533.
Full textMohamed, Ali Debyaoui. "Contribution à la modélisation mathématique et numérique pour des modèles d'écoulement non-linéaires dispersifs en eaux peu profondes." Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0002.
Full textThis work focuses on the modeling and mathematical analysis of asymptotic models used in oceanography describing long wave propagation.This thesis aims to derive and justify new asymptotic models taking into account the variation in topography and cross-section.To do so, several hypotheses are formulated on water depth and cross-sectional deformations. The first part of this thesis is to put the problem into equations, and to find asymptotic models and study them mathematically, see the linear analysis of dispersion and shoaling.In the second part, a one-dimensional model of section-averaged long waves is developed. Three-dimensional equations of motion of non-viscous and incompressible fluids are first integrated over a cross-section of the channel, resulting in the SGN-type equations. Therefore, the new model is adequate to describe fully non-linear and weakly dispersive waves along a channel of an arbitrary and non-uniform cross-section. Specifically, the new model extends the Saint-Venant model to cross-section mean and generalizes the Serre-Green-Naghdi equations to any cross-section.This new model has been reformulated in a way more appropriate for numerical resolution by maintaining the same order of accuracy as the original and improving its propertiesof dispersion. Finally, we present some numerical simulations to study the influence of the change of section on the propagation of a solitary wave.The last part of this thesis is devoted to the numerical simulation of the SGN model with a new reformulation
DE, JOUETTE CALM CHRISTINE. "Developpement d'une methode de pseudo-compressibilite pour le calcul des ecoulements de fluide incompressible applications aux ecoulements instationnaires en presence d'une surface libre." Nice, 1994. http://www.theses.fr/1994NICE4804.
Full textLeroy, Annie. "Une methode generale de calcul des systemes portants et/ou propulsifs minces (fluide parfait incompressible en ecoulement instationnaire)." Orléans, 1997. http://www.theses.fr/1997ORLE2018.
Full textDjati, Nabil. "Study of interface capturing methods for two-phase flows." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI052/document.
Full textThis thesis is devoted to the development and comparison of interface methods for incompressible two-phase flows. It focuses on the selection of robust interface capturing methods, then on the manner of their coupling with the Navier-stokes solver. The level-set method is first investigated, in particular the influence of the advection scheme and the reinitialization step on the accuracy of the interface capturing. It is shown that the volume constraint method for reinitialization is robust and accurate in combination with the conservative fifth-order WENO schemes for the advection. It is found that interface errors increase drastically when the CFL number is very small. As a remedy, reinitializing the level-set field less often reduces the amount of numerical diffusion and non-physical interface displacement. Mass conservation is, however, not guaranteed with the level-set methods. The volume-of-fluid (VOF) method is then investigated, which naturally conserves the mass of the reference fluid. A geometrical consistent and conservative scheme is adopted, then an alternative technique more easily extended to 3D. It is found that both methods give very similar results. The moment-of-fluid (MOF) method, which reconstructs the interface using the reference fluid centroid, is found to be more accurate than the VOF methods. Different coupled level-set and VOF methods are then investigated, namely: CLSVOF, MCLS, VOSET and CLSMOF. It is observed that the level-set method tends to thicken thin filaments, whereas the VOF and coupled methods break up thin structures in small fluid particles. Finally, we coupled the level-set and volume-of-fluid methods with the incompressible Navier-Stokes solver. We compared different manners (sharp and smoothed) of treating the interface jump conditions. It is shown that the VOF methods are more robust, and provide excellent results for almost all the performed simulations. Two level-set methods are also identified that give very good results, comparable to those obtained with the VOF methods
Dumon, Antoine. "Réduction dimensionnelle de type PGD pour la résolution des écoulements incompressibles." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00644565.
Full textOuld, Salihi Mohamed Lemine. "Couplage de méthodes numériques en simulation directe d'écoulements incompressibles." Phd thesis, Université Joseph Fourier (Grenoble), 1998. http://tel.archives-ouvertes.fr/tel-00004901.
Full textYassine, Adnan. "Etudes adaptatives et comparatives de certains algorithmes en optimisation : implémentations effectives et applications." Grenoble 1, 1989. http://tel.archives-ouvertes.fr/tel-00332782.
Full textMallem, Khadidja. "Convergence du schéma Marker-and-Cell pour les équations de Navier-Stokes incompressible." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4777/document.
Full textThe Marker-And-Cell (MAC) scheme is a discretization scheme for partial derivative equations on Cartesian meshes, which is very well known in fluid mechanics. Here we are concerned with its mathematical analysis in the case of incompressible flows on two or three dimensional non-uniform Cartesian grids. We first discretize the steady-state incompressible Navier-Stokes equations. We show somea priori estimates that allow to show the existence of a solution to the scheme and some compactness and consistency results. By a passage to the limit on the scheme, we show that the approximate solutions obtained with the MAC scheme converge (up to a subsequence) to a weak solution of the Navier-Stokes equations, thanks to a careful analysis of the nonlinear convection term. Then, we analyze the convergence of the unsteady-case Navier-Stokes equations. The algorithm is implicit in time. We first show that the scheme preserves the stability properties of the continuous problem, which yields, the existence of a solution. Then, invoking compactness arguments and passing to the limit in the scheme, we prove that any sequence of solutions (obtained with a sequence of discretizations the space and time step of which tend to zero) converges up to the extraction of a subsequence to a weak solution of the continuous problem. If we restrict ourselves to the Stokes equations and assume that the initial velocity belongs to H 1, then we obtain estimates on the pressure and prove the convergence of the sequences of approximate pressures. Finally, we extend the analysis of the scheme to incompressible variable density flows. we show the convergence of the scheme
Pluvinage, Franck. "Effets d’interfaces poroélastiques sur la stabilité d’un écoulement incompressible cisaillé." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2036/document.
Full textLocal linear stability of fluid-structure interactions is investigated in uncustomary fields such as swept, unswept and asymptotic suction incompressible boundary layers developing over compliant, porous plates –in the limit of small permeability– or relatistically-modeled incompressible flows over a canopy. Results show that compliance has a stabilizing effect on the 3D most instable hydrodynamic mode but allows hydroelastic modes to emerge, which take the form of travelling wave flutter instabilities ; conversely, permeability tends to damp the latter ones but to destabilize the former ones. Transition on swept wings also locally depends on 3D unviscid instabilities called Crossflow vortices, hardly unstabilized by permeability ; this provides promizing outlets, since permeability has still a strong positive effect on 3D hydroelastic modes. In the field of incompressible parallel boundary layer flows with uniform suction through the wall, most of the existing studies are based on the assumption that plate’s porosity and flexibility are negligible. Nevertheless, proof is given here that permeability (linked to suction) exerts a strong destabilizing effect on the Tollmien-Schlichting most instable mode. Besides, compliance (that can result from lightering measures) reveals to provoke an absolute instability that is likely to contaminate the entire domain. Finally, attention is paid to incompressible flows across a canopy, that are similar to mixing layers. Linear stability of the coherent motions called monami or honami is adressed using a relatistically-computed velocity profile, then compared to the results obtained with the customary piecewise linear velocity profile. Then, drag force variations are taken into account as soon as velocity profile computing. The result is that drag happens to have a destabilizing effect on the flow, instead of the commonly admitted damping effect
Dechamps, Xavier. "Numerical simulation of incompressible magnetohydrodynamic duct and channel flows by a hybrid spectral, finite element solver." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209203.
Full textDoctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Basset, Olivier. "Simulation numérique d'écoulements multi-fluides sur grille de calcul." Phd thesis, École Nationale Supérieure des Mines de Paris, 2006. http://tel.archives-ouvertes.fr/tel-00376484.
Full textOhmi, Kazuo. "Etude de la formation du sillage autour d'un profil en oscillation." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37608517d.
Full textBenmadda, El Mostafa. "Etude de l'ecoulement pulse d'un fluide incompressible dans une conduite elastique : application a la circulation arterielle." Poitiers, 1987. http://www.theses.fr/1987POIT2267.
Full textGhaffari, Dehkharghani Seyed Amin. "Simulations numériques d’écoulements incompressibles interagissant avec un corps déformable : application à la nage des poissons." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4369/document.
Full textWe present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible flows. The temporal and spatial discretizations of the Navier--Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge--Kutta and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems
Alnaga, Ahmed. "Conception optimale du tracé hydraulique des turbines Francis." Grenoble INPG, 2006. http://www.theses.fr/2006INPG0163.
Full textBecause of the higher number of parameters available in the choice of a new design of a turbomachinery or in the improvement of an existing machine. It is today necessary to develop techniques of design and optimization based on mathematical tools allowing the effective integration of the methods and tools developed in dimensioning and in the analysis of the internal flows. These techniques then allow the research of the best compromises leading to an optimized design. My research work enabled me to develop a technique of design and optimization of FRANCIS turbines. This technique is based on a geometry parameterization of ail the elements of the turbine (Spiral-Casing, distributor, runner and draft tube). The flow is then estimated with software of CFD and a function objective defined starting from the performances sought for the machine is evaluated starting from the calculated flow. This function objective is thus a nonlinear function of the parameters which were used for geometry parametrization. Its optimization is then possible while using, for example genetic algorithms. To make an optimization, it is necessary to automate the whole of the process thanks to data-processing scripts, to build the geometry of the turbine starting from the parameters, with a robust grid for the domain calculations, Then Calculation CFD, with the postprocessing which makes it possible to estimate the function objective, are then carried out automatically to supplement a cycle of calculation. I developed such a technique of optimization for ail the part "high pressure" of the turbine. For the runner, a "manual" technique of optimization, much faster than the automatic, was used (5 to 10 iterations to be compared with 150 to 200 calculations for the automatic method). This technique was tested successfully for two examples of turbine Francis, one at slow specific speed (nq=48), the other rapid (nq=81)
Bucci, Michele Alessandro. "Subcritical and supercritical dynamics of incompressible flow over miniaturized roughness elements." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0053/document.
Full textThis thesis aims at highlighting the limits of passive control by usingminiaturized roughness elements. The flow topology induced by the presence ofcylindrical roughness and miniaturized vertex generators has been studied to uncover asymptotic and short time dynamics. Supercritical bifurcations has been investigated by means of global stability analysis. Subcritical bifurcation are induced by transient growth of the energy or receptivity of stable global modes. 3D optimal forcing structures are extracted to figure out the spatial distribution linked to the resonant pulsation. Perturbed direct numerical simulation reveals the pivotal role of the less steady global mode in the non-linear unsteadiness. A detailed analysis of the flowstructures is provided and linked to the involved linear mechanisms. Global feature of the eigenmode are linked to the presence of the separation zone behind the cylindrical roughness. By using miniaturized vortex generators the separation zone is suppressed and no isolated global modes are present. The flow dynamics turns out to be driven not only by roughness Reynolds number and geometrical aspect ratio but also by the ratio between the roughness height and the boundary layer thickens
Benabid, Fatiha. "Modélisation des écoulements turbulents à faibles Reynolds par la méthode des éléments finis." Rouen, INSA, 2002. http://www.theses.fr/2002ISAM0007.
Full textBert, Paul-Frédéric. "Modélisation des écoulements instationnaires dans les turbomachines par une méthode éléments finis." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0218.
Full textScibilia-Cocheril, Marie-Françoise. "Contribution a l'etude des jets parietaux." Paris 6, 1986. http://www.theses.fr/1986PA066539.
Full textOttino, Gabriele. "Two approaches to the study of detached flows." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13786/document.
Full textIn the present work flow separation phenomena are investigated by means of two different approaches. In the first part, 2D unsteady incompressible inviscid flows are studied. An analytical-numerical model, based on the conjunction of a conformal mapping and a point vortex method, is built to define the potential flow field in a doubly connected domain where bodies are characterized by a variation in time of their circulation. In particular, the study of the unsteady flow past a 2-blade Darrieus VAWT is addressed. Until now the study of vortex motions has only been described in doubly-connected flow fields where the circulations have a constant null value. The flow field here analysed has a deep unsteadiness, which determines the circulations varying in time: so a technique is developed to uniquely define the circulations around the bodies. Three conditions result necessary to be imposed: in addition to the two Kutta conditions at the trailing edges, another one has to be imposed in order to respect the Kelvin theorem. With a classical configuration, this machine, experiencing angles of attack of opposite values, gives rise to complex vortex shedding phenomena that reduce its performances and stress its structure. In order to control the flow separation from the blades, an innovative solution is qualitatively investigated which consists of taking blade profiles provided with vortex trapping cavities. Interesting results are obtained, even if in the limit of inviscid flow. In the second part compressible viscous flows are taken into account. A fully Navier-Stokes equations solver is implemented introducing the penalization technique. The idea is to replace the bodies by the fluid, in a way that also into the bodies the penalized Navier-Stokes equations remain valid, respecting the boundary conditions on their contours. Starting from this purpose, the bodies are considered as porous media with a little porosity with respect to that of the external flow, which tends to infinity. This technique allows simple Cartesian meshes to be used, also for very complex geometries like those of industrial interest. The resulting code is tested on different flow fields, both steady and unsteady, both subsonic and supersonic, obtaining always a good agreement with other theoretical and numerical results described in literature
Bellet, Fabien. "Etude asymptotique de la turbulence d'ondes en rotation." Phd thesis, Ecole Centrale de Lyon, 2003. http://tel.archives-ouvertes.fr/tel-00003678.
Full text