Dissertations / Theses on the topic 'Eddy currents testing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Eddy currents testing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pipis, Konstantinos. "Eddy-current testing modeling of axisymmetric pieces with discontinuities along the axis by means of an integral equation approach." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS176/document.
Full textNondestructive Testing (NDT) of parts for industrial applications such as in nuclear and aeronautical industry has led to the need for fast and precise models. Such models are useful for the development of the inspection methods, the optimisation of probes, the evaluation of the Probability of Detection (POD) curves or for the flaw characterisation.This PhD thesis focuses on the eddy-current NDT of layered cylindrical pieces with discontinuities in the z direction and containing a narrow crack. A model for the inspection of such pieces is developed in order to be applied on the inspection of fastener holes met in aeronautics and of steam generator tubes in nuclear sector.The model is based on an integral equation formalism. More precisely, for the calculation of the impedance change one needs to solve an integral equation over the surface of the narrow crack, which is represented by a surface electric dipole distribution. This is the method known as surface integration method (SIM). This formulation requires, on the one hand, the calculation of the electric field in the absence of the flaw, the so-called primary field, and, on the other hand, the Green's function expression corresponding to the geometry of the flawless piece. Both electromagnetic problems are solved by means of the Truncation Region Eigenfunction Expansion (TREE) method. The TREE method is a powerful tool for the solution of electromagnetic problems which uses the rapid decrease of the field in order to truncate the region of interest at a distance where the field is negligible.The model is validated by comparing the results of the coil impedance variation with those obtained by an approach that combines the volume integral method (VIM) with SIM, known as VIM-SIM method, implemented in the commercial software CIVA and the finite element method (FEM) implementation in COMSOL software. Three different configurations have treated. The more general geometry of a conducting half-space with a borehole, a conducting plate with a borehole and a crack and a conducting semi-infinite tube with a crack near the edge. The results of the three models show good agreement between them. The computational time of the SIM model is significantly lower compared to previous models. Furthermore, another advantage of the SIM model is that it provides the possibility of a scan inside the borehole
Chebbi, Houssem. "Méthode des coordonnées curvilignes pour la modélisation électromagnétique des matériaux complexes : application au contrôle non destructif par courants de Foucault des matériaux composites The fast computation of eddy current distribution and probe response in homogenized composite material based on semi-analytical approach Investigation of layer interface model of multi-layer structure using semi-analytical and FEM analysis for eddy current pulsed thermography." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST004.
Full textThis doctoral thesis work, carried out within the Laboratory of Simulation and Modeling for Electromagnetics (LSME) of CEA List, is part of the “NDTonAir” European project funded under the action “H2020-MSCA-ITN -2016- GRANT 722134”. The main goal of the project is the development of a fast and accurate simulation tool for the non-destructive eddy current testing of homogenized composite materials. As an application case, we are particularly interested in the orientation of the fibers on the one hand, and on the other hand, in defects as delamination which are manifested by a local geometrical deformation of the interfaces. The semi-analytical methods existing in the literature, based on Green's Dyad formalism, have been limited so far to multilayered and planar structures. To introduce local variations in geometry at the interfaces, we propose an innovative approach based on a change of coordinates adapted to the profile of the local perturbation. We propose a powerful numerical model based on the covariant formalism of Maxwell's equations. This unifying formalism takes in the anisotropy of specimen and the local deformations of the interfaces. The curvilinear coordinate method is usually used to solve diffraction problems on rough interfaces in the high frequency domain (diffraction on gratings). This thesis work is inspired by Fourier Modal Methods and proposes new tools which have been adapted to the field of eddy currents. The extension of the curvilinear coordinate method to the field of eddy currents non-destructive testing technique of composites constitutes the innovation of this work. Two numerical models have been developed to calculate the interaction of the field emitted by an eddy current probe with a multilayered composite material. The numerical model developed for the evaluation of planar composite exploits the particular structures of sparse matrices to reduce the computation time without limiting the number of modes used for the modal expansion of the field. In the case of the curvilinear profiles of the interfaces, the model makes it possible to treat parallel interfaces and some particular cases of non-parallel profiles. The general case of non-identical profiles presents some limitations which require the development of complementary numerical tools. Finally, several testing configurations were considered and the numerical results produced by the models were compared to finite element simulated data. Some experiments were carried out in foreign partner laboratories to increase our experience on experimental validation
Ingabire, Annick, and Robin Olsson. "Standardization of Eddy Current Testing Calibration for Valve Spring Wire." Thesis, KTH, Industriell produktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232712.
Full textEddy current testing (ECT) has become one of the most extensively used methods to secure theproducts and constructions when non-destructive testing is required. In typical cases of steel wiretesting, the equipment interacts with the tested material and discovers surface defects and, to alimited extent, if the inner structure is differing from the calibration sample. If the product isfound to be outside specification, it is either scrapped or reworked. This master thesis investigatesthe Eddy current testing calibration procedures performed by steel wire manufacturer SuzukiGarphyttan, which is one of the largest producers in the world of valve and transmission springwire for the automotive industry. By the research shown in this thesis, based on the investigationmade in scientific papers and by analyzing data extracted from production, a standardization ofthe calibration procedure is being presented. This is to secure both the testing reliability, andminimizing the risk of scrapping material due to inaccurate settings, for example due toinsufficient signal to noise (S/N) ratio. The focus is on probe-based, rotating testing, in this thesiscalled the circograph, since it is manually calibrated.Some of the findings established in the report: Standard Operating Procedures (SOP) based instructions is being implemented in thecompany's Quality system. This is to decrease the process variations between differentoperators and machines. Suggestions of intervals for values (Phase angle, gain, filter correction and so forth) arepresented. These values are based on collected unique production data from operators andmachines, as well as performed tests. The phase angles used are ranging between specific value intervals, and set by materialchoice in general and choice of frequency in particular. The conductivity and permeability values for oil-tempered wire, as well as penetrationdepth for three different frequencies, are presented. Hardening error cannot be detected in the circograph. Increased carbon content is decreasing conductivity and increasing resistivity, causing thephase to move slightly and decreasing the gap between noise signal and crack signal.
Delabre, Benjamin. "Développement de capteurs flexibles à courants de Foucault : applications à la caractérisation des propriétés électromagnétiques des matériaux et à la détection de défauts par imagerie statique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS415/document.
Full textThe work of this thesis focuses on the development and the optimization of probes for non-destructive testing (NDT) by Eddy Currents (EC). The manuscript presents several achievements of flexible EC probes engraved on Kapton film. The first part describes the evaluation of the electromagnetic parameters (electrical conductivity σ and magnetic permeability µ) of materials typically encountered in NDT by EC. Conventional methods to estimate σ and μ have been investigated and implemented: it is the four-point probe and the permeameter. However, these methods present practical difficulties relating to the surface condition (paint, corrosion,…) and the sample geometry. Two probes have therefore been designed: the first is composed of a transmitting and a receiving coil in order to evaluate the conductivity of purely conductive materials, and the second is composed of a transmitter coil and a GMR for evaluate the magnetic permeability. Design patterns and experimental results are presented in the manuscript. The second part describes the development of a flexible static EC imager. The imager is a multielement probe composed of 576 receivers arranged in a matrix allowing to inspect the surface of a structure under test without moving the probe relative to the sample surface. The inspection by the static imager provides a pixelated image of the surface under the probe. The imager has been optimized to detect a surface defect of at least 1 mm long of given orientation regardless of its location relative to the receiver coils. The design of the probe and its experimental evaluation are given in the manuscript
Adewale, Ibukun Dapo. "Multiple parameters based pulsed eddy current non-destructive testing and evaluation." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2766.
Full textVaronis, Orestes J. "Eddy Current Characterization of Stressed Steel and the Development of a Shaft Torque Eddy Current System." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1221065617.
Full textHughes, Robert Rhys. "High-sensitivity eddy-current testing technology for defect detection in aerospace superalloys." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/79695/.
Full textLi, Xin. "Eddy current techniques for non-destructive testing of carbon fibre reinforced plastic (CFRP)." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/eddy-current-techniques-for-nondestructive-testing-of-carbon-fibre-reinforced-plastic-cfrp(e8aa9a3f-108d-49a4-9f32-2e6118195898).html.
Full textDeng, Xiaodong. "Nondestructive evaluation of thermal sprayed coating by acoustic microscopy and Eddy current testing." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0030/document.
Full textIn the current work, we investigate the nondestructive evaluation of a thermal sprayed coating (Hastelloy C22 Ni-based alloy) on substrate (type 304 austenitic stainless steel) using acoustic microscopy and ECT method. Two models were built for the evaluation of this kind of material: one is for acoustic V(z) measurement and the other is for swept eddy current measurement. The implementation of these two models is used for the evaluation and properties measurement of the thermal sprayed coatings, such as elastic properties, electromagnetic properties. In particular, the main achievements and results are as follows: 1. Acoustic wave propagation in an anisotropic multilayered medium was investigated. The formula for calculating the reflection and transmission coefficients of the multilayered medium on or without a substrate were derived, which is necessary for the modeling of acoustic V(z) measurement of the thermal sprayed coating on substrate. 2. A model was built for the acoustic V(z) measurement of the thermal sprayed coatings on substrate, which can deal with anisotropic multilayered media. Specifically, we used a model of multilayered coatings with graded properties on substrate to calculate the acoustic reflection coefficient of our sample. Treating the thermal sprayed coating, deposited on a 304 steel substrate, as FGMs, we evaluated the coating thickness and the Young’s modulus evolution along the depth of the coating. 3. A model was built for the swept eddy current measurement of the thermal sprayed coatings. Since before the spraying process, the surface of the substrate is usually shot-peened (SP), the coated material is considered as a three-layer medium. The coating thickness and electromagnetic properties of each of the 3 layers were determined by an effective reverse process. 4. The thermal sprayed coated material after exposure in different conditions, i.e., as-received, heat-treated in air and heat-treated in SO2 environment, and after different exposure time was evaluated by the integrity of acoustic microscopy and ECT method. The coating thickness and the electromagnetic properties of the coated material under different conditions were measured
Matarezi, João Carlos. "Aplicação do ensaio de Eddy Current Phased Array em componentes aeroespaciais." Universidade de Taubaté, 2009. http://www.bdtd.unitau.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=329.
Full textIn the area of nondestructive testing, eddy current testing is an electromagnetic technique widely used in aerospace, nuclear and petrochemical industries. This test detects surface and subsurface discontinuities, preventing accidents. Phased array technique has emerged to fill in the gaps, as the enormous time spent implementing the test of large parts or complex geometry and lack of trial registration. This technique, already widely used in others countries, is not used in Brazil, there is no studies proving the economic viability, levels of detectability of discontinuities and reliability of the results. This study aims to compare the conventional technique by eddy current testing with phased array technique, in particular materials and parts used in aeronautics and space sector. Samples of materials and parts were prepared, so that could be applied both techniques and compared the results. A literature survey of the main standards and specifications for this segment was conducted to verify the compatibility of the methods. To meet the objective of this work, seven experiments were performed, varying the material and techniques. After the tests, there was a significant time reduction with the use of phased array technique, costs reduction and increased detectability of discontinuities. Based on the results, it can be said that phased array technique can be used in this segment, with advantages over the conventional technique.
Fletcher, Adam. "Non-destructive testing of the graphite core within an advanced gas-cooled reactor." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/nondestructive-testing-of-the-graphite-core-within-an-advanced-gascooled-reactor(3ca5c904-6860-46b8-8538-4136cb2aedcd).html.
Full textAshigwuike, Evans Chinemezu. "Coupled finite element modelling and transduction analysis of a novel EMAT configuration operating on pipe steel materials." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/10497.
Full textJiang, Zixian. "Some inversion methods applied to non-destructive testings of steam generator via eddy current probe." Palaiseau, Ecole polytechnique, 2014. http://pastel.archives-ouvertes.fr/docs/00/94/36/13/PDF/Thesis.pdf.
Full textThe main objective of this thesis is to propose and test some shape optimization techniques to identify and reconstruct deposits at the shell side of conductive tubes in steam generators using signals from eddy current coils. This problem is motivated by non-destructive testing applications in the nuclear power industry where the deposit clogging the cooling circuit may affect power productivity and structural safety. We consider in a first part an axisymmetric case for which we set the model by establishing a 2-D differential equation describing the eddy current phenomenon, which enable us to simulate the impedance measurements as the observed signals to be used in the inversion. To speed up numerical simulations, we discuss the behavior of the solution of the eddy current problem and build artificial boundary conditions, in particular by explicitly constructing DtN operators, to truncate the domain of the problem. In the deposit reconstruction, we adapt two different methods according to two distinct kinds of deposits. The first kind of deposit has relatively low conductivity (about 1e4 S/m). We apply the shape optimization method which consists in expliciting the signal derivative due to a shape perturbation of the deposit domain and to build the gradient by using the adjoint state with respect to the derivative and the cost functional. While for the second kind of deposit with high conductivity (5. 8e7 S/m) but in the form of thin layer (in micrometers), the previous method encounter a high numerical cost due to the tiny size of the mesh used to model the layer. To overcome this difficulty, we build an adapted asymptotic model by appropriately selecting the the family of effective transmissions conditions on the interface between the deposit and the tube. The name of the asymptotic model is due to the fact that the effective transmissions conditions are derived from the asymptotic expansion of the solution with respect to a small parameter "delta" characterizing the thickness of the thin layer and the conductivity behavior. Then the inverse problem consists in reconstructing the parameters representing the layer thickness of the deposit. For both of the two approaches, we validate numerically the direct and inverse problems. In a second part we complement this work by extending the above methods to the 3-D case for a non-axisymmetric configuration. This is motivated by either non axisymmetric deposits or the existence of non axisymmetric components like support plates of steam generator tubes
Weise, Konstantin [Verfasser], Hannes [Akademischer Betreuer] Töpfer, Stanislaw [Gutachter] Gratkowski, and Ivo [Gutachter] Dolezel. "Advanced modeling in Lorentz force eddy current testing / Konstantin Weise ; Gutachter: Stanislaw Gratkowski, Ivo Dolezel ; Betreuer: Hannes Töpfer." Ilmenau : TU Ilmenau, 2016. http://d-nb.info/1178174875/34.
Full textGustafsson, Joakim. "AUTOMATIC BRAKING DISC ANALYSIS SYSTEM." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-28217.
Full textZec, Mladen [Verfasser], Hannes [Akademischer Betreuer] Töpfer, Oszkar [Gutachter] Biro, and Stanislaw [Gutachter] Gratkowski. "Theory and Numerical Modelling of Lorentz Force Eddy Current Testing / Mladen Zec ; Gutachter: Oszkar Biro, Stanislaw Gratkowski ; Betreuer: Hannes Töpfer." Ilmenau : TU Ilmenau, 2013. http://d-nb.info/1178184412/34.
Full textLOPEZ, LUIZ A. N. M. "Transformadas de Wavelets e logica Fuzzi na inspecao por Eddy-Current em tubos de geradores de vapor de centrais nucleares." reponame:Repositório Institucional do IPEN, 2002. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11012.
Full textMade available in DSpace on 2014-10-09T14:09:44Z (GMT). No. of bitstreams: 1 09057.pdf: 12808764 bytes, checksum: 970b3a8c12068b9ea0e88948bbcda318 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
ALENCAR, DONIZETE A. de. "Avaliacao de integridade de revestimentos de combustiveis de reatores de pesquisa e teste de materiais utilizando o ensaio de correntes parasitas." reponame:Repositório Institucional do IPEN, 2004. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11236.
Full textMade available in DSpace on 2014-10-09T14:03:09Z (GMT). No. of bitstreams: 1 09810.pdf: 7314670 bytes, checksum: 5232e1c4a6554def247601f9a049ba1f (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Carlstedt, Matthias Verfasser], Klaus [Akademischer Betreuer] [Zimmermann, Hannes [Gutachter] Töpfer, and Hendrik [Gutachter] Rothe. "A contribution to the experimental validation in Lorentz force eddy current testing / Matthias Carlstedt ; Gutachter: Hannes Töpfer, Hendrik Rothe ; Betreuer: Klaus Zimmermann." Ilmenau : TU Ilmenau, 2017. http://d-nb.info/1178142191/34.
Full textCarlstedt, Matthias [Verfasser], Klaus [Akademischer Betreuer] Zimmermann, Hannes [Gutachter] Töpfer, and Hendrik [Gutachter] Rothe. "A contribution to the experimental validation in Lorentz force eddy current testing / Matthias Carlstedt ; Gutachter: Hannes Töpfer, Hendrik Rothe ; Betreuer: Klaus Zimmermann." Ilmenau : TU Ilmenau, 2017. http://d-nb.info/1178142191/34.
Full textFORMIGONI, ANDRE L. "Análise de defeitos em tubos de geradores de vapor de usinas nucleares utilizando a transformada de Hilbert-Huang em sinais de inspeção por correntes parasitas." reponame:Repositório Institucional do IPEN, 2012. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10135.
Full textMade available in DSpace on 2014-10-09T14:00:55Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Dahia, Abla. "Contribution à la caractérisation non destructive de matériaux magnétiques sous contraintes par méthode électromagnétique." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112391.
Full textThe non-destructive evaluation (NDE) technique by eddy current (EC) is a conceivable solution to characterize the stress state in magnetic materials. The approach relies on the high sensitivity of eddy current (EC) signals to the magnetic permeability, itself highly dependent on stress. The EC technique is potentially attractive compared to other NDE methods such as X-ray diffraction, due to its simple practical implementation, easiness of automation and low cost. In order to allow eventually the inverse identification of stress states in magnetic materials, a predictive model for the evolution of an EC probe signal as a function of stress has been developed during this thesis. The modelling is done in two steps. First, the effect of stress on the magnetic permeability is described using a simplified version of a multiscale model for magneto-elastic behaviour. This approach allows describing the effect of multiaxial mechanical loadings on the magnetic behaviour of materials including induced anisotropy effects. Then, the EC probe signal is determined as a function of the anisotropic permeability of the stressed material using the finite element method (FEM). In order to validate the modelling approach, an experimental setup for magnetic characterisation and EC measurements was developed. The measurements show a good qualitative accordance with the modelling results, in absence of any calibration. A calibration procedure based on a measurement under stress is necessary to obtain a quantitative agreement. The proposed model can be used to design efficient EC probes and to define optimal operating conditions to evaluate stress in magnetic materials. The development of inversion procedures, however, remains a challenge
MESQUITA, ROBERTO N. de. "Classificação de defeitos em tubos de gerador de vapor de plantas nucleares utilizando mapas auto-organizáveis." reponame:Repositório Institucional do IPEN, 2002. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11640.
Full textMade available in DSpace on 2014-10-09T14:09:27Z (GMT). No. of bitstreams: 1 12432.pdf: 12974191 bytes, checksum: ddfc093df6afa20374e446cb5c994b88 (MD5)
Tese (Doutoramento)
IPEN/T
Escola Politecnica, Universidade de São Paulo - POLI/USP
Uhlig, Robert Peter [Verfasser], Klaus [Akademischer Betreuer] Zimmermann, Hendrik [Akademischer Betreuer] Rothe, and Hannes [Akademischer Betreuer] Töpfer. "Identification of Material Defects in Metallic Materials Using Lorentz Force Eddy Current Testing / Robert Peter Uhlig. Gutachter: Hendrik Rothe ; Hannes Töpfer. Betreuer: Klaus Zimmermann." Ilmenau : Universitätsbibliothek Ilmenau, 2013. http://d-nb.info/1034527754/34.
Full textPetković, Bojana [Verfasser], Jens [Akademischer Betreuer] Haueisen, Hannes [Gutachter] Töpfer, and Rienzo Luca [Gutachter] Di. "Assessment of Linear Inverse Problems in Magnetocardiography and Lorentz Force Eddy Current Testing / Bojana Petkovic ; Gutachter: Hannes Töpfer, Luca Di Rienzo ; Betreuer: Jens Haueisen." Ilmenau : TU Ilmenau, 2014. http://d-nb.info/1178183599/34.
Full textWestin, Tommy. "Induktiv provning av ferritiskt rostfritt stå." Thesis, Högskolan Dalarna, Materialvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:du-10039.
Full textZaidi, Houda. "Méthodologies pour la modélisation des couches fines et du déplacement en contrôle non destructif par courants de Foucault : application aux capteurs souples." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00776931.
Full textAlongi, Riccardo. "Controlli non distruttivi con correnti parassite e magnetoscopia su Cessna F172E." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textBardl, Georg. "Entwicklung eines Verfahrens zur zerstörungsfreien Messung der Faserorientierung in mehrlagigen 3D-Carbonfaserpreforms und CFK mit robotergeführter Hochfrequenz-Wirbelstromprüftechnik." Verlag Dr. Hut GmbH, 2018. https://tud.qucosa.de/id/qucosa%3A33892.
Full textThe superior strength and stiffness of carbon fiber reinforced plastics (CFRP) results from an exact adaptation of the component’s fiber orientation to the external loads during service. Quality control, as well as development and optimization of the production processes, thus require a method to non-destructively measure the fiber orientation in 3D preforms (draped multilayer stacks made of dry carbon fibers) and CFRP. Currently, this fiber orientation measurement is done by optical or X-ray computer tomography methods, which are limited, however to the uppermost, optical visible fabric layer (optical methods) or to small sample sizes (X-ray computer tomography). Therefore, this thesis develops a method to non-destructively measure the 3D fiber orientation in multi-layer 3D preforms and CFRP. The starting point for this development is the technique of high-frequency eddy current testing, which allows an imaging of the individual carbon yarn courses in multiple stacked textile layers. In order to develop a fully-automated fiber orientation measure-ment process with this technique, in a first step a robot path planning is developed that allows the complete scanning of a complexly-shaped 3D surface with an eddy current sensor. From the resulting 3D eddy current image of the surface, the local fiber orientation of the individual layers is measured by local development (flattening) of the surface and a Fourier transformation. The uncertainty of measurement for this method is quantified from experiments with 2-, 4-, 6- and 8-layer 2D non-crimp fabric stacks. The influence of the material parameters (type of fabric) as well as of the measurement parameters (sensor type, coil diameter, sensor orientation, measure-ment frequency) is evaluated. Recommendations for the choice of sensor and measurement frequency are derived. The developed measurement method is subsequently validated with two different 3D application cases. As a first application case, a four-layer, complexly-shaped CFRP component is analyzed. It is shown how the developed measurement method can be used to non-destructively measure the fiber orientation of all four layers. Different specimen of the same CFRP component are compared regarding fiber orientation. The second application case is an automated draping process to a hemispherical shape, for which one-, two- and four-layer textile fabrics are compared regarding the fiber orientation after draping, in order to better understand the forming properties of multi-layer structures and derive recommendations for the choice of textile. In the final step, software interfaces are developed to integrate the fiber orientation measurement into the CFRP design and development process. It is integrated with a draping simulation, to allow a quantitative comparison of the predicted and the measured fiber orientations. Furthermore, it is shown how the measured fiber orientation of the individual fabric layers can be used for the parametrization of finite element structural simulations. The developed measurement method thus lays the base for a substantiated strength and stiffness analysis based on the component’s actual as-is fiber orientation after the draping process.:1 Einleitung 2 Grenzen bestehender Verfahren zur Faserorientierungsmessung bei der CFK-Herstellung 3 Stand der Technik zur Wirbelstromprüfung von Carbonfasermaterialien 4 Entwicklung einer Roboter-Bahnplanung zur vollständigen Erfassung einer 3D-Oberfläche 5 Entwicklung einer Faserorientierungsmessung aus 3D-Wirbelstromdaten 6 Experimentelle Untersuchung der Messunsicherheit an 2D-Gelegestapeln 7 Verfahrenserprobung an mehrlagigen 3D-Preforms und CFK 8 Integration der Faserorientierungsmessung in den CFK-Entwicklungsprozess 9 Zusammenfassung und Ausblick
Formigoni, André Luiz. "Análise de defeitos em tubos de geradores de vapor de usinas nucleares utilizando a transformada de Hilbert-Huang em sinais de inspeção por correntes parasitas." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/85/85133/tde-24082012-134522/.
Full textThe nuclear power plant steam generator tubes are subjected to different levels of stress and loading at high temperatures, reducing its lifetime due to the development of defects and corrosion. The Eddy Current Testing (ECT) is a nondestructive testing used to diagnose defects of corrosion and discontinuities in the inner and outer surface of heat exchanger tubes. These tubes are subject to failure by different mechanisms of chemical and mechanical degradation such as fatigue and stress corrosion crack. The ECT signals are affected by different noises making the analysis a difficult task to the inspector. This dissertation presents the results of the main characteristics from the ECT signals using the Hilbert-Huang Transform (HHT) as an alternative method for the processing and signal analysis. The Hilbert-Huang Transform has its name given by the American National Aeronautics and Space Administration, NASA, as the result of Empirical Mode Decomposition (EMD) and the Hilbert Spectral Analysis (HSA) methods. The Eddy Current signals are transient, nonstationary and nonlinear. The Hilbert-Huang Transform applied in this work provided two alternative proceedings in signal processing, one in signal pre-processing acting as noise filter (De-noising) and another as signal analysis, which identifies the characteristics of signal time-frequency-energy.
Ao, Wai Kei. "Electromagnetic damping for control of vibration in civil structures." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/31145.
Full textGäbler, Simone. "Untersuchung des Anwendungspotenzials der Hochfrequenzwirbelstrommesstechnik zur Charakterisierung dielektrischer Eigenschaften von Epoxidharzen und Faserverbundmaterialien." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-230419.
Full textMiorelli, Roberto. "Modélisation du contrôle par méthodes électromagnétiques de défauts réalistes de type fissuration." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112302.
Full textNon Destructive Testing (NDT) with Eddy Current (EC) techniques are is widely employed in several industrial sectors for cracks detection. Numerical simulation tools are largely used in order to design sensors, understand the signals collected during the measurements process and to provide a support in expertise. This work has been accomplished inside CEA LIST in collaboration with L2S-Supélec. It is also a part of the CIVAMONT 2012 project, with the active participation of MEANDER laboratory members from University of Western Macedonia (Greece) and Technological Educational Institute of Western Macedonia (Greece). The main goal of our work has consisted in to developing a semi-analytical modeling approach, devoted to Eddy Current Testing (ECT) of multiple narrow cracks in planar multilayered structures. From the numerical point of view, simulation of multiple narrow cracks problems is a difficult task for classical methods, like for example the Volume Integral Method (VIM) or the Finite Element Method (FEM). The main issues reside in geometrical characteristics of narrow crack themselves. Indeed, a narrow crack presents a small opening as well as complex profile and a complex shape, with possible electrical contacts inside it. All these features increase enormously, with classical methods, the difficulty to simulate in rapid and/or precise way problems involving narrow cracks. We have tackled the narrow crack issue by developing a Boundary Element Method (BEM) dedicated to ECT signal modeling, starting from an approach presented in literature. Then, we have extended its capability to more realistic and challenging cases, such as the ECT of multilayered structures affected by complex narrow cracks. The principle of this method is to introduce additional assumptions, leading to the description of the crack perturbation as the effect of a dipole distribution, oriented toward the crack opening. Numerically speaking, such a description makes it possible to largely reduce, compared to the VIM, the number of unknowns that one needs to properly solve the problem. A particular attention has been devoted to the analytical formulation, in order to achieve generality, accuracy and efficiency. A precise derivation of the spectral-domain Dyadic Green Function (DGF) associated to our problem has first been developed. In this work, analytical expressions of the spectral-domain DGF have been obtained via the Discrete Complex Image Method (DCIM). Then, an accurate approximation of the spectral-domain DGF has been achieved via the Generalized Pencil of Function (GPOF) method. Therefore, the closed-form of the spectral-domain DGF, expressed under the form of Sommerfeld Integrals (SIs), has been calculated analytically. Finally, the integral equation(s) associate to the electromagnetic problem is solved by applying the Method of Moments (MoM).Validations with respect to experiments and commercial simulation software have been performed to test the model. A large set of configurations have been chosen in order to address realistic configurations involving multiple narrow cracks embedded in different layers of a given multilayered structure. The model proposed has shown its promising performance in terms of computational time compared with the VIM and the FEM. Moreover, a very good agreement with respect to the experimental data has always been observed. In the last and very recent part of our work, a coupled approach between BEM and VIM has been studied and developed in order to address, in a efficient way, problems where narrow cracks appear in the vicinity of with volumetric flaws (for example the simulation of fastener sites inspections). Comparisons with experimental measures have shown that the coupled approach is capable to achieve, overall, better results than the VIM and saves a lot of computational time
Taram, Abdoulaye. "Détection et caractérisation de défauts sous-jacents à la surface dans des bandes d’acier décapées par thermographie infrarouge stimulée." Thesis, Reims, 2019. http://www.theses.fr/2019REIMS008.
Full textIn today’s competitive market, the quality control is vital in steelmaking industry where high quality product must pair with cost reduction. This control can be described as a system used for verifying and maintaining a desired level of quality. It implies careful inspection and corrective action if needed. The inspection can be performed with several Non-Destructive Testing (NDT) techniques to detect defects. Since the detection at the earliest possible stage is vital for the reduction of the quality cost, the ultrasonic systems have been used at pickling stage to detect internal defects without slowing down the production paces. However, there is still a need of a sensitive NDT technique to detect near subsurface defects which may turn into surface defects at downstream stages or even worse, at the customers during forming.Amongst the common NDT techniques, Active Infrared Thermography (AIRT) was identified as having a great potential for the detection of near surface internal defects. As an attractive NDT technique, AIRT has remarkable: it is contactless, relatively fast and versatile. Its principle is relatively simple: it consists in heating the sample and monitoring the surface response with an Infrared (IR) camera. The presence of any subsurface defect appears as specific thermal patterns in the recorded thermal sequence. Despite being an attractive technique, AIRT is not deployed yet to detect subsurface defects in steel strip at pickling stage on an industrial production line which is the innovative part of this thesis.The work provided in the thesis investigates the theoretical and experimental limits of AIRT for the detection of subsurface defects in steel samples. First, the investigation led to the development of laboratory tools capable of detecting near subsurface defects in static as well as moving samples. These developments are supported by 3D simulations which allowed evaluating the potential of the technique; gaining comprehensive knowledge; getting guidance for and/or optimize experimental designs. Then, the knowledge developed in laboratory has allowed outlining that the technique can be implemented directly in production line; especially at pickling stage where the strip travels at typically 5 m/s. Therefore, an inspection system was built and successfully implemented for the inspection of a reduced width of the moving strip in industrial environment. The thesis presents encouraging results and some keys identified points that should be considered for the design of full-integrated industrial AIRT inspection system
Heideklang, René. "Data Fusion for Multi-Sensor Nondestructive Detection of Surface Cracks in Ferromagnetic Materials." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19586.
Full textFatigue cracking is a dangerous and cost-intensive phenomenon that requires early detection. But at high test sensitivity, the abundance of false indications limits the reliability of conventional materials testing. This thesis exploits the diversity of physical principles that different nondestructive surface inspection methods offer, by applying data fusion techniques to increase the reliability of defect detection. The first main contribution are novel approaches for the fusion of NDT images. These surface scans are obtained from state-of-the-art inspection procedures in Eddy Current Testing, Thermal Testing and Magnetic Flux Leakage Testing. The implemented image fusion strategy demonstrates that simple algebraic fusion rules are sufficient for high performance, given adequate signal normalization. Data fusion reduces the rate of false positives is reduced by a factor of six over the best individual sensor at a 10 μm deep groove. Moreover, the utility of state-of-the-art image representations, like the Shearlet domain, are explored. However, the theoretical advantages of such directional transforms are not attained in practice with the given data. Nevertheless, the benefit of fusion over single-sensor inspection is confirmed a second time. Furthermore, this work proposes novel techniques for fusion at a high level of signal abstraction. A kernel-based approach is introduced to integrate spatially scattered detection hypotheses. This method explicitly deals with registration errors that are unavoidable in practice. Surface discontinuities as shallow as 30 μm are reliably found by fusion, whereas the best individual sensor requires depths of 40–50 μm for successful detection. The experiment is replicated on a similar second test specimen. Practical guidelines are given at the end of the thesis, and the need for a data sharing initiative is stressed to promote future research on this topic.
Caire, François. "Les équations de Maxwell covariantes pour le calcul rapide des champs diffractés par des conducteurs complexes. Application au Contrôle Non Destructif par courants de Foucault." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112284/document.
Full textThis PhD work concerns the development of fast numerical tools, dedicated to the computation of the electromagnetic interaction between a low frequency 3D current source and a complex conductor, presenting rough interfaces and/or conductivity (and/or permeability) variations. The main application is the simulation of the Eddy Current non-destructive testing process applied to complex specimens. Indeed, the existing semi-analytical models currently available in the CIVA simulation platform are limited to canonical geometries. The method we propose here is based on the covariant Maxwell equations, which allow us to consider the physical equations and relationships in a non-orthogonal coordinate system depending on the geometry of the specimen. Historically, this method (cf. C-method) has been developed in the framework of optical applications, particularly for the characterization of diffraction gratings. Here, we transpose this formalism into the quasi-static regime and we thus develop an innovative formulation of the Second Order Vector Potential formalism, widely used for the computation of the quasi-static fields in canonical geometries. Then, we determine numerically a set of modal solutions of the source-free Maxwell equations in the coordinate system introduced, and this allows us to represent the unknown fields as modal expansions in source-free domains. Then, the coefficients of these expansions are computed by introducing the source fields and enforcing the boundary conditions that the total fields must verify at the interfaces between media. In order to tackle the case of a layered conductor presenting rough interfaces, the generalized SOVP formalism is coupled with a recursive algorithm called the S-matrices. On the other hand, the application case of a complex shape specimen with depth-varying physical properties is treated by coupling the modal method we developed with a high-order numerical method: pseudo-spectral method. The validation of these codes is carried out numerically by comparison with a commercial finite element software in some particular configurations. Besides, the homogeneous case is also validated by comparison with experimental data
Baradi, Divyank. "Control strategies and inspection methods for welded part." Thesis, Karlstads universitet, Avdelningen för maskin- och materialteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-16383.
Full textWeight reduction by improved weld quality (WIQ)
Larsson, Niklas. "Kartläggning av OFP och defektrelaterade parametrar : Inriktning på termisk utmattning." Thesis, Karlstad University, Division for Engineering Sciences, Physics and Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-447.
Full textI både kvalitets- och kontrollarbete finns det behov att kunskapsmässigt komma så nära verkligheten som möjligt vid fastställande av defektparametrar för oförstörande provning (OFP). Orsaken är att olika acceptanskrav och bedömningsgränser är svåra att klarlägga när man inte kan förlita sig på att uppgifter är realistiska. I projektet har olika erfarenheter använts för att få en bättre helhetsbild i området för defektparametrar och oförstörande provning.
Denna rapport redovisar den inledande delen av forskning och utvecklingsprojektet PLANT 2, där olika defektparametrar kartlagts och en teoretisk bedömning utförts med avseende på hur signalsvaret påverkas för OFP-metoderna virvelström (ET) och ultraljudsprovning (UT) i form av puls-eko (PE) och ”time-of-flight-diffraction” (TOFD).
Definitionen av redovisade defektparametrar följer i stort SKI-rapport 95:70 [1]. Defektparametrar i denna rapport redovisas i bilaga 1.
Vid bedömningen av defektparametrarnas inverkan på OFP-tekniker, har drift¬inducerande defekter och tillverkningsdefekter hanterats separat. För de driftinducerande defekterna delades bedömningen upp i en generell och en specifik bedömning. De defektparametrar som bedöms specifikt och klassats att påverka signalsvaret betydligt bör vara av mest intresse i nästkommande etapp. Följande defektparametrar bedömdes påverka signalsvaret betydligt:
• Form i ytan, antal sprickor och avstånd i gatstensmönster
(vid termisk ut¬mattning)
• Form i djupled
• Sprickbredd vid sprickspets och sprickspetsradie
För tillverkningsdefekter bedömdes defektparametrarnas form i djupled och geometri påverka signalsvaret betydligt för defekttyperna slagg och bindfel.
Vid utvärdering av UT-PE och UT-TOFD teknikerna överensstämde resultatet helt med den teoretiska bedömningen. För ET-tekniken stämde endast en av tre defektparametrar överens med den teoretiska bedömningen.
In quality control of defect parameters for Non-Destructive Testing (NDT) it’s essential to have good knowledge about the defects. The reason is that different acceptance criteria and assessments must be based on defects that correspond to real defects. In this project different experience has been analyzed to get a better overview between defect parameters and non-destructive testing.
This report shows the beginning of the research & development project PLANT 2. There are different flaw parameters that have been mapped and a theoretical assessment has been performed with regard to how the signal response is influenced by the NDT techniques eddy current, ultrasonic pulse echo and ultrasonic time-of-flight-diffraction.
The definition of the reported flaw parameters does in general follow the one presented in SKI-report 95:70 [1]. The actual flaw parameters in this report are presented in appendix 1.
In the assessment of the influences on the NDT techniques with regard to flaw parameters, service-induced flaws and manufactured flaws have been separated in to two categories. The service-induced flaws have further on been separated in a general and a specific assessment. Those flaw parameters that have been assessed to be specific and classified to influence the signal response considerably should be the ones of most interest in future studies. The following flaw parameters were assessed to affect the signal response considerably:
• Macroscopic shape in the surface direction, number of cracks
and cobblestone stone pattern distance (for thermal fatigue)
• Macroscopic shape in the through thickness direction
• Crack width at the crack tip and the crack tip radius
For flaws caused by the manufacturing process, type slag and lack of fusion, the flaw parameters “Macroscopic shape in the through thickness direction” and “the geometry” were influenced by the signal response considerably.
In the evaluation of signal response with the UT pulse echo and UT TOFD techniques, the result corresponded to the theoretical assessment. For the eddy current technique only one of three flaw parameters corresponded to the theoretical assessment.
Ratsakou, Almpion. "Multi-physical modeling of thermographic inspection methods and fast imaging Fast models dedicated to simulation of eddy current thermography Fast simulation approach dedicated to infrared thermographic inspection of delaminated planar pieces Model based characterisation of delamination by means of thermographic inspection." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS002.
Full textThermographic inspection is a popular nondestructive testing (NdT) technique that provides images of temperature distribution over large areas at surfaces of tested workpieces. Detecting delaminations between metallic layers is the matter here. Simulation of these inspections indeed helps to complement experimental studies, evaluate performance in terms of detection and support model-based algorithms. A semi-analytical model based on a truncated region eigenfunction expansion for simulation of thermographic inspection is focused onto. The problem is solved in the Laplace domain w.r.t time, and the temperature distribution approximated by expanding it on a tensor product basis. Considered sources are lamps providing thermal excitation but may also be eddy current sources (leading to a coupled electromagnetic and heat problem). The description of the delaminations as thin air gaps between the workpiece layers proves to be equivalent with introduction of a surface resistance to the heat flow, enabling treatment via the applied modal approach without additional discretisation. Complementary computations by industry (Finite Element Method) and in-house (Finite Integration Technique) codes confirm the accuracy of the developments. Then, much attention is put on imaging and detection. A two-step procedure is devised, first denoising of raw signals and detection of any possible defect using a thermographic signal reconstruction leading to high spatial and temporal resolution in the transverse plane, completed by proper edge detection, second an iterative optimization being employed, with results of the first step used for regularization of a least-square scheme to characterize thicknesses and depths. All the above is illustrated by comprehensive numerical simulations in conditions close to practice
Christophe-Argenvillier, Alexandra. "Méthode des éléments finis avec joints en recouvrement non-conforme de maillages : application au contrôle non destructif par courants de Foucault." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112341/document.
Full textThis thesis aims at studying and developing a domain decomposition method with overlapping subdomains for the modeling in eddy current (EC) non-Destructive testing (NDT). The idea behind such an approach is the possibility to avoid the systematic remeshes of the whole studying domain when some of its components are modified (for example the displacement of the coil above the conductor). More precisely, this work aims at designing a domain decomposition method with overlapping based on the theory of the mortar finite element method. In addition to remove the constraint owing to an coupling interface which is invariant with the displacement, the technique described, in this work, realizes reciprocal transfers of information between subdomains. This study presents the theoretical and numerical results attached to the magnetodynamic simulation. Moreover, the interest of such a method is illustrated by applications in some 2D modeling cases of EC NDT
Harmouche, Jinane. "Statistical Incipient Fault Detection and Diagnosis with Kullback-Leibler Divergence : from Theory to Applications." Thesis, Supélec, 2014. http://www.theses.fr/2014SUPL0022/document.
Full textThis phD dissertation deals with the detection and diagnosis of incipient faults in engineering and industrial systems by non-parametric statistical approaches. An incipient fault is supposed to provoke an abnormal change in the measurements of the system variables. However, this change is imperceptible and also unpredictable due to the large signal-to-fault ratio and the low fault-to-noise ratio characterizing the incipient fault. The detection and identification of a global change require a ’global’ approach that takes into account the total faults signature. In this context, the Kullback-Leibler divergence is considered to be a ’global’ fault indicator, which is recommended sensitive to abnormal small variations hidden in noise. A ’global’ spectral analysis approach is also proposed for the diagnosis of faults with a frequency signature. The ’global’ statistical approach is proved on two application studies. The first one concerns the detection and characterization of minor cracks in conductive structures. The second application concerns the diagnosis of bearing faults in electrical rotating machines. In addition, the fault estimation problem is addressed in this work. A theoretical study is conducted to obtain an analytical model of the KL divergence, from which an estimate of the amplitude of the incipient fault is derived
Mercklé, Jean. "Stratégies de détection de rupture de modèle appliquées à la recherche et à la localisation des défauts sur des produits sidérurgiques." Nancy 1, 1988. http://www.theses.fr/1988NAN10047.
Full textOdložilík, Daniel. "Zařízení pro testování diferenciálů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445172.
Full textHetti, Mimi. "Synthesis and Characterization of Polymeric Magnetic Nanocomposites for Damage-Free Structural Health Monitoring of High Performance Composites." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-211082.
Full textZorni, Chiara. "Contrôle non destructif par courants de Foucault de milieux ferromagnétiques : de l’expérience au modèle d’interaction." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112031/document.
Full textThe aim of this work is the eddy-current testing (ECT) of ferromagnetic materials within magnetic sensors, such as Giant Magneto-Resistances (GMR). Two complementary aspects have been studied. Experimental measurements have been carried out in order to quantify and minimize the noise coming from the materials structure and residual magnetization. On the other hand, a model has been developed in order to be able to simulate the electromagnetic interactions between a ferromagnetic specimen and the EC probe. The GMR sensors are characterized by high sensitivity at low frequency, large dynamic range and are relatively easy to implement. The studies carried out during this thesis allowed us to identify and analyse the “ghost signals” due to magnetic materials. In order to minimize the noise coming from the materials structure, a linear multi-frequencies combination of experimental signals has been employed successfully and the detection of buried flaws has been improved. The residual magnetization in ferromagnetic materials has been experimentally analyzed and an electronic system has been realized to fix the polarisation point of the sensor in the linear response zone of the GMR. Thus, disturbances caused by residual magnetization are successfully reduced. Beside, in order to develop simulation tools aiming at improving the understanding of experimental signals and optimizing the performances of ECT procedures, a model has been developed to simulate the ECT of planar, stratified and ferromagnetic materials affected with multiple flaws. CEA developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. Following a previous work carried out at the laboratory and already integrated in the simulation platform CIVA, developed at CEA-LIST, the new model extends CIVA functionalities to the ferromagnetic planar case. Simulation results are obtained through the application of the Volume Integral Method (VIM) which involves the dyadic Green’s functions. Two coupled integral equations have to be solved and the numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments (MoM). Finally, the probe response is calculated by application of the Lorentz reciprocity theorem. A collaboration with the University of Cassino (Italy) and Laboratoire de Génie Electrique de Paris (France) allowed us to compare the three models on experimental and numerical results from literature. Results showed a good agreement between the three models and the model stability has been analyzed
Miller, Dominique. "Contribution à l'étude et à la réalisation d'une sonde multi-éléments à courants de Foucault et de l'instrumentation associée, destinée à la détection et la reconstruction tomographique de défauts dans les tubes de générateurs de vapeur." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0039.
Full textMachado, Miguel Araújo. "Development of Non-Destructive Testing by Eddy Currents for Highly Demanding Engineering Applications." Doctoral thesis, 2018. http://hdl.handle.net/10362/58443.
Full textRodrigues, Diogo Farias Gonçalves Alexandre. "Plasma nitriding of AA2011 alloy and surface characterization by NDT techniques." Master's thesis, 2015. http://hdl.handle.net/10362/16443.
Full textLiu, Yin-Hsiung, and 劉尹雄. "Design and Application of a Pulsed Eddy-Current Testing System." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/83071414621002248163.
Full text國立成功大學
電機工程學系
87
We designed and implemented a PC-based pulsed eddy-current testing system that can be used for nondestructive testing (NDT). This system is controlled witha computer and micro-controller. We carried out the system with pulsed eddy current that contains a broad band of frequencies. This broad band provides information on structure properties at a range of depths with just one pulse. The advantage of this system is that it is much faster than the conventional eddy current testing systems. It records the transient current in a sample and is excited by a step-function change in voltage. Signals are digitized with 12-bit resolution at a sampling rate of 1 MHz, and the excitation is repeated at a rate of 1 kHz. The pulsed eddy current instrument can be used to measure the thickness of coatings, inspect hidden corrosion, and detect the conductivity or permeability of metals.
Jeng, Jin-Jhy, and 鄭錦智. "Study on Reducing Evaluation Error of Remote Field Eddy Current Testing." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/36350269511788028889.
Full text