To see the other types of publications on this topic, follow the link: EDPs elliptiques non linéaires.

Dissertations / Theses on the topic 'EDPs elliptiques non linéaires'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'EDPs elliptiques non linéaires.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Blanc, Xavier. "Equations aux dérivés partielles elliptiques non linéaires. Applications à la modélisation des solides et aux condensats de Bose-Einstein." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00136839.

Full text
Abstract:
Les travaux présentés dans ce mémoire portent sur des problèmes d'équations ou de systèmes d'équations aux dérivées partielles (EDPs) elliptiques non linéaires. Ils apparaissent comme des équations d'Euler-Lagrange de problèmes de minimisation sous contrainte avec perte de compacité à l'infini. Ces problèmes sont de plus tous liés à des modèles de physique : strucure électronique des solides et (hyper)-élasticité non linéaire (chapitres 1,2 et 3 d'une part, et condensats de Bose-Einstein (chapitre 4) d'autre part.<br /><br />La base de travail des chapitres 1, 2 et 3 est le modèle de Thomas-Fermi-von Weizsäcker (TFW), ou certaines de ses extensions. Dans ce modèle, un système moléculaire est décrit par N noyaux, qui sont des particules classiques ponctuelles, et N électrons, qui sont des particules quantiques définies par leur densité collective. L'énergie TFW, qui dépend des positions des noyaux et de la densité électronique, est minimisée par rapport à cette dernière. Ce modèle est défini au départ pour un nombre fini de noyaux et d'électrons, et sa définition pour une infinité de particules est un problème non trivial. Ce problème, dit de limite thermodynamique, consiste à faire tendre conjointement le nombre de noyaux et d'électrons vers l'infini, en imposant une certaine géométrie (typiquement la périodicité) aux noyaux, et à obtenir la convergence de la densité d'électrons, ainsi que de l'énergie moyenne du système. Ce problème a été résolu dans le cas périodique par I. Catto, C. Le Bris et P.-L. Lions.<br /><br />Le chapitre 1 aborde le problème de la justification de la périodicité supposée dans l'ouvrage de Catto, Le Bris et Lions. Dans la section 1.3, on considère l'énergie TFW d'un cristal comme une fonction du réseau périodique définissant la position des noyaux, et on étudie l'existence d'un minimiseur. Un préliminaire à ce travail, présenté dans la section 1.2, est l'étude des cas dégénérés de réseaux périodiques, à savoir le cas où les noyaux sont répartis périodiquement sur un plan d'une part, et celui où les noyaux sont répartis périodiquement sur une droite d'autre part.<br /><br />Les sections 1.4 et 1.5 abordent le problème sans supposer la périodicité : on minimise l'énergie TFW par rapport à la densité électronque et par rapport à la position des noyaux, à N fixé, et on démontre alors que quand N tend vers l'infini, la configuration minimisante devient périodique. Ce problème est traité théoriquement pour le cas 1D (section 1.4), puis une étude numérique est faite sur le cas 2D (section 1.5), indiquant que le résultat est aussi vrai dans ce cas.<br /><br />Bien que la périodicité soit une bonne approximation pour les cristaux simples, il arrive souvent (dans le cas des polycristaux, des solides amorphes ou de solides cristallins présentant des dislocations par exemple) que cette hypothèse ne soit pas valable. C'est pourquoi on étudie dans le chapitre 2 les problèmes de définition du modèle TFW, pour des solides dont les positions de noyaux ne sont pas périodiques. Un cas déterministe est présenté dans la section 2.1.1, où l'on construit le cadre fonctionnel nécessaire à la définition du modèle, puis on résout le problème de limite thermodynamique associé. La section 2.1.2 présente un cas où les positions des noyaux sont stochastiques. Là aussi, on commence par construire un cadre stochastique (stationnaire ergodique) nécessaire, puis on résout le problème de limite thermodynamique correspondant.<br /><br />Outre ces problèmes de limite thermodynamique, qui font le lien entre un modèle moléculaire et le modèle de théorie des solides correspondant, on étudie dans la section 2.2 des modèles (dits "orbital-free'') plus élaborés utilisés dans certains codes de chimie, sans chercher à les justifier par limite thermodynamique. Cette étude montre que le problème variationnel est mal posé, et que le "minimum'' calculé est un minimum local vraisemblablement dépendant de la discrétisation utilisée et du point de départ de l'algorithme de minimisation.<br /><br />Le modèle TFW est un modèle microscopique. Il est cependant naturel, après l'avoir défini pour des solides (cristallins ou non), d'étudier le lien de ce modèle avec des modèles d'élasticité non linéaire. Ce problème est évoqué dans le chapitre 3, où on considère l'énergie d'un système atomique déformé par un diffémorphisme u, et on passe à la limite quand la distance inter-atomique tend vers 0. On obtient ainsi une énergie hyperélastique qui a la forme de celles utilisées en mécanique. La section 3.1 présente ce travail dans un cadre déterministe, la section 3.2 le même type de résultat dans le cas où les positions des noyaux sont stochastiques.<br /><br />La section 3.3 présente une étude similaire, mais dans le cas d'un joint collé, c'est-à-dire d'une interface d'épaisseur nulle au niveau macroscopique (mais infinie au niveau microscopique). Ce cas est particulier car il doit autoriser un saut de la déformation à travers l'interface, ce qui lui impose une régularité moindre que précédemment.<br /><br />Dans le même esprit, la section 3.4 présente l'analyse du couplage entre un modèle de mécanique des milieux continus et le modèle discret correspondant. L'idée est ici d'étudier la déformation d'un solide qui est régulière dans une partie du solide, mais présente des singularités. Là où la déformation est régulière, on utilise un modèle d'élasticité standard, et là où la déformation est singulière, on revient au modèle discret mettant en jeu les atomes et leurs interactions. Comme à notre connaissance aucune étude théorique n'existait sur ce type de théorie, nous avons étudié un cas très simple de dimension 1, et obtenu des résultats qui laissent penser que le modèle est "bon'' dans le cas convexe (i.e si le potentiel d'interaction des atomes est convexe), mais beaucoup plus douteux dans le cas contraire.<br /><br />Le chapitre 4 présente des travaux sur les condensats de Bose-Einstein. La première section porte sur l'écoulement d'un condensat autour d'un obstacle (physiquement, un laser). Nous établissons l'existence d'une solution sans vortex si la vitesse de translation de l'obstacle est suffisamment faible. Ce résultat avait déjà été établi pour un modèle de dimension 2, et nous l'avons étendu au cas plus réaliste de dimension 3, en étudiant en particulier la zone du bord du condensat où le modèle 2D n'est pas valable (contrairement au coeur du condensat).<br /><br />La section 4.3 concerne l'étude de condensats en rotation, et en particulier des vortex nucléés par cette rotation. Les résultats présentés portent sur la rotation rapide : si Omega est la vitesse de rotation, le système n'a de minimum d'énergie que si Omega < 1. La rotation rapide correspond à la limite Omega tend vers 1. Dans ce régime, la fonction d'onde peut être approximée avec une bonne précision par une fonction analytique multipliée par une gaussienne. Les vortex sont alors les zéros de cette fonction. Nous établissons une borne supérieure de l'énergie en utilisant une fonction test dont les zéros forment un réseau distordu sur les bords du condensat. Ceci est en accord avec les observations expérimentales et numériques.
APA, Harvard, Vancouver, ISO, and other styles
2

Khenissy, Saïma. "Équations aux dérivées partielles elliptiques non linéaires : équation de Ginzburg-Landau : équation de Bahri-Coron sur-critique." Paris 6, 2002. http://www.theses.fr/2002PA066197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

CARAFFA, BERNARD Daniela. "Equations aux dérivées partielles elliptiques du quatrième ordre avec exposants critiques de Sobolev sur les variétés riemanniennes avec et sans bord." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00003179.

Full text
Abstract:
L'objet de cette thèse est l'étude, sur les variétés riemanniennes compactes $(V_n,g)$ de dimension $n>4$, de l'équation aux dérivées partielles elliptique de quatrième ordre $$(E)\; \Delta^2u+\nabla [a(x)\nabla u] +h(x)u= f(x)|u|^(N-2)u$$ où $a$, $h$, $f$ sont fonction $C^\infty $, avec $f(x)$ fonction constante ou partout positive et $N=(2n\over((n-4)))$ est l'exposant critique. En utilisant la méthode variationnelle on prouve dans le théorème principal que l'équation $(E)$ admet une solution $C^((5,\alpha))(V)$ $0<\alpha<1$ non nulle si une certaine condition qui dépend de la meilleure constante dans les inclusion de Sobolev ($H_2\subset L_(2n\over(n-4))$) est satisfaite. De plus on montre que si $a$ et $h$ sont des fonctions constantes bien précisées la solution de l'équation est positive et $C^\infty(V)$. Lorsque $n\geq 6$, on donne aussi des applications du théorème principal. Dans la dernière partie de cette thèse sur une variété riemannienne compacte à bord de dimension $n$, $(\overline(W)_n,g )$ nous nous intéressons au problème : $$ (P_N) \; \left\lbrace \begin(array)(c) \Delta^2 v+\nabla [a(x)\nabla u] +h(x) v= f(x)|v |^(N-2)v \; \hbox(sur)\; W \\ \Delta v =\delta \, , \, v = \eta \;\hbox(sur) \;\partial W \end(array)\right.$$ avec $\delta$,$\eta$,$f$ fonctions $C^\infty (\overline (W))$ avec $f(x)$ fonction partout positive et on démontre l'existence d'une solution non triviale pour le problème $(P_N)$.
APA, Harvard, Vancouver, ISO, and other styles
4

Blanc, Xavier. "Problèmes mathématiques liés à la modélisation des solides à différentes échelles." Phd thesis, Ecole des Ponts ParisTech, 2001. http://tel.archives-ouvertes.fr/tel-00001163.

Full text
Abstract:
Cette thèse présente l'étude de divers problèmes mathématiques en modélisation des solides, tant à l'échelle atomique qu'à l'échelle macroscopique. Les modèles correspondants sont très simplifiés, mais présentent tout de même des comportements qualitatifs acceptables, et permettent, du fait de leur simplicité, de pousser l'analyse mathématique plus loin que dans le cas de modèles plus réalistes.<br /><br />Une première partie (chapitres 2,3,4) est consacrée à l'étude de l'origine de la structure cristalline. Ce problème peut être posé de la façon suivante : les modèles étudiés ici rendent-ils compte du fait qu'à température nulle, la matière est ordonnée ? ou, de façon équivalente, l'état de minimum d'énergie de N atomes identiques ressemble-t-il, pour N grand, à une structure périodique ? Ce type de problème est relié au problème de limite thermodynamique, dont certains aspects sont également étudiés ici.<br /><br />Dans un deuxième temps, nous étudions au chapitre 5 le cas où précisément, la matière n'est pas ordonnée : dans le cas d'un système périodique, il est possible de définir l'énergie du système pour les modèles utilisés ici par le processus de limite thermodynamique. Nous étudions ce même processus dans un cas non-périodique, donnant des hypothèses générales qui permettent de mener à bien une telle étude.<br /><br />Les chapitres 6 et 7 sont consacrés à l'étude du lien possible entres des théories macroscopiques des solides et ces modèles microscopiques, le premier dans le cas de comportements mécaniques, le deuxième dans le cas du comportement en présence d'un champ électrique.<br /><br />Enfin, le dernier chapitre présente une brève introduction à certaines techniques utilisées en numérique des solides, pour des modèles beaucoup plus élaborés que ceux des chapitres précédents.
APA, Harvard, Vancouver, ISO, and other styles
5

Delay, Erwann. "Analyse sur les variétés non-compactes,applications à la géométrie riemannienneet à la relativité générale." Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00011945.

Full text
Abstract:
Les travaux présentés dans ce mémoire portent<br />essentiellement sur l'étude d'opérateurs elliptiques<br />non-linéaires sur des variétés Riemanniennes non-compactes.<br />Ils sont motivés par des questions naturelles provenant de la géométrie Riemannienne ou de la<br />relativité générale.<br /> Le point central étant la recherche et l'étude de<br />métriques d'Einstein (Riemanniennes ou Lorentziennes).
APA, Harvard, Vancouver, ISO, and other styles
6

Warnault, Guillaume. "Solutions stables pour des EDPs elliptiques semi-linéaires impliquant l'opérateur biharmonique." Amiens, 2009. http://www.theses.fr/2009AMIE0105.

Full text
Abstract:
Dans cette thèse, nous considérons la classe des solutions radiales d'une équation semi-linéaire Δ²u=λf(u) où f est une non-linéarité régulière ou singulière. Pour cette équation, nous considérons les conditions de bord de Dirichlet dans la boule unité B de RN. La classe des solutions radiales est la classe des solutions stables qui inclut les solutions minimales et solution extrémale. Nous établissons la régularité de cette solution extrémale pour N< 10 dans le cas d'une non-linéarité régulière. Nos résultats de régularité ne dépendent pas de la non-linéarité f. De plus, nous étudions l'équation elliptique du quatrième ordre avec f(u)=(1+sgn(p)u)p. La régularité des solutions dépend essentiellement de la puissance p et du paramètre λ>0. Nous nous sommes intéressés particulièrement aux solutions radiales de ce problème et beaucoup de démonstrations reposent sur une approche par les équations différentielles ordinaires. Finalement, nous établissons plusieurs résultats de type Liouville sur l'équation elliptique du quatrième ordre Δ²u=f(u) dans RN, où f est une non-linéarité régulière. Nous prouvons la non-existence de solutions stables vérifiant des propriétés de décroissance à l'infini.
APA, Harvard, Vancouver, ISO, and other styles
7

Mourad, Nahia. "Fondements mathématiques et numériques de la méthode des pseudo-potentiels." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1024/document.

Full text
Abstract:
Les contributions de cette thèse consistent en trois principaux résultats. Le premier résultat concerne la théorie des perturbations analytique pour les modèles de type Kohn-Sham. Nous montrons, sous certaines conditions techniques, l'existence, l'unicité et l'analyticité de la matrice densité de l'état fondamental du modèle de Hartree-Fock réduit pour des perturbations régulières provenant d'un potentiel extérieur. Notre analyse englobe le cas où le niveau de Fermi de l'état fondamental non-perturbé est une valeur propre dégénérée de l'opérateur de champ moyen et où les orbitales frontières sont partiellement occupées. Le deuxième résultat concerne la construction mathématique de pseudos potentiels pour les modèles Kohn-Sham. Nous définissons l'ensemble des pseudos potentiels semi-locaux à normes conservées de régularité de Sobolev donnée, et nous prouvons que cet ensemble est non-vide et fermé pour une topologie appropriée. Cela nous permet de proposer une nouvelle façon de construire des pseudos potentiels, qui consiste à optimiser sur cet ensemble un critère tenant compte des impératifs de régularité et de transférabilité. Le troisième résultat est une étude numérique du modèle de Hartree-Fock réduit pour les atomes. Nous proposons une méthode de discrétisation et un algorithme de résolution numérique des équations de Kohn-Sham pour un atome soumis à un potentiel extérieur à symétrie cylindrique. Nous calculons les niveaux d'énergie occupés et les nombres d'occupations pour tous les éléments des quatre premières rangées du tableau périodique et considérons le cas d'un atome soumis à un champ électrique uniforme<br>The contributions of this thesis consist of three main results. The first result is concerned with analytic perturbation theory for Kohn-Sham type models. We prove, under some technical conditions, the existence, uniqueness and analyticity of the perturbed reduced Hartree-Fock ground state density matrix for regular perturbations arising from an external potential. Our analysis encompasses the case when the Fermi level of the unperturbed ground state is a degenerate eigenvalue of the mean-field operator and the frontier orbitals are partially occupied. The second result is concerned with the mathematical construction of pseudo potentials for Kohn-Sham models. We define a set of admissible semi local norm-conserving pseudo potentials of given local Sobolev regularity and prove that this set is non-empty and closed for an appropriate topology. This allows us to propose a new way to construct pseudo potentials, which consists in optimizing on the latter set some criterion taking into account both smoothness and transferability requirements. The third result is a numerical study of the reduced Hartree-Fock model of atoms. We propose a discretization method and an algorithm to solve numerically the Kohn-Sham equations for an atom subjected to a cylindrically-symmetric external potential. We report the computed occupied energy levels and the occupation numbers for all the atoms of the four first rows of the periodic table and consider the case of an atom subjected to a uniform electric-field
APA, Harvard, Vancouver, ISO, and other styles
8

Maris, Mihai. "Sur quelques problèmes elliptiques non-linéaires." Paris 11, 2001. http://www.theses.fr/2001PA112247.

Full text
Abstract:
Les travaux présentés dans cette thèse portent sur l'étude des solutions particulières de certaines équations aux dérivées partielles dispersives issues de la physique, comme par exemple l'équation de Schrödinger, l'équation de Benney-Luke ou l'équation de Benjamin-Ono. Les solutions étudiées sont de type ondes stationnaires (intuitivement, il s'agit d'un profil qui tourne périodiquement en temps) ou ondes progressives (i. E. Un profil qui se déplace à vitesse constante dans une certaine direction de l'espace). Ceci nous conduit à des problèmes elliptiques non-linéaires dans l'espace tout entier. Des solutions de type onde progressive ou bien onde stationnaire pour les équations considérées ont été observées dans les expérimentations ou dans les calculs numériques. Dans certains cas, elles semblent jouer un rôle important dans la dynamique générale des équations d'évolution correspondantes. Dans le premier chapitre on démontre la régularité et on trouve le taux algébrique optimal de décroissance à l'infini des ondes solitaires des équations de Benney-Luke et de Benjamin-Ono. .<br>In this thesis we study particular solutions for some nonlinear dispersive partial differential equations which appear in physics, such the nonlinear Schrödinger equation, the Benney-Luke equation or the Benjamin-Ono equation. We are particularly interested in the stationary waves and in the travelling waves of these equations. This gives nonlinear elliptic problems in the whole space. Solitary and travelling waves for the considered equations have been observed in experiments and in numerical simulations. In some cases, these solutions seem to play an important role in the general dynamics of the corresponding evolution equations. In the first chapter we prove the analyticity and we find the optimal algebraic decay rate at infinity of solitary waves to the Benney-Luke equation and to the generalized Benjamin-Ono equation. The second chapter is devoted to the proof of existence of stationary solutions for a nonlinear Schrödinger equation with potential in one dimension which describes the flow of a fluid past an obstacle. .
APA, Harvard, Vancouver, ISO, and other styles
9

Vétois, Jérôme. "Equations elliptiques et anisotropes non linéaires." Cergy-Pontoise, 2008. http://biblioweb.u-cergy.fr/theses/08CERG0375.pdf.

Full text
Abstract:
Cette thèse est divisée en deux parties principales. Dans la première partie, on étudie des équations et des systèmes elliptiques critiques en lien avec la géométrie conforme. Pour ces équations, on s'attache principalement à obtenir l'existence de multiplicités de solutions par des arguments topologiques liés à la théorie de Lusternik-Schnirelmann, par compacité et théorie de Krasnosel'skii, ou encore par « recollement » de singularités. Dans la seconde partie, on considère une classe générale d'équations non linéaires faisant intervenir des opérateurs anisotropes. On met en lumière les difficultés nouvelles liées à ces opérateurs dans l'étude des phénomènes de renormalisation et le rôle crucial joué par la géométrie de l'espace ambiant. Les équations elliptiques sont posées en milieux anisotropes représentés par des variétés riemanniennes. Les équations anisotropes sont posées en milieux homogènes représentés par des domaines de l'espace euclidien<br>This thesis is divided into two main parts. In the first part, we study critical elliptic equations and systems linked with conformal geometry. For these equations, we mainly endeavour to obtain the existence of multiplicities of solutions by topological arguments linked with Lusternik-Schnirelmann theory, by compactness and Krasnosel'skii theory, or also by ''gluing'' of singularities. In the second part, we consider a general class of nonlinear equations involving anisotropic operators. We highlight the new difficulties linked with these operators in the study of blow-up phenomena and the crucial role played by the geometry of the ambient space. The elliptic equations are posed in anisotropic media represented by Riemannian manifolds. The anisotropic equations are posed in homogeneous media represented by domains of the Euclidean space
APA, Harvard, Vancouver, ISO, and other styles
10

Sirakov, Boyan. "Equations aux dérivées partielles elliptiques non-linéaires." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00192148.

Full text
Abstract:
Ma recherche est consacrée à l'étude des équations et des systèmes d'équations aux dérivées partielles non-linéaires elliptiques et paraboliques et à leurs applications. Mes travaux s'articulent autour des thèmes suivants :<br /><br />-Théorie générale des EDP complètement non-linéaires et solutions de viscosité d'EDP ;<br />-Estimations elliptiques et théorie de la régularité pour systèmes d'EDP elliptiques sous forme non divergence ; <br />-Méthodes variationnelles pour la résolution d'EDP de la physique quantique - équation de Schrodinger et systèmes d'équations de Schrodinger ;<br />-Estimations à priori et méthodes topologiques pour la résolution d'EDP et de systèmes d'EDP elliptiques ; <br />-Symétrie et monotonie des solutions positives d'EDP et de systèmes d'EDP dans des domaines non bornés ;<br />-Problèmes aux limites surdéterminés et problèmes à frontière libre.
APA, Harvard, Vancouver, ISO, and other styles
11

Megrez, Nasreddine. "Étude de certains problèmes elliptiques et sous elliptiques nonlinéaires sur des domaines non bornés." Toulouse 1, 2003. http://www.theses.fr/2003TOU10064.

Full text
Abstract:
L'objet de cette thèse est d'étudier certains problèmes elliptiques et sous elliptiques nonlinéaires sur des domaines non bornés. En utilisant une approche variationnelle, on montre l'existence de solutions faibles pour un problème elliptique faisant intervenir l'opérateur p-Laplacien défini sur un domaine non borné de Rn. Ensuite, on étudie un système sous elliptique faisant intervenir le Laplacien de Heisenberg défini sur des domaines non bornés du groupe de Heisenberg Hn. Enfin, moyennant le théorème de bifurcation de Rabinowitz, on établit l'existence de branches connexes et bornées de solutions positives, pour un problème semilinéaire elliptique défini sur Rn avec une nonlinéarité indéfinie<br>This thesis is devoted to the study of some nonlinear elliptic and subelliptic problems on unbounded domains. Using variational methods, we investigate the existence of weak solutions for an elliptic problem involving the p-Laplacian operator defined on an unbounded domain of Rn. After this, and using also varational methods, we prove the existence of weak solutions for a subelliptic system involving the Heisenberg Laplacian on unbounded domains of the Heisenberg group Hn. Finally, using Rabinowitz's bifurcation theory, we prove the existence of bounded continuums of positive solutions for a semilinear elliptic problem defined on Rn with an indefinite nonlinearity
APA, Harvard, Vancouver, ISO, and other styles
12

Xu, Chao-Jiang. "Équations aux dérivées partielles non linéaires sous-elliptiques." Paris 11, 1986. http://www.theses.fr/1986PA112016.

Full text
Abstract:
Dans une première partie nous démontrons un théorème de régularité des solutions pour les équations aux dérivées partielles non-linéaires du second ordre : si u est une solution réelle assez régulière, si le symbole principal de l'opérateur linéarisé est positif, et si la condition de Hörmander ou Oleinik-Radkevič est satisfaite, alors […]. De même, si […], est un minimum « très strict » d'une fonctionnelle intégrale […] c'est-à-dire si pour tout x de Ω, il existe un voisinage K de x, et C &gt; 0, Ɛ &gt; 0, tels que […] pour ϕ tout réelle de […], alors u est nécessairement […]. Dans une deuxième partie nous considérons des équations aux dérivées partielles non-linéaires de la forme […] où les X₁,…,Xᵨ sont des champs de vecteur vérifiant la condition de Hörmander. Soit u une solution réelle assez régulière, on suppose que la localisation de l'opérateur linéarisé sur le groupe de Lie associé au système […] est hypoelliptique ; nous démontrons sous ces hypothèses que […]. Dans une troisième partie nous considérons des opérateurs différentiels linéaires du second ordre à coefficients C² qui satisfont la condition géométrique de Feffennan et Phong, on a démontré qu'ils sont sous-elliptiques dans R², on a aussi obtenu un théorème de régularité des solutions non-linéaires<br>In a first part, we prove a regularity theorem for solution of non-linear partial differential equation of second order: if u is a smooth enough real solution, if the principal symbol of the linearized operator is positive, and if the Hörmander's or Oleinik- Radkevič 's condition is satisfied, then […]. With similar methods, we prove that: if […] is a "very strict" minimum of an integral functional […], i. E. If for all x in Ω, there are a neighborhood K of x , C &gt; 0 , Ɛ &gt; 0 , such as […] for all […], then […]. In a second part, we consider partial differential equation of form […] where X₁,…,Xᵨ are vectors fields satisfying Hörmander' s condition. Let us u be of smooth enough solution, we suppose that the localization of the linearized operator on the Lie group associated to the system of the […] is hypoelliptic, we prove with this hypothesis that […]. In a third part, we study some linear differential operators of second order 2 with C² - coefficients, these operators satisfying the Fefferman-Phong geometric condition; we prove they are sub-elliptic on R² and we so obtain a regularity theorem for nonlinear problems
APA, Harvard, Vancouver, ISO, and other styles
13

Giletti, Thomas. "Phénomènes de propagation dans des milieux diffusifs excitables : vitesses d'expansion et systèmes avec pertes." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30043.

Full text
Abstract:
Les systèmes de réaction-diffusion interviennent pour décrire les transitions de phase dans de nombreux champs d'application. Cette thèse porte sur l'analyse mathématique de modèles de propagation dans des milieux diffusifs, non bornés et hétérogènes, et s'inscrit ainsi dans la lignée d'une recherche particulièrement active. La première partie concerne l'équation simple: on s'y intéressera à la structure interne des fronts, mais on exhibera aussi de nouvelles dynamiques où la vitesse d'un profil de propagation n'est pas unique. Dans la seconde partie, on s'intéresse aux systèmes à deux équations, pour lesquels l'absence de principe du maximum pose de nombreuses difficultés. Ces travaux, en portant sur un vaste éventail de situations, offrent une meilleure compréhension des phénomènes de propagation, et mettent en avant de nouvelles propriétés des problèmes de réaction-diffusion, aidant ainsi à améliorer l'analyse théorique comme alternative à l'approche empirique<br>Reaction-diffusion systems arise in the description of phase transitions in various fields of natural sciences. This thesis is concerned with the mathematical analysis of propagation models in some diffusive, unbounded and heterogeneous media, which comes within the scope of an active research subject. The first part deals with the single equation, by looking at the inside structure of fronts, or by exhibiting new dynamics where the profile of propagation may not have a unique speed. In a second part, we take interest in some systems of two equations, where the lack of maximum principles raises many theoretical issues. Those works aim to provide a better understanding of the underlying processes of propagation phenomena. They highlight new features for reaction-diffusion problems, some of them not known before, and hence help to improve the theoretical approach as an alternative to empirical analysis
APA, Harvard, Vancouver, ISO, and other styles
14

Radulescu, Vicentiu. "Analyse de quelques problèmes aux limites elliptiques non linéaires." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00980823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Redwane, Hicham. "Solutions normalisées de problèmes paraboliques et elliptiques non linéaires." Rouen, 1997. http://www.theses.fr/1997ROUES059.

Full text
Abstract:
Cette thèse est consacrée à l'étude de problèmes elliptiques ou paraboliques non linéaires qui sont, d'une façon générale, mal posés dans le cadre des solutions faibles (c'est-à-dire des solutions au sens des distributions). Pour surmonter cette difficulté, on va s'intéresser à une autre classe de solutions : les solutions renormalisées. Cette notion a été introduite par R. -J. Di Perna et P. -L. Lions pour l'étude des équations de Boltzmann, et les équations du premier ordre.
APA, Harvard, Vancouver, ISO, and other styles
16

Le, Nguyen Kim Hang. "Homogénéisation de quelques problèmes elliptiques linéaires et non-linéaires avec saut à l'interface." Rouen, 2014. http://www.theses.fr/2014ROUES061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Feron, Pierre. "Schémas gradients appliqués à des problèmes elliptiques et paraboliques, linéaires et non-linéaires." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1119/document.

Full text
Abstract:
La notion de schémas gradients, conçue pour les équations elliptiques et paraboliques, linéaires et non-linéaires a l'avantage de fournir des résultats de convergence et d'estimations d'erreur valables pour de nombreuses familles de méthodes numériques (éléments finis conformes et non-conformes, éléments finis mixtes, différences finies ...). Vérifier un ensemble restreint de propriétés suffit pour prouver qu'une méthode numérique donnée rentre dans le cadre de travail des schémas gradients et donc qu'elle sera convergente sur les différents problèmes traités. L'étude du problème de Stefan, celle du problème de Stokes incompressible, ainsi que celle des équations de Navier-Stokes incompressibles sont présentées dans cette thèse, chacune présentant un théorème de convergence établi à l'aide des schémas gradients. Pour Stokes et Navier-Stokes, nous donnerons une preuve de convergence pour les cas stationnaires et transitoires en modifiant certaines hypothèses ce qui aura comme effet de trouver des résultats de convergence différents. Finalement, nous présentons également quatre méthodes (Taylor-Hood, Crouzeix-Raviart, Marker-and-Cell, Hybrid Mixed Mimetic) pour ces deux problèmes et nous vérifions qu'elles rentrent bien dans le cadre des schémas gradients<br>The notion of gradient schemes, designed for linear and nonlinear elliptic and parabolic problems has the benefit of providing common convergence and error estimates results, which hold for a wide variety of numerical methods (finite element methods, nonconforming and mixed finite element methods, hybrid and mixed mimetic finite difference methods ...). Checking a minimal set of properties for a given numerical method suffices to prove that it belongs to the gradient schemes framework, and therefore that it is convergent on the different problems studied here. The study of the Stefan problem, the incompressible Stokes one and also the incompressible Navier-Stokes equations are presented in this thesis, where each one gets a convergence theorem set up with the gradient schemes framework. For Stokes and Navier-Stokes, we both provide the proof for the steady and the transient case dealing with some variational hypotheses which bring different convergence results. Finally, we also present four methods (Taylor-Hood, Crouzeix-Raviart, Marker-and-Cell, Hybrid Mixed Mimetic) for these two problems and we check that they enter in the gradient schemes framework
APA, Harvard, Vancouver, ISO, and other styles
18

Neji, Ali. "Existence unicité et régularité de solutions de problèmes non linéaires et complètement non linéaires elliptiques singuliers." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1017.

Full text
Abstract:
Dans cette thèse on s'intéresse à l'existence, et la régularité pour des équations aux dérivées partielles non linéaires relatives au p-Laplacien , avec des termes d'ordre critiques ou sous critique, utilisant dans un cas le lemme du col d'Ambrozetti Rabinowitz, dans l'autre la concentration compacité de P L Lions. On considère ensuite un problème qui présente un terme d'ordre zéro qui "explose " près du bord, sur le modèle d'un article de Lazer mackenna, la différence essentielle étant ici que l'on a aussi un terme d'ordre 0 linéaire, qui demande donc l'utilisation de certaines fonctions propres. Une généralisation de ce problème à des cas complètement non linéaires et donc à des solutions de viscosité est étudiée dans la dernière partie de la thèse<br>We studied in this thesis the properties of existence and regularity for various nonlinear partial differential equations of elliptic type. We proved the existence of weak solutions to certain problems involving the p-Laplacian operator using critical point theory and the mountain pass theorem . We have also showed the existence of viscosity solutions for singular equations involving fully nonlinear operators
APA, Harvard, Vancouver, ISO, and other styles
19

Fabbri, Jean. "Problèmes elliptiques non linéaires singuliers au bord dans des ouverts non réguliers." Tours, 1994. http://www.theses.fr/1994TOUR4013.

Full text
Abstract:
Ce travail a pour objet la spécificité des points non réguliers du bord des domaines en tant qu'ils autorisent ou non, selon des conditions qui sont explicitées, le prolongement, en ces points, de solutions d'équations aux dérivées partielles elliptiques non linéaires. Une classification des solutions singulières est aussi détaillée. Les points non réguliers du bord sont du type : points coniques (droits ou asymptotiques), sommets ou arêtes de polyèdres, points de rebroussement. Les méthodes utilisées dans ce travail sont variées: décomposition de l'opérateur laplacien, estimations a priori, propriétés faibles de régularité dans des domaines généraux, principe du maximum, problèmes de valeurs propres non linéaires. Dans le cas des polyèdres, il est mis en oeuvre une méthode nouvelle qui repose sur la théorie des semi-groupes et les puissances fractionnaires d'un opérateur. Ce travail contient des améliorations de résultats antérieurs dûs a gmira-veron et kondrat'ev-nikishkin.
APA, Harvard, Vancouver, ISO, and other styles
20

Voirol, François-Xavier. "Etudes de quelques équations élliptiques fortement non linéaires." Metz, 1994. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1994/Voirol.Francois_Xavier.SMZ9468.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Luo, Tingjian. "Existence non existence et multiplicité d'ondes stationnaires normalisées pour quelques équations non linéaires elliptiques." Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-01061670.

Full text
Abstract:
Dans cette thèse, nous étudions l'existence, non existence et multiplicité des ondes stationnairesavec les normes prescrites pour deux types d'équations aux dérivées partiellesnon linéaires elliptiques découlant de différents modèles physiques. La stabilité orbitale desondes stationnaires est également étudiée dans certains cas. Les principales méthodes denos preuves sont des arguments variationnels. Les solutions sont obtenues comme pointscritiques de fonctionnelle associée sur une contrainte.La thèse se compose de sept chapitres. Le Chapitre 1 est l'introduction de la thèse. Dansles Chapitres 2 à 4, nous étudions une classe d'équations de Schrödinger-Poisson-Slaternon linéaires. Nous établissons dans le Chapitre 2 des résultats optimaux non existencede solutions d'énergie minimale ayant une norme L2 prescrite. Dans le Chapitre 3, nousmontrons un résultat d'existence de solutions L2 normalisées, dans une cas où la fonctionnelleassociée n'est pas bornée inférieurement sur la contrainte. Nos solutions sonttrouvées comme des points de selle de la fonctionnelle, mais ils correspondent à des solutionsd'énergée minimale. Nous montrons également que les ondes stationnaires associéessont orbitalement instables. Ici, puisque nos points critiques présumés ne sont pas desminimiseurs globaux, il n'est pas possible d'utiliser de façon systématique les méthodesde compacité par concentration développées par P. L. Lions. Ensuite, dans le Chapitre4, nous montrons que sous les hypothèses du Chapitre 3, il existe une infinité de solutionsayant une norme L2 prescrite. Dans les deux chapitres suivants, nous étudions uneclasse d'équations de Schrödinger quasi-linéaires. Des résultats optimaux non existence desolutions d'énergie minimale sont donnés dans le Chapitre 5. Dans le Chapitre 6, nousprouvons l'existence de deux solutions positives ayant une norme donnée. L'une d'elles,relativement à la contrainte L2, est de type point selle. L'autre est un minimum, soit localou global. Le fait que la fonctionnelle naturelle associée à cette équation n'est pas biendéfinie nécessite l'utilisation d'une méthode de perturbation pour obtenir ces deux pointscritiques. Enfin, au Chapitre 7, nous mentionnons quelques questions que cette thèse asoulevées.
APA, Harvard, Vancouver, ISO, and other styles
22

Sellami-Omrani, Sonia. "Equations aux dérivées partielles non-linéaires et ondes progressives." Paris 6, 1993. http://www.theses.fr/1993PA066641.

Full text
Abstract:
Nous nous intéressons dans cette thèse à divers problèmes d'équations aux dérivées partielles elliptiques non-linéaires dans la première partie, nous construisons un contre-exemple pour montrer un résultat de non-existence de solutions d'ondes progressives pour un modèle intervenant en combustion dans un domaine cylindrique infini en dimension trois. L'objet de la deuxième partie est l'existence de solutions d'une équation semi-linéaire dans un cylindre fini, faisant intervenir le gradient dans le terme non-linéaire. Les conditions aux bords sont mixtes de type Dirichlet et Newmann. Nous utilisons la méthode de sous- et sur-solutions. La difficulté ici est le fait que le domaine possède des coins. Dans la troisième partie, nous étudions comme dans la première partie l'existence d'ondes progressives dans un domaine cylindrique infini dans le cas où le terme source change plusieurs fois de signe. Nous établissons une condition nécessaire et suffisante pour l'existence d'une onde. Enfin la quatrième partie a pour objet l'étude de la symétrie de solutions positives d'une équation aux dérivées partielles elliptique semi-linéaire dans des domaines sectoriels avec des conditions aux bords mixtes de Dirichlet et Newmann et utilise des développements récents sur la méthode de déplacement d'hyperplans
APA, Harvard, Vancouver, ISO, and other styles
23

Guibé, Olivier. "Existence de solutions pour des systèmes couplés non linéaires elliptiques ou d'évolution." Rouen, 1998. http://www.theses.fr/1998ROUES042.

Full text
Abstract:
La thèse est consacrée à l'étude de systèmes d'équations aux dérivées partielles issus d'un modèle de thermoviscoélasticité. Le premier chapitre concerne une version stationnaire de ce modèle. En utilisant le cadre des solutions renormalisées des problèmes elliptiques à données L 1, nous démontrons deux théorèmes d'existence de solutions ainsi que des résultats partiels concernant l'unicité. Dans le deuxième chapitre et dans le but d'affaiblir les hypothèses sur les données, nous transformons de façon formelle le système considéré dans le chapitre 1. Dans le cas particulier de ce nouveau système, nous adaptons les notions de solutions renormalisées et entropiques afin de démontrer un résultat d'existence de solutions. Dans le troisième chapitre, deux résultats d'existence de solutions sont établis pour le système initial d'évolution. On utilise le cadre des solutions renormalisées pour les problèmes paraboliques à données L 1.
APA, Harvard, Vancouver, ISO, and other styles
24

Guerch, Bouchaïb. "Singularités de solutions de certaines équations elliptiques non linéaires avec potentiel singulier." Tours, 1991. http://www.theses.fr/1991TOUR4001.

Full text
Abstract:
On étudie les singularités à l'origine, le comportement à l'infini et les solutions globales de certaines équations elliptiques semi-linéaires monotones avec potentiel singulier. On établit le théorème d'isotropie, l'existence des solutions singulières et l'éliminabilité des solutions de l'équation considérées. Puis on se place dans un cas particulier pour donner la classification complète des singularités à l'origine, le comportement à l'infini et les solutions globales.
APA, Harvard, Vancouver, ISO, and other styles
25

Nadir, Bouchaïd. "Opérateurs para différentiels et régularité dans les problèmes aux limites elliptiques non linéaires." Nice, 1985. http://www.theses.fr/1985NICE4025.

Full text
Abstract:
On considère un problème aux limites non linéaire pour une équation scalaire d'ordre m dans un ouvert régulier de R**(n). On suppose que le problème linéarise est micro localement elliptique en un point donné cotangent au bord et on étudie la régularité micro locale en ce point d'une solution supposée a-priori dans l'espace de Sobolev H**(s) avec sm+n/2. On développe un calcul symbolique pour les opérateurs para différentiels (à bi-ordre) et on étudie les noyaux de poisson correspondants. On traite à titre d'exemple le système de l'élasticité non linéaire tridimensionnelle avec une condition au bord de Dirichlet
APA, Harvard, Vancouver, ISO, and other styles
26

Michaille, Gérard. "Inéquations variationnelles fortement non linéaires et applications : [comparaisons des solutions et applications]." Metz, 1988. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1988/Michaille.Gerard.SMZ882.pdf.

Full text
Abstract:
Un théorème de comparaison des solutions relatives à des convexes des contraintes pour des inéquations variationnelles à même opérateur est démontré sous des hypothèses peu restrictives. De nombreux résultats de monotonie et d'unicité sont obtenus pour des problèmes aux convexes standards définis par des contraintes ponctuelles. Le résultat de comparaison ainsi obtenu permet de prouver l'existence d'une frontière libre pour une inéquation variationnelle lorsque l'opérateur présente en un certain sens une singularité en zéro. Enfin une méthode d'existence, utilisant un théorème de point fixe, jointe au théorème d'unicité, permet de résoudre numériquement un problème non linéaire possédant un terme de transport<br>Comparison results of the solutions for two variational inequalities with the same operateur and two convex sets defined by pointwise constraints are obtained with little restrictive hypotheses. As a corollary, we prove uniqueness results and more genrally monotonicity properties for a large class of variational inequalities associated with convex sets whose pointwise constraints are standard. With these results one can show when the operateur fails to be smooth at zero, some variational inequalities can develop a free boundary. Finally, thaks to our uniqueness theorem, the existence method that we have used allows us to solve numerically a non-linear problem with a transport term
APA, Harvard, Vancouver, ISO, and other styles
27

Brada, Alain. "Comportement asymptotique de solutions d'équations elliptiques semi-linéaires dans un cylindre." Tours, 1987. http://www.theses.fr/1987TOUR4010.

Full text
Abstract:
On étudie le comportement asymptotique pour T tendant vers l'infini de solutions d'équations d'évolution semi-linéaires du second ordre : l'étude se fait d'abord dans un ouvert borné de l'espace successivement avec une condition de Neumann, puis de Dirichlet au bord et ensuite dans l'espace
APA, Harvard, Vancouver, ISO, and other styles
28

Fahim, Arash. "Une Méthode Numérique Probabiliste pour les Équations aux Dérivées Partielles Paraboliques et complètement non-linéaires." Phd thesis, Ecole Polytechnique X, 2010. http://tel.archives-ouvertes.fr/tel-00540175.

Full text
Abstract:
Cette thèse est divisée en deux parties. La première partie introduit une méthode probabiliste numérique pour les EDPs parabolique et complètement non-linéaire, puis on considère ses propriétés asymptotiques (convergence et taux de convergence) et aussi l'analyse de l'erreur due à l'approximation de l'espérance conditionnelle par une méthode de type Monte Carlo. Les EDPs complètement non- linaires apparaissent dans plusieurs applications en ingénierie, économie et finance. Citons par exemple le problème de propagation de front par courbure moyenne, ou le problème de sélection de portefeuille. Une classe importante d'EDP complètement non-linéaire est constituée par les équations de HJB découlant du contrôle optimal stochastique. Dans la plupart des cas, il n'existe pas de solution dans le sens classique. Par conséquent, la notion de solution de viscosité est utilisé pour les EDP complètement non-linéaires. En raison de manque de de solution explicite dans de nombreuses applications, les schémas d'approximation sont devenus très importants. Pour montrer la convergence, la méthode utilisée dans cette thèse a été introduite par Barles et Souganidis. Leurs travaux fournissent le résultat de convergence vers des solutions de viscosité pour une solution approchée obtenue à partir cohérente, monotone et stable régime. An d'obtenir le taux de convergence, nous avons supposé que le EDP a non-linéarité concave de type HJB. En d'autres termes, la non-linéarité est une borne inférieure des opérateurs linéaires. La thèse a utilisé la méthode de Krylov des coefficients secoué et d'approximation par un système d'équations HJB couplées pour obtenir des bornes sur les taux de convergence. La mise en œuvre du schéma requiert d'introduire une approximation des espérances conditionnelles. Pour une classe d'estimateurs, nous avons obtenu une borne inférieure sur le nombre de chemins échantillon qui préserve la vitesse de convergence obtenue avant. La généralisation de la méthode à des équations intégro-diférentielles est simple et on peut utiliser les mÃa mes arguments que dans le cas local pour obtenir la convergence et le taux de convergence. Notons cependant que le cas non local introduit la difficulté supplémentaire d'approximation des termes non locaux. La première partie sera terminée est illustrée par quelques expériences numériques. La méthode est utilisée pour résoudre le problème géométrique des taux de courbure moyenne, le problème de la sélection sur un portefeuille d'actifs avec volatilité stochastique dans le modèle de Heston, et le problème de sélection de portefeuille de deux actifs à la fois avec une volatilité stochastique, on satisfait modèle de Heston et l'autre CEV modèle. La deuxième partie de la thèse traite de la politique de production optimale dans le marché des allocations des permis d'émission de carbone. Le marché des permis d'émissions de carbone est une approche de marché pour mettre en œuvre le protocole de Kyoto. Nous avons calculé la production optimale dans 4 cas: quand il n'y a pas un tel marché, quand il y a un tel marché, mais sans grand producteur de carbone, quand il y a un gros producteur qui n'est pas teneur de marché, et quand il existe un marché avec un grande producteur. Nous avons montré que dans les premiers, la production optimale est toujours diminuée. Cependant, dans le dernier cas, nous avons montré que le gros producteur peut bénéficier du marché en changeant la prime de risque de l'allocation de carbone en raison de sa production d'appoint. Cette partie est illustrée par quelques expériences numériques qui montre des cas que le grand producteur peut bénéficier d'une production d'appoint.
APA, Harvard, Vancouver, ISO, and other styles
29

Grillot-Mousny, Michèle. "Sur la construction de solutions d'équations elliptiques non linéaires singulières sur une sous-variété." Tours, 1996. http://www.theses.fr/1996TOUR4003.

Full text
Abstract:
Cette thèse se divise en trois parties. Dans la première partie, nous étudions l'existence, l'unicité et le comportement asymptotique des solutions d'équations elliptiques non linéaires dans un ouvert régulier, qui explosent sur le bord. La deuxième partie est consacrée à la classification des comportements asymptotiques à l'origine des solutions radiales de perturbations d'équations de type emden-fowler. La troisième partie est la plus importante. Nous construisons des solutions de différents types d'équations elliptiques non linéaires, singulières sur une sous-variété, en prescrivant leurs comportements asymptotiques au voisinage de cette sous-variété. Nous montrons aussi l'unicité de la solution dans une classe donnée
APA, Harvard, Vancouver, ISO, and other styles
30

Pacard, Frank. "Existence et compacité de solutions de certaines équations aux dérivées partielles elliptiques non-linéaires." Paris 11, 1991. http://www.theses.fr/1991PA112151.

Full text
Abstract:
Cette these apporte une contribution a l'etude de certaines equations aux derivees partielles elliptiques non-lineaires. Elle est composee de deux parties distinctes. Dans une premiere partie, nous etudions la convergence de suites de surfaces dont la courbure moyenne est prescrite. La deuxieme partie concerne l'etude d'equations aux derivees partielles elliptiques non lineaires scalaires. Dans un premier temps nous obtenons des resultats d'existence de solutions definies sur des anneaux, puis un resultat d'existence de solutions dont les singularites ponctuelles sont fixees et enfin un resultat relatif a la regularite de solutions faibles de certaines de ces equations
APA, Harvard, Vancouver, ISO, and other styles
31

Daniel, Jean-Paul. "Quelques résultats d'approximation et de régularité pour des équations elliptiques et paraboliques non-linéaires." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066468/document.

Full text
Abstract:
Nous nous intéressons à des résultats d'approximation et de régularité pour des solutions de viscosité d'équations elliptiques et paraboliques non-linéaires. Dans le chapitre 1, nous proposons, pour une classe générale d'équations elliptiques et paraboliques non-linéaires munies de conditions de Neumann inhomogènes, une interprétation de contrôle déterministe par des jeux répétés à deux personnes qui consiste à représenter la solution comme la limite de la suite des scores associés aux jeux. La condition de Neumann intervient par une pénalisation adaptée près de la frontière. En s'inspirant d'une approche abstraite proposée par Barles et Souganidis, nous prouvons la convergence en établissant des propriétés de monotonie, stabilité et consistance. Le chapitre 2 est consacré à des résultats de régularité sur les solutions d'équations paraboliques non-linéaires associés à un opérateur uniformément elliptique. Nous donnons une estimation de la mesure de Lebesgue de l'ensemble des points possédant un développement de Taylor quadratique global avec un contrôle sur la taille du terme cubique. Sous une hypothèse supplémentaire sur la régularité de la non-linéarité, nous en déduisons un résultat de régularité partielle höldérienne des solutions. Dans les chapitres 3 et 4, nous proposons une méthode générale pour obtenir des taux algébriques de convergence de solutions de schémas d'approximation vers la solution de viscosité sous l'hypothèse d'uniforme ellipticité de l'opérateur. Nous donnons un taux de convergence pour des schémas elliptiques obtenus par principe de programmation dynamique et nous prouvons un taux pour des schémas paraboliques par différences finies et implicites en temps<br>In this thesis we study some approximation and regularity results for viscosity solutions of fully nonlinear elliptic and parabolic equations. In the first chapter, we consider a broad class of fully nonlinear elliptic and parabolic equations with inhomogeneous Neumann boundary conditions. We provide a deterministic control interpretation through two-person repeated games which represents the solution as the limit of the sequence of the scores associated to the games. The Neumann condition is modeled by a suitable penalization near the boundary. Inspiring by an abstract method of Barles and Souganidis, we prove the convergence of the score to the solution of the equation by establishing monotonicity, stability and consistency. The second chapter presents some regularity results about viscosity solutions of parabolic equations associated to a uniformly elliptic operator. First we obtain a Lebesgue measure estimate on the points having a quadratic Taylor expansion with a controlled cubic term. Under an additional assumption on the regularity of the nonlinearity, we deduce a partial regularity result about the Hölder regularity of these solutions. In the third and fourth chapters, we propose a general approach to determine algebraic rates of convergence of solutions of approximation schemes to the viscosity solution of fully nonlinear elliptic or parabolic equations under the assumption of uniform ellipticity of the operator. We first give the rate associated to the elliptic schemes derived by dynamic programming principles and proposed by Kohn and Serfaty. We then prove a rate of convergence for finite-difference schemes implicit in time associated to fully nonlinear parabolic equations
APA, Harvard, Vancouver, ISO, and other styles
32

LE, BRIZAUT Jean-Sébastien. "Méthodes fonctionnelles et numériques pour l'approche de problèmes aux limites non linéaires mixtes elliptiques / hyperboliques." Habilitation à diriger des recherches, Université de Nantes, 2004. http://tel.archives-ouvertes.fr/tel-00005350.

Full text
Abstract:
Les travaux présentés dans cette synthèse en vue d'une Habilitation à Diriger des Recherches concernent des problèmes aux limites non linéaires mixtes elliptiques hyperboliques auxquels on adjoint une contrainte inégalité. Ici nous présentons le cas significatif présenté par le problème aux limites résultant du modèle de Karman et Guderley avec condition d'entropie. Ce problème a l'avantage de se présenter simplement tout en présentant un terme non linéaire conduisant aux difficultés fondamentales des problèmes mixtes non linéaires. Ce problème aux limites est mal posé : il n'existe pas de cadre fonctionnel assurant l'existence de solutions. Notre propos est de proposer une méthode d'analyse assurant la cohérence entre les résultats fonctionnels et numériques. On commence par traiter le problème aux limites sans contrainte. L'utilisation d'une formulation variationnelle et de la formule de Green généralisée ramènent le problème à montrer qu'une projection adaptée s'annule. L'introduction d'une norme adaptée conduit à minimiser une fonctionnelle. On utilise des solutions généralisées à epsilon près correspondant aux quasi minima d'Ekeland. On considère ensuite le problème aux limites avec contrainte. Le paramètre d'entropie est recherché dans un intervalle réel suffisamment grand a priori. La contrainte est également transformée par la formule de Green généralisée ce qui conduit à une contrainte égalité. Une fonctionnelle pénalisée est minimisée.
APA, Harvard, Vancouver, ISO, and other styles
33

Alaa, Nour Eddine. "Étude d'équations elliptiques non linéaires à dépendance convexe en le gradient et à données mesures." Nancy 1, 1989. http://www.theses.fr/1989NAN10460.

Full text
Abstract:
Dans ce travail, l'étude porte sur les équations elliptiques non linéaires de la forme où j(x,. ) est convexe, continue positive, f une donnée mesure positive sur. . . Et un paramètre réel. Si j(x,. ) est sur-linéaire à l'infini, une condition nécessaire d'existence de solution est que f doit être assez régulière et assez petit. Nous commençons par une étude complète du problème en dimension un et nous obtenons une caractérisation de cette régularité et de cette taille en termes d'un problème dual de minimisation associé
APA, Harvard, Vancouver, ISO, and other styles
34

Bouchekif, Mohammed. "Etude qualitative des solutions de certains systèmes elliptiques non linéaires : [Thèse en partie soutenue sur un ensemble de travaux]." Toulouse 3, 1994. http://www.theses.fr/1994TOU30194.

Full text
Abstract:
Dans ce travail, l'objectif est d'apporter une contribution a l'etude qualitative des solutions d'une classe de systemes elliptiques non lineaires liees au p-laplacien. Une construction adequate d'un couple de sous-sur solutions radiales, nous permet d'etablir la compacite du support de solutions de tels systemes et des systemes paraboliques associes. On donne ensuite des conditions necessaires et suffisantes pour que certains systemes verifient le principe du maximum et on montre l'existence de solutions non triviales. Pour obtenir des resultats d'existence on utilise aussi le theoreme du col a une classe de systemes elliptiques derivant d'un potentiel ; enfin des methodes variationnelles permettent d'etablir l'existence de solutions multiples
APA, Harvard, Vancouver, ISO, and other styles
35

Bougherara, Brahim. "Problèmes non-linéaires singuliers et bifurcation." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3012/document.

Full text
Abstract:
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non linéaires. Précisément, nous nous sommes intéressés à une classe de problèmes elliptiques et paraboliques avec coefficients singuliers. Ce manque de régularité pose un certain nombre de difficultés qui ne permettent pas d’utiliser directement les méthodes classiques de l’analyse non-linéaire fondées entre autres sur des résultats de compacité. Dans les démonstrations des principaux résultats, nous montrons comment pallier ces difficultés. Ceci suppose d’adapter certaines techniques bien connues mais aussi d’introduire de nouvelles méthodes. Dans ce contexte, une étape importante est l’estimation fine du comportement des solutions qui permet d’adapter le principe de comparaison faible, d’utiliser la régularité elliptique et parabolique et d’appliquer dans un nouveau contexte la théorie globale de la bifurcation analytique. La thèse se présente sous forme de deux parties indépendantes. 1- Dans la première partie (chapitre I de la thèse), nous avons étudié un problème quasi-linéaire parabolique fortement singulier faisant intervenir l’opérateur p-Laplacien. On a démontré l’existence locale et la régularité de solutions faibles. Ce résultat repose sur des estimations a priori obtenues via l’utilisation d’inégalités de type log-Sobolev combinées à des inégalités de Gagliardo-Nirenberg. On démontre l’unicité de la solution pour un intervalle de valeurs du paramètre de la singularité en utilisant un principe de comparaison faible fondé sur la monotonie d’un opérateur non linéaire adéquat. 2- Dans la deuxième partie (correspondant aux Chapitres II, III et IV de la thèse), nous sommes intéressés à l’étude de problèmes de bifurcation globale. On a établi pour ces problèmes l’existence de continuas non bornés de solutions qui admettent localement une paramétrisation analytique. Pour établir ces résultats, nous faisons appel à différents outils d’analyse non linéaire. Un outil important est la théorie analytique de la bifurcation globale qui a été introduite par Dancer (voir Chapitre II de la thèse). Pour un problème semi linéaire elliptique avec croissance critique en dimension 2, on montre que les solutions le long de la branche convergent vers une solution singulière (solution non bornée) lorsque la norme des solutions converge vers l’infini. Par ailleurs nous montrons que la branche admet une infinité dénombrable de "points de retournement" correspondant à un changement de l’indice de Morse des solutions qui tend vers l’infini le long de la branche<br>This thesis is concerned with the mathematical study of nonlinear partial differential equations. Precisely, we have investigated a class of nonlinear elliptic and parabolic problems with singular coefficients. This lack of regularity involves some difficulties which prevent the straight-orward application of classical methods of nonlinear analysis based on compactness results. In the proofs of the main results, we show how to overcome these difficulties. Precisely we adapt some well-known techniques together with the use of new methods. In this framework, an important step is to estimate accurately the solutions in order to apply the weak comparison principle, to use the regularity theory of parabolic and elliptic equations and to develop in a new context the analytic theory of global bifurcation. The thesis presents two independent parts. 1- In the first part (corresponding to Chapter I), we are interested by a nonlinear and singular parabolic equation involving the p-Laplacian operator. We established for this problem that for any non-negative initial datum chosen in a certain Lebeque space, there exists a local positive weak solution. For that we use some a priori bounds based on logarithmic Sobolev inequalities to get ultracontractivity of the associated semi-group. Additionaly, for a range of values of the singular coefficient, we prove the uniqueness of the solution and further regularity results. 2- In the second part (corresponding to Chapters II, III and IV of the thesis), we are concerned with the study of global bifurcation problems involving singular nonlinearities. We establish the existence of a piecewise analytic global path of solutions to these problems. For that we use crucially the analytic bifurcation theory introduced by Dancer (described in Chapter II of the thesis). In the frame of a class of semilinear elliptic problems involving a critical nonlinearity in two dimensions, we further prove that the piecewise analytic path of solutions admits asymptotically a singular solution (i.e. an unbounded solution), whose Morse index is infinite. As a consequence, this path admits a countable infinitely many “turning points” where the Morse index is increasing
APA, Harvard, Vancouver, ISO, and other styles
36

Hilhorst, Danielle. "Sur quelques problèmes non linéaires en physique des plasmasSur des problèmes de diffusion non linéaires en hydrologie et en dynamique des populations. ." Paris 11, 1985. http://www.theses.fr/1985PA112217.

Full text
Abstract:
La première partie de cette thèse concerne l’étude de problèmes non linéaires en physique des plasmas. On considère d’abord un problème de perturbation singulière associé à un problème aux limites non linéaire en dimension 1 sur un intervalle (O,R). On montre l’existence et l’unicité de la solution et on étudie son comportement asymptotique quand R → ∞ et quand un petit paramètre ε ↓ 0. On étudie aussi le comportement asymptotique quand t → ∞ de la solution d’un problème d’évolution associé. On étend finalement cette étude à des problèmes aux limites plus généraux en dimension supérieure et l’on montre que, quand ε ↓ 0, leur solution converge vers celle d’un problème à frontière libre. La deuxième partie de la thèse porte sur des problèmes de diffusion non linéaires. On démontre d’abord l’existence et l’unicité de la solution de problèmes aux limites liés à une équation doublement non linéaire, en hydrologie, et on étudie son comportement asymptotique quand t → ∞. On considère ensuite un système d’équations paraboliques dégénérées modélisant l’évolution dans le temps des densités de deux populations biologiques en interaction, leurs supports étant supposés disjoints à l’instant initial. Les résultats portent sur l’évolution et le comportement asymptotique de ces populations et de leurs supports quand t → ∞ et sur la régularité des frontières de ces supports<br>In the first part of this thesis we consider certain nonlinear problems arising in plasma physics. We first study a singular two-point nonlinear boundary value problem on an interval (O,R); we prove that it has a unique solution and study its limiting behavior as R → ∞ and as a small parameter ε↓0. We also study the large time behavior of a related evolution problem. We then extend our study to more general boundary value problems in higher dimension and show that as ε↓0 their solution converges to the solution of a free boundary problem. The second part of the thesis concerns the study of certain nonlinear diffusion problems. We first show the existence and uniqueness of the solution of boundary value problems related to a doubly nonlinear diffusion equation in hydrology and studies its asymptotic behavior as t → ∞. We then consider a system of nonlinear degenerate parabolic equations which models the time evolution of the densities of two interacting biological populations. We suppose that their supports are initially disjoint. Our results concern the time evolution and the large time behavior of those populations and of their supports, and the regularity of the boundaries of the supports
APA, Harvard, Vancouver, ISO, and other styles
37

Sauvy, Paul. "Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3020/document.

Full text
Abstract:
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non-linéaires. Plus précisément, nous avons fait ici l’étude de problèmes quasi-linéaires singuliers. Le terme "singulier" fait référence à l’intervention d’une non-linéarité qui explose au bord du domaine où ’équation est posée. La présence d’une telle singularité entraîne un manque de régularité et donc de compacité des solutions qui ne nous permet pas d’appliquer directement les méthodes classiques de l’analyse non-linéaire pour démontrer l’existence de solutions et discuter des propriétés de régularité et de comportement asymptotique de ces solutions. Pour contourner cette difficulté, nous sommes amenés à établir des estimations a priori très fines au voisinage du bord du domaine en combinant diverses méthodes : méthodes de monotonie (reliée au principe du maximum), méthodes variationnelles, argument de convexité, méthodes de point fixe et semi-discrétisation en temps. A travers, l’étude de trois problèmes-modèle faisant intervenir l’opérateur p-Laplacien, nous avons montré comment ces différentes méthodes pouvaient être mises en œuvre. Les résultats que nous avons obtenus sont décrits dans les trois chapitres de cette thèse : Dans le Chapitre I, nous avons étudié un problème d’absorption elliptique singulier. En utilisant des méthodes de sur- et sous solutions et des méthodes variationnelles, nous établissons des résultats d’existence de solutions. Par des méthodes de comparaison locale, nous démontrons également la propriété de support compact de ces solutions, pour de fortes singularités. Dans le Chapitre II, nous étudions le cas d’un système d’équations quasi-linéaires singulières. Par des arguments de point fixe et de monotonie, nous démontrons deux résultats généraux d’existence de solutions. Dans un deuxième temps, nous faisons une analyse plus détaillée de systèmes du type Gierer-Meinhardt modélisant des phénomènes biologiques. Des résultats d’unicité ainsi que des estimations précises sur le comportement des solutions sont alors obtenus. Dans le Chapitre III, nous faisons l’étude d’un problème d’absorption, parabolique singulier. Nous établissons par une méthode de semi-discrétisation en temps des résultats d’existence de solutions. Grâce à des inégalités d’énergie, nous démontrons également l’extinction en temps fini de ces solutions<br>This thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching"
APA, Harvard, Vancouver, ISO, and other styles
38

Olech, Michał. "Systèmes d'évolution non linéaires et leurs applications." Paris 11, 2007. http://www.theses.fr/2007PA112250.

Full text
Abstract:
La premiere partie porte sur l'analyse de deux systemes elliptiques-paraboliques decrivant l'evolution d'un nuage de particules en interaction soumises a des forces electriques ou gravitationnelles. En utilisant des techniques d'equations differentielles ordinaires et des methodes variationnelles nous montrons l'unicite ou la non-unicite des solutions stationnaires. Nous demontrons ensuite l'existence et l'unicite d'une solution globale en temps en nous appuyant sur des methodes liees a l'analyse fonctionnelle, a la theorie des equations differentielles ordinaires et a des theoremes de point fixe dans des espaces fonctionnels varies. Nous en decrivons de plus le comportement asymptotique en temps long. Dans la deuxieme partie nous etudions un systeme parabolique de reaction-diffusion qui modelise des reactions chimiques reversibles dans le cas d'un systeme couple de deux equations non lineaires et le transport intercellulaire dans celui de n equations lineaires couplees. Nous demontrons tout d'abord une propriete de contraction dans L^1 pour le semi-groupe associe. Nous nous appuyons ensuite sur une fonctionnelle de Liapounov pour prouver la stabilisation des solutions quand t tend vers l'infini. Dans le cas du transport intercellulaire nous prouvons l'existence et l'unicite de solutions stationnaires en dimensions d'espace 1, 2, 3 et 4. Le dernier chapitre porte sur la discretisation du systeme parabolique non lineaire pour des reactions chimiques reversibles rapides. Nous demontrons la convergence d'un schema de type volumes finis. Pour la demonstration de convergence, nous recherchons des versions discretes d'estimations a priori standard, de principes de comparaison et de theoremes de compacite. Nous implementons de plus des tests numeriques dans le cas d'une reaction chimique reversible concrete<br>The first part is devoted to the analysis of two mean-field problems describing particles which interact with themselves either by electrical or gravitational forces. We first investigate steady state solutions for a problem with gravitational forces. We use methods of ordinary differential equations as well as variational methods to obtain the uniqueness and existence of many stationary solutions. Using methods of functional analysis, ordinary differential equations and fixed point theorems, we then prove the existence of global in time solutions of a system of partial differential equations describing the time evolution of a cloud of electrically charged particles. Moreover, we describe the large time behavior of solutions as t tends to infinity. We are especially interested in the two-dimensional case, when the system is considered in the whole space R^2. We show that in the case of small initial conditions the large time behavior of the solutions much differs from that in the higher-dimensional case. The second part involves a nonlinear parabolic reaction-diffusion system which both includes a linear model for intercellular transport in eukarya, and a reversible chemical reaction. We prove a contraction property in L^1 for the semigroup associated with the system. Then, using a Lyapunov functional, we show the convergence of the solutions to suitable steady states as t tends to infinity. In the linear case we prove the existence and uniqueness of stationary solutions in space dimensions 1, 2, 3 and 4. In the last chapter we investigate a numerical finite volume scheme for the nonlinear system modeling fast reversible chemical reactions. For the convergence proof we search for discrete versions of standard a priori estimates, comparison principles and compactness theorems. Moreover, we perform numerical experiments for the concrete example of a real chemical reaction
APA, Harvard, Vancouver, ISO, and other styles
39

Belaud, Yves. "Méthode semi-classique et propriétés d'annulation asymptotique de solutions d'équations de diffusion non-linéaires." Tours, 2002. http://www.theses.fr/2002TOUR4018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nachaoui, Abdeljalil. "Contribution à l'analyse et à l'approximation des problèmes d'identification, de reconstruction et des systèmes d'équations elliptiques non linéaires." Habilitation à diriger des recherches, Université de Nantes, 2002. http://tel.archives-ouvertes.fr/tel-00002635.

Full text
Abstract:
Ce travail est divisé en deux axes de recherches. Le premier axe concerne l'étude de quelques systèmes d'équations aux dérivées partielles non linéaires issus de la modélisation macroscopique des composants semi-conducteurs. Le deuxième axe de recherche est consacré à l'étude de quelques problèmes d'identification. Nous nous intéressons en particulier à deux types de problèmes d'identification. Le premier concerne la reconstruction des données sur le bord pour des problèmes elliptiques. Le deuxième type de problèmes auquel nous nous sommes intéressés est celui de l'identification des frontières dans des problèmes gouvernés par des équations elliptiques.
APA, Harvard, Vancouver, ISO, and other styles
41

Oropeza, Alip. "Sur une classe de problèmes elliptiques quasilinéaires avec conditions de Robin non linéaires et données L1 : existence et homogénéisation." Rouen, 2016. http://www.theses.fr/2016ROUES043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Huang, Guan. "Une théorie de la moyenne pour les équations aux dérivées partielles non linéaires." Phd thesis, Ecole Polytechnique X, 2014. http://pastel.archives-ouvertes.fr/pastel-01002527.

Full text
Abstract:
Cette thèse se consacre aux études des comportements de longtemps des solutions pour les EDPs nonlinéaires qui sont proches d'une EDP linéaire ou intégrable hamiltonienne. Une théorie de la moyenne pour les EDPs nonlinéaires est presenté. Les modèles d'équations sont les équations Korteweg-de Vries (KdV) perturbées et quelques équations aux dérivées partielles nonlinéaires faiblement.
APA, Harvard, Vancouver, ISO, and other styles
43

Fernández, Sánchez Antonio J. "Existence et multiplicité de solutions pour des problèmes elliptiques avec croissance critique dans le gradient." Thesis, Valenciennes, 2019. http://www.theses.fr/2019VALE0020/document.

Full text
Abstract:
Dans cette thèse, nous donnons des résultats d’existence, de non-existence, d’unicité et de multiplicité de solutions pour des équations aux dérivées partielles avec croissance critique dans le gradient. Les principales méthodes utilisées dans nos preuves sont des arguments variationnels, la théorie des sous et sur-solutions, des estimations à priori et la théorie de la bifurcation. La thèse se compose de six chapitres. Dans le chapitre 0 nous introduisons le sujet de thèse et nous présentons les résultats principaux. Le chapitre 1 porte sur l’´étude d’une équation du type p-Laplacien avec croissance critique dans le gradient et dépendant d’un paramètre. En fonction de l’intervalle où se trouve le paramètre, nous obtenons l’existence et l’unicité d’une solution ou nous montrons l’existence et la multiplicité de solutions. Dans les chapitres 2 et 3, nous poursuivons notre étude dans le cas où l’opérateur utilisé est le Laplacien mais, contrairement au chapitre 1, nous étudions le cas où les coefficients changent de signe. Nous obtenons à nouveau des résultats d’existence et de multiplicité de solutions. Dans le chapitre 4, nous étudions des problèmes nonlocaux du type Laplacien fractionnaire avec différents termes de gradient non-local. Nous montrons des résultats d’existence et de non-existence de solutions pour différentes équations de ce type. Finalement, dans le chapitre 5 nous présentons quelques problèmes ouverts liés au contenu de la thèse et des perspectives de recherche<br>In this thesis, we provide existence, non-existence, uniqueness and multiplicity results for partial differential equations with critical growth in the gradient. The principal techniques employed in our proofs are variational techniques, lower and upper solution theory, a priori estimates and bifurcation theory. The thesis consists of six chapters. In chapter 0, we introduce the topic of the thesis and we present the main results. Chapter 1 deals with a p-Laplacian type equation with critical growth in the gradient. This equation will depend on a real parameter. Depending on the interval where this parameter lives, we obtain the existence and uniqueness of one solution or we prove the existence and multiplicity of solutions. In chapters 2 and 3, we continue our study in the case where the operator is the Laplacian. However, unlike chapter 1, we study the case where the coefficient functions may change sign. We obtain again existence and multiplicity results. In chapter 4, we study non-local problems of fractional Laplacian type with different non-local gradient terms. We prove existence and non-existence results for different equations of this type. Finally, in chapter 5, we present some open problems related to the content of the thesis and some research perspectives
APA, Harvard, Vancouver, ISO, and other styles
44

Vohralik, Martin. "Méthodes numériques pour des équations elliptiques et paraboliques non linéaires. Application à des problèmes d'écoulement en milieux poreux et fracturés." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00008451.

Full text
Abstract:
Les travaux de cette thèse portent sur des méthodes numériques pour la discrétisation d'équations aux dérivées partielles elliptiques et paraboliques de convection-réaction-diffusion non linéaires. Nous analysons ces méthodes et nous les appliquons à la simulation effective de l'écoulement et du transport de contaminants en milieux poreux et fracturés. Au chapitre 1, nous proposons un schéma permettant une discrétisation efficace, robuste, conservative et stable des équations de convection-réaction-diffusion non linéaires paraboliques dégénérées sur des maillages non structurés en dimensions deux ou trois d'espace. Nous discrétisons le terme de diffusion, qui contient en général un tenseur de diffusion inhomogène et anisotrope, par la méthode des éléments finis non conformes ou mixtes-hybrides et les autres termes par la méthode des volumes finis. La partie essentielle du chapitre est ensuite consacrée à montrer l'existence et l'unicité d'une solution discrète et sa convergence vers une solution faible du problème continu. La méthode de démonstration permet en particulier d'éviter des hypothèses restrictives sur le maillage souvent présentes dans la littérature. Nous proposons finalement une variante de ce schéma pour des maillages qui ne se raccordent pas, couplant cette fois la méthode des volumes finis avec celle des éléments finis conformes, et nous l'appliquons à la simulation du transport de contaminants en milieux poreux. Au chapitre 2, nous présentons une démonstration constructive des inégalités de Poincaré-Friedrichs discrètes pour une classe d'approximations non conformes de l'espace de Sobolev H1, indiquons les valeurs optimales des constantes dans ces inégalités et montrons l'inégalité de Friedrichs discrète pour des domaines bornés dans une direction uniquement. Ces résultats sont importants dans l'analyse de méthodes numériques non conformes, comme les méthodes d'éléments finis non conformes ou de Galerkin discontinu. Au chapitre 3, nous montrons que la méthode des éléments finis mixtes de Raviart-Thomas de plus bas degré pour des problèmes elliptiques en dimension deux ou trois d'espace est équivalente à un schéma de volumes finis à plusieurs points. Après avoir étudié ce schéma, nous l'appliquons à la discrétisation d'équations de convection-réaction-diffusion paraboliques non linéaires. Cette approche permet de réduire le temps de calcul de la méthode des éléments finis mixtes, tout en conservant sa très grande précision, ce qui est confirmé par les tests numériques. Enfin, au chapitre 4, nous proposons une version de la méthode des éléments finis mixtes de Raviart-Thomas de plus bas degré pour la résolution de problèmes elliptiques sur un système de polygones bidimensionnels placés dans l'espace tridimensionnel, démontrons qu'elle est bien posée et étudions sa relation avec la méthode des éléments finis non conformes. Ces résultats sont finalement appliqués à la simulation de l'écoulement de l'eau souterraine dans un système de polygones représentant un réseau de fractures perturbant un massif rocheux.
APA, Harvard, Vancouver, ISO, and other styles
45

Vohralík, Martin. "Méthodes numériques pour les équations elliptiques et paraboliques non linéaires : application à des problèmes d'écoulement en milieux poreux et fracturés." Paris 11, 2004. https://tel.archives-ouvertes.fr/tel-00008451.

Full text
Abstract:
Nous étudions des méthodes numériques pour la simulation de l'écoulement et du transport de contaminants en milieux poreux et fracturés. Au chapitre 1, nous proposons un schéma permettant une discrétisation efficace, robuste, conservative et stable des équations de convection–réaction–diffusion paraboliques dégénérées sur des maillages non structurés en dimensions 2 ou 3 d'espace. Nous discrétisons le terme de diffusion, en général anisotrope, par la méthode des éléments finis non conformes et les autres termes par celle des volumes finis et démontrons l'existence et l'unicité d'une solution discrète et sa convergence vers une solution faible. Nous proposons finalement une variante de ce schéma pour des maillages qui ne se raccordent pas et nous l'appliquons aux simulations réelles. Au chapitre 2, nous présentons une démonstration constructive des inégalités de Poincaré–Friedrichs discrètes et indiquons les valeurs optimales des constantes dans ces inégalités. Ces résultats sont importants dans l'analyse de méthodes numériques non conformes. Au chapitre 3, nous montrons que la méthode des éléments finis mixtes de Raviart–Thomas de plus bas degré est équivalente à un schéma de volumes finis à plusieurs points. Cette approche permet de réduire le temps de calcul de la méthode des éléments finis mixtes, tout en conservant sa grande précision, ce qui est confirmé par les tests numériques. Enfin, au chapitre 4, nous proposons une version de la méthode des éléments finis mixtes pour la simulation de l'écoulement dans un réseau de fractures perturbant un massif rocheux, démontrons qu'elle est bien posée et étudions sa relation avec la méthode des éléments finis non conformes<br>We study numerical methods for the simulation of flow and contaminant transport in porous and fractured media. In Chapter 1 we propose a scheme allowing for efficient, robust, conservative, and stable discretizations of nonlinear degenerate parabolic convection–reaction–diffusion equations on unstructured grids in two or three space dimensions. We discretize the generally anisotropic diffusion term by means of the nonconforming finite element method and the other terms by means of the finite volume method and show the existence and uniqueness of a discrete solution and its convergence to a weak solution. We finally propose a version of this scheme for nonmatching grids and apply it to real simulations. In Chapter 2 we present a direct proof of the discrete Poincaré–Friedrichs inequalities and indicate optimal values of the constants in these inequalities. The results are important in the analysis of nonconforming numerical methods. In Chapter 3 we show that the lowest-order Raviart–Thomas mixed finite element method is equivalent to a particular multi-point finite volume scheme. This approach allows significant reduction of the computational time of the mixed finite element method without any loss of its high precision, which is confirmed by numerical experiments. Finally, in Chapter 4 we propose a version of the lowest-order Raviart–Thomas mixed finite element method for flow simulation in fracture networks that perturb rock massifs, prove that it is well posed, and study its relation to the nonconforming finite element method
APA, Harvard, Vancouver, ISO, and other styles
46

Nguyên, Thùy Liên. "Quelques problèmes variationnels issus de la théorie des ondes non-linéaires." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1386/.

Full text
Abstract:
Cette thèse porte sur l'étude des solutions spéciales (de type onde progressive et onde stationnaire) pour des équations aux dérivées partielles dispersives non-linéaires dans R^N. Les problèmes considérés ont une structure variationnelle, les solutions sont des points critiques de certaines fonctionnelles. Nous démontrons l'existence des points critiques en utilisant des méthodes de minimisation. Une des principales difficultés vient du manque de compacité. Pour y remédier, on utilise quelques raffinements récents du principe de concentration-compacité de P. -L. Lions. Dans la première partie du mémoire on montre l'existence des solutions d'énergie minimale pour des équations elliptiques quasi-linéaires dans R^N. Nous généralisons les résultats de Brézis et Lieb dans le cas du Laplacien, ainsi que les résultats de Jeanjean et Squassina dans le cas du p-Laplacien. Dans la seconde partie on montre l'existence des ondes progressives subsoniques d'énergie finie pour un système de Gross-Pitaevskii-Schrödinger qui modélise le mouvement d'une impureté non chargée dans un condensat de Bose-Einstein. Les résultats obtenus sont valables en dimension trois et quatre d'espace<br>This thesis focuses on the study of special solutions (traveling wave and standing wave type) for nonlinear dispersive partial differential equations in R^N. The considered problems have a variational structure, the solutions are critical points of some functionals. We demonstrate the existence of critical points using minimization methods. One of the main difficulties comes from the lack of compactness. To overcome this, we use some recent improvements of P. -L. Lions concentration-compactness principle. In the first part of the dissertation, we show the existence of the least energy solutions to quasi-linear elliptic equations in R^N. We generalize the results of Brézis and Lieb in the case of the Laplacian, and the results of Jeanjean and Squassina in the case of the p-Laplacian. In the second part, we show the existence of subsonic travelling waves of finite energy for a Gross-Pitaevskii-Schrödinger system which models the motion of a non charged impurity in a Bose-Einstein condensate. The obtained results are valid in three and four dimensional space
APA, Harvard, Vancouver, ISO, and other styles
47

Conrad, Francis. "Perturbation de problèmes aux valeurs propres non linéaires et problèmes à frontière libre." Phd thesis, Université Claude Bernard - Lyon I, 1986. http://tel.archives-ouvertes.fr/tel-00830638.

Full text
Abstract:
On étudie quelques familles de problèmes aux limites elliptiques non linéaires d'ordre 2, de la forme Au=f(λ,χ,u,ε) où les réels positifs λ et ε qui apparaissent dans la non linéarité de f jouent, respectivement, le rôle de paramètre de bifurcation et de paramètre de perturbation. On considère l'aspect branches de solutions, retournements, pour ε>0 et ε→0 dans 5 cas
APA, Harvard, Vancouver, ISO, and other styles
48

Sbihi, Karima. "Etude de quelques E. D. P. Non linéaires dans L1 avec des conditions générales sur le bord." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/SBIHI_Karima_2006.pdf.

Full text
Abstract:
L’objectif de ce travail est l’étude de divers problèmes d’équations aux dérivées partielles non linéaires du type hyperbolique et d’autres du type elliptique-parabolique faisant intervenir un opérateur en forme divergentielle du type Leray-Lions. Ces équations sont d’une façon générale mal posées dans le cadre de solutions faibles (i. E. Au sens des distributions), car en général on n’a pas l’unicité. Des formulations plus appropriées ont alors vu le jour : les solutions appelées SOLA, les solutions entropiques et les solutions renormalisées. Cette thèse composée de cinq chapitres, présente des résultats d’existence et d’unicité de solutions entropiques et renormalisées pour quatre problèmes non linéaires du type mentionnés ci-dessus. Après un bref exposé de définitions et résultats nécessaires à la suite du travail, nous prouvons au chapitre 2 l’existence et l’unicité de la solution entropique pour un problème elliptique du type diffusion-convection avec des conditions non linéaires sur le bord. Ces conditions englobent en particulier les conditions usuelles. Dans le même axe, au chapitre 3, l’existence et l’unicité de la solution entropique d’un problème parabolique avec absorption dépendant de la variable d’espace sont démontrés. Le chapitre 4 a pour but de présenter un résultat d’existence de solutions renormalisées pour un problème de Stefan non linéaire. Le dernier résultat, présenté au chapitre 5, est l’existence
APA, Harvard, Vancouver, ISO, and other styles
49

Montaru, Alexandre. "Etude qualitative d’un système parabolique-elliptique de type keller-segel et de systèmes elliptiques non-coopératifs." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132021/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude de deux problèmes : D'une part, nous considérons un système parabolique-elliptique de type Patlak-Keller-Segel avec sensitivité de type puissance et exposant critique. Nous étudions les solutions radiales de ce système dans une boule de l'espace euclidien et obtenons des résultats d'existenceunicité, de régularité ainsi qu'une alternative d'explosion. Concernant le comportement qualitatif en temps long des solutions radiales, pour toute dimension d'espace supérieure ou égale à trois, nous montrons un phénomène de masse critique qui généralise le cas déjà connu de la dimension deux mais présente par rapport à celui-ci un comportement très différent dans le cas de la masse critique. Dans le cas d'une masse sous-critique, pour toute dimension d'espace supérieure ou égale à deux, nous montrons de plus que les densités de cellule convergent uniformément à vitesse exponentielle vers l'unique solution stationnaire. D'autre part, nous étudions des systèmes elliptiques non coopératifs. Dans le cas de l'espace ou d'un demi-espace (ou même d'un cône), sous une hypothèse de structure naturelle sur les non-linéarités, nous donnons des conditions suffisantes pour avoir la proportionnalité des composantes, ce qui permet de ramener l'étude à celle d'une équation scalaire et ainsi d'obtenir des résultats de classification et de type Liouville pour le système. Dans le cas d'un domaine borné, la méthode de renormalisation de Gidas et Spruck permet d'obtenir une estimation a priori des solutions bornées et finalement de déduire l'existence d'une solution non triviale<br>This thesis is concerned with the study of two problems : On the one hand, we consider a parabolic-elliptic system of Patlak-Keller-Segeltype with a critical power type sensitivity. We study the radially symmetric solutions of this system on a ball of the euclidean space and obtain wellposedness and regularity results together with a blow-up alternative. As for the long time qualitative behaviour of the radial solutions, for any space dimension greater or equal to three, we show that a critical mass phenomenon occurs, which generalizes the wellknown case of dimension two but, with respect to the latter, with a very different qualitative behaviour in the case of the critical mass. When the mass is subcritical, we moreover show that the cell density converges uniformly with exponential speed toward the unique steady state. This result is valid for any space dimension greater or equal to two, which was, to our knowledge, not known even for the most studied case of dimension two. On the other hand, we study noncooperative (semilinear and fully nonlinear) elliptic systems. In the case of the whole space or of a half-space (or even for a cone), under a natural structure condition on the nonlinearities, we give sufficient conditions to have proportionnality of the components, which allows to reduce the system to a scalar equation and then to get classification and Liouville type results. In the case of a bounded domain, thanks to the obtained Liouville type theorems, the blow-up method of Gidas and Spruck then allows to get an a priori estimate on the bounded solutions and eventually to deduce the existence of a non trivial solution by a topological method using the degree theory
APA, Harvard, Vancouver, ISO, and other styles
50

Le, Coz Stefan. "Existence, stabilité et instabilité d'ondes stationnaires pour quelques équations de Klein-Gordon et Schrödinger non linéaires." Phd thesis, Université de Franche-Comté, 2007. http://tel.archives-ouvertes.fr/tel-00239293.

Full text
Abstract:
Cette thèse porte sur l'étude des ondes stationnaires d'équations dispersives non linéaires, en particulier l'équation de Schrödinger, mais aussi celle de Klein-Gordon. Les travaux présentés s'articulent autour de deux questions principales : l'existence et la stabilité orbitale de ces ondes stationnaires. <br /><br />L'existence est étudiée par des méthodes essentiellement variationnelles. En plus de la simple existence, on met en évidence différentes caractérisations variationnelles des ondes stationnaires, par exemple en tant que points critiques d'une certaine fonctionnelle au niveau du col ou au niveau de moindre énergie, ou encore en tant que minimiseurs d'une fonctionnelle sur différentes contraintes.<br /><br />Selon la puissance de la non-linéarité et la forme de la dépendance en espace, on démontre que les ondes stationnaires sont stables ou instables. Lorsqu'elles sont instables, on met en évidence que dans certaines situations l'instabilité se manifeste par explosion, tandis que dans d'autres les solutions sont globalement bien posées. En plus des différentes caractérisations variationnelles des <br />ondes stationnaires, les preuves des résultats de stabilité et d'instabilité nécessitent de dériver des informations de nature spectrale. En particulier, dans la première partie de cette thèse, on prouve un résultat de non-dégénérescence du linéarisé pour un problème limite. Dans la deuxième partie, on localise la deuxième valeur propre du linéarisé par la combinaison d'une méthode perturbative et d'arguments de continuation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!