Dissertations / Theses on the topic 'Educational data mining'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Educational data mining.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Войцун, О. Є. "Перспективи educational data mining в Україні." Thesis, Cумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/47901.
Full textMelgueira, Pedro Miguel Lúcio. "Educational data mining applied to Moodle data from the University of Évora." Master's thesis, Universidade de Évora, 2017. http://hdl.handle.net/10174/21346.
Full textBorg, Olivia. "Educational Data Mining : En kvalitativ studie med inriktning på dataanalys för att hitta mönster i närvarostatistik." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16987.
Full textThe study focuses on finding different patterns in attendance statistics for students who are not present at school. The information provided by the results can thereafter be used as a basis for decision-making for schools or for other organizations interested in EDM within attendance statistics. The work carried out a qualitative method approach with a case study that consisted a literature study and an implementation. The literature study was used to gain an understanding of common approaches within EDM, which subsequently formed the basis for the implementation that used the working method CRISP-DM. The project resulted in five different patterns defined by data analysis. The patterns show absence from a time perspective and per subject and can form the basis for future decision-making.
Mavrikis, Manolis P. "Modelling students' behaviour and affect in ILE through educational data mining." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/15294.
Full textAlsuwaiket, Mohammed. "Measuring academic performance of students in Higher Education using data mining techniques." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/34680.
Full textRajibussalim. "Data Mining for Studying the Impact of Reflection on Learning." Thesis, The University of Sydney, 2010. http://hdl.handle.net/2123/10589.
Full textXu, Yonghong. "Using data mining in educational research: A comparison of Bayesian network with multiple regression in prediction." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/280504.
Full textDavoodi, Alireza. "User modeling and data mining in intelligent educational games : Prime Climb a case study." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45274.
Full textDailey, Matthew D. "Learning the Effectiveness of Content and Methodology in an Intelligent Tutoring System." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/684.
Full textXu, Beijie. "Clustering Educational Digital Library Usage Data: Comparisons of Latent Class Analysis and K-Means Algorithms." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/954.
Full textPeroutka, Lukáš. "Návrh a implementace Data Mining modelu v technologii MS SQL Server." Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-199081.
Full textKehrer, Paul H. "Reaching More Students: A Web-based Intelligent Tutoring System with support for Offline Access." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/336.
Full textVigentini, Lorenzo. "From learning to e-learning : mining educational data : a novel, data-driven approach to evaluate individual differences in students' interaction with learning technology." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/5532.
Full textWang, Yutao. "Student Modeling within a Computer Tutor for Mathematics: Using Bayesian Networks and Tabling Methods." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/383.
Full textMendes, Renê de Ávila. "Aplicação da arquitetura lambda na construção de um ambiente big data educacional para análise de dados." Universidade Presbiteriana Mackenzie, 2017. http://tede.mackenzie.br/jspui/handle/tede/3441.
Full textApproved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-02-22T13:28:09Z (GMT) No. of bitstreams: 2 RENÊ DE ÁVILA MENDES.pdf: 2131022 bytes, checksum: 371eff9a643c4104cbd7ced2b556bab5 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-02-22T13:28:09Z (GMT). No. of bitstreams: 2 RENÊ DE ÁVILA MENDES.pdf: 2131022 bytes, checksum: 371eff9a643c4104cbd7ced2b556bab5 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-02-09
To properly deal with volume, velocity and variety data dimensions in educational contexts is a major concern for Educational Institutions and both Educational Data Mining and Learning Analytics Researchers have cooperated to properly address this challenge which is popularly called Big Data. Hardware developments have been made to increase computing power, storage capacity and efficiency in energy use. New technologies in databases, file systems and distributed systems, as well as developments in data transmission techniques, data management, data analysis and visualization have been trying to overcome the challenge of processing, storing and analyzing large volumes of data and the inability to meet simultaneously the requirements of consistency, availability and tolerance of partitions. Although the architecture definition is the main task in a Big Data system design, objective guidelines for the selection of the architecture and the tools for the implementation of Big Data systems were not found in the literature. The present research aims to analyze the main architectures for both batch and stream processing and to use one of them in the construction of a Big Data environment, providing important orientations to Researchers, Technicians and Managers. Academic data and logs of the Virtual Learning Environment Moodle of an Academic Unit of a Higher Education Institution are used.
Lidar adequadamente com as dimensões de volume, velocidade e variedade dos dados no contexto educacional é um importante desafio para as Instituições de Ensino, e Pesquisadores das áreas de Mineração de Dados Educacionais e Learning Analytics têm cooperado para tratar adequadamente este desafio, popularmente chamado de Big Data. Desenvolvimentos em hardware têm sido feitos para aumentar o poder computacional, a capacidade de armazenamento e a eficiência no uso de energia. Novas tecnologias de bancos de dados, sistemas de arquivos e sistemas distribuídos, além do desenvolvimento de técnicas de transmissão, administração, análise e visualização de dados têm tentado vencer o desafio de processar, armazenar e analisar grandes volumes de dados e a impossibilidade de atender simultaneamente os requisitos de consistência, disponibilidade e tolerância a partições. Embora a definição da arquitetura seja a principal tarefa em um projeto de sistema Big Data, não foram encontradas na literatura orientações objetivas para a seleção da arquitetura e das ferramentas para a implementação de aplicações Big Data. A presente pesquisa tem por objetivo analisar as principais arquiteturas para processamento em lote e em fluxo e utilizar uma delas na construção de um ambiente Big Data, fornecendo importantes orientações a Pesquisadores, Técnicos e Gestores. São utilizados dados acadêmicos e logs do Ambiente Virtual de Aprendizagem Moodle de uma Unidade Acadêmica de uma Instituição de Ensino Superior.
Krasniuk, M. T., and S. O. Krasniuk. "Analysis of teaching experience and prospects of the "Data Mining" and "Data Science" disciplines in light of actual world macroeconomic and educational trends." Thesis, Київський національний університет технологій та дизайну, 2020. https://er.knutd.edu.ua/handle/123456789/16653.
Full textMcKeague-McFadden, Ikaika A. "Identifying Students at Risk of Not Passing Introductory Physics Using Data Mining and Machine Learning." Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1596214863294544.
Full textZhu, Linglong. "A Prediction Model Uses the Sequence of Attempts and Hints to Better Predict Knowledge: Better to Attempt the Problem First, Rather Than Ask for A Hint." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-theses/445.
Full textAlvarado, Mantecon Jesus Gerardo. "Towards the Automatic Classification of Student Answers to Open-ended Questions." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39093.
Full textXu, Beijie. "Understanding Teacher Users of a Digital Library Service: A Clustering Approach." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/890.
Full textKane-Sellers, Marjorie Laura. "Predictive models of employee voluntary turnover in a North American professional sales force using data-mining analysis." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1486.
Full textMoro, Luis Fernando de Souza. "Caracterização de alunos em ambientes de ensino online: estendendo o uso da DAMICORE para minerar dados educacionais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092015-164510/.
Full textWith the popularization of the use of technological resources in education, a huge amount of data, related to the interactions between students and these resources, is stored. Analyzing this data, due to characterize the students, is an important task, since the results of this analysis can help teachers on teaching and learning process. However, due to the fact that the tools used to this characterization are complex and non-intuitive, the educational professionals do not use it, invalidating the implementation of such tools at educational environments. Within this context, this master\'s dissertation aimed analyzing the prevenient data from an educational web system named MathTutor, which offers specific math exercises to identify behavioral patterns of students who interacted with this system during some period. This analysis was performed by a process known as Educational Data Mining, using the tool named DAMICORE, in order to enable quickly and effectively the construction of helpful information to the characterization of the students. During the course of this analysis, some phases of the process of knowledge discovery in databases were followed: \"selection\", \"preprocessing\", \"data mining\" and \"evaluation and interpretation\". In \"data mining\" phase, the tool DAMICORE was used to find behavioral patterns of students which were studied at the \"evaluation and interpretation\" phase. From this analysis, behavioral patterns of students were found, for example, male students have higher or lower yield against the female students and which students are going to have a good or bad yield on the final steps of the educational process. As the main result we have one of the made assumptions, \"Students who get good performance in the \"immediate posttest\" showed two of the following behaviors: few interactions in the \"intervention\", low time interacting with the system in the \"intervention\" and few misconceptions in \"pretest\"\", has proven its accuracy among the data used in this dissertation. Thus, through this research, it was concluded that the use of DAMICORE at educational context can help teacher to infer the performance of their students offering him the opportunity to perform the pedagogical interventions that help students who faces difficulties and show new challenges for those who have facilities in the subject studied.
Chapman, John Shadrack. "Task-Level Feedback in Interactive Learning Enivonments Using a Rules Based Grading Engine." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6605.
Full textMenon, Akash, and Nahida Islam. "An investigation of the relationship between online activity on Studi.se and academic grades of newly arrived immigrant students : An application of educational data mining." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211668.
Full textDenna studie analyserar inverkan som digitala läromedel har på skolbetyg bland nyanlända elever i Sverige mellan årskurs sex och nio i det svenska skolsystemet. Studien fokuserar på den webbaserade pedagogisk resursen Studi.se, gjord av Komplementskolan AB.Målet med studien var att undersöka relationen mellan skolresultat och användandet av Studi.se. Ett annat syfte var att undersöka vad för andra faktorer som kan påverka skolresultat.Studien använder sig av datautvinningsprocessen, Cross Industry Standard for Datamining (CRISP-DM), för att förstå, förbereda och analysera datan i form av en regressionsmodell som sedan evalueras. Datasamlingen som används innehåller bland annat skolbetyg i ämnena matematik, fysik, kemi, biologi och religion från sex kommuner som har tillgång till Studi.se. Aktivitet hos eleverna från dessa kommuner på Studi.se hemsidan användes också för studien.Resultaten visar en negativ korrelation mellan betyg och kön hos eleverna i alla ämnena. Den negativa korrelationen betyder i denna rapport att tjejer får bättre betyg i genomsnitt än killar hos urvalet av nyanlända från de sex kommunerna. Dessutom fanns det en positiv korrelation mellan antal år en elev varit i skolan alternativt i svenska skolsystemet och deras betyg. Studien kunde inte säkerställa ett statistisk signifikant resultat mellan aktivitet på Studi.se och elevernas skolresultat.Ett flertal förklarande oberoende variabler behövs för att kunna skapa en prognastisk modell för skolresultat samt bör en undersökning på alternativa regressions modeller förutom linjär multipel regression göras. I studiens urval av nyanlända elever från kommunerna, har majoriteten inte använt eller knappt använt Studi.se även om dessa kommuner haft tillgång till denna resurs.
Goldstein, Adam B. "Responding to Moments of Learning." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/685.
Full textWhitlock, Joshua Lee. "Using Data Science and Predictive Analytics to Understand 4-Year University Student Churn." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3356.
Full textMedina, Erik Cevallos, Claudio Barahona Chunga, Jimmy Armas-Aguirre, and Elizabeth E. Grandon. "Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees." IEEE Computer Society, 2020. http://hdl.handle.net/10757/656775.
Full textThis research proposes a prediction model that might help reducing the dropout rate of university students in Peru. For this, a three-phase predictive analysis model was designed which was combined with the stages proposed by the IBM SPSS Modeler methodology. Bayesian network techniques was compared with decision trees for their level of accuracy over other algorithms in an Educational Data Mining (EDM) scenario. Data were collected from 500 undergraduate students from a private university in Lima. The results indicate that Bayesian networks behave better than decision trees based on metrics of precision, accuracy, specificity, and error rate. Particularly, the accuracy of Bayesian networks reaches 67.10% while the accuracy for decision trees is 61.92% in the training sample for iteration with 8:2 rate. On the other hand, the variables athletic person (0.30%), own house (0.21%), and high school grades (0.13%) are the ones that contribute most to the prediction model for both Bayesian networks and decision trees.
Mirashrafi, Seyed Bagher [Verfasser], and G. [Akademischer Betreuer] Nakhaeizadeh. "Applying of Data Mining and Statistical Techniques to Analyze the Impact of Socioeconomic Background on University Admission - A Case Study Using the Iranian Educational Data / Seyed Bagher Mirashrafi. Betreuer: G. Nakhaeizadeh." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1112224521/34.
Full textLi, Shoujing. "Modeling Student Retention in an Environment with Delayed Testing." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/266.
Full textMolen, Moris Johan van der. "Minería de datos educacionales: modelos de predicción del desempeño escolar en alumnos de enseñanza básica." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/113034.
Full textEn los últimos años, se ha abierto una oportunidad de hacer análisis más precisos de las habilidades y desempeños de los estudiantes. De a poco, han comenzado a proliferar sistemas de ejercitación en línea y tutores inteligentes que permiten registrar una gran cantidad de información valiosa referente al aprendizaje de los alumnos. La Minería de Datos Educacionales (MDE), es un campo de estudio dedicado a desarrollar métodos matemáticos para analizar datos provenientes de ambientes relacionados a la educación, y extraer la mayor cantidad de información para tratar de entender mejor a los estudiantes, profesores y actores relacionados, con el fin de mejorar los procesos educativos. En esta memoria se aborda el problema de predecir el desempeño de un alumno dados sus datos históricos recopilados a partir de su interacción en un sistema computacional de ejercitación en línea. Este desafío se ha constituido últimamente como uno de los más importantes dentro de la MDE, tal como evidencia el aumento de publicaciones relacionadas, y el gran interés que ha despertado por parte de universidades y entidades gubernamentales. En este trabajo, se analizan los registros almacenados de más de medio millón de ejercicios en línea realizados semanalmente en el 2011 por 805 estudiantes en 23 cursos de cuarto básico de 13 escuelas vulnerables, explorando varios de los enfoques más usados para enfrentar este problema, y proponiendo nuevas variantes para mejorar los resultados y ayudar a la detección de observaciones anómalas que podrían incluir instancias de "gaming the system". Adicionalmente, se estudia el problema de conocer cómo ciertos contenidos impactan en otros. Se trata de un problema de Minería de Datos Educacionales central en el diseño curricular y la planificación de clases. Usualmente esta red de influencias causales se construye en base a las opiniones de expertos. Algunos contribuyen explicitando la dependencia lógica de los contenidos y otros con sus experiencias personales al enseñar esos contenidos. Sin embargo, es muy importante contrastar esas opiniones con el proceso de aprendizaje que efectivamente ocurre en el aula y construir redes causales en base a la evidencia empírica. Aprovechamos los datos y técnicas de Minería de Datos para generar automáticamente la primera red causal de contenidos de un currículo construida empíricamente. Finalmente, se reporta el análisis del impacto de la ejercitación en línea en el desempeño de la prueba SIMCE. Mediciones en condiciones de laboratorio muestran que la ejercitación aumenta el aprendizaje. Sin embargo, implementaciones escolares no han mostrado impactos positivos. Este trabajo muestra la experiencia con escuelas vulnerables donde los estudiantes hacen decenas de ejercicios matemáticos semanales en un sistema en línea. El SIMCE de matemáticas subió significativamente, más de tres veces el aumento histórico logrado a nivel nacional en 2011. Además, los cursos que realizaron mayor cantidad de ejercicios lograron un mayor aumento en el SIMCE, independiente del efecto del profesor y de la escuela.
Falci, Júnior Geraldo Ramos. "Metodologia de mineração de dados para ambientes educacionais online." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259203.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-17T16:59:53Z (GMT). No. of bitstreams: 1 FalciJunior_GeraldoRamos_M.pdf: 698385 bytes, checksum: 02542ffd87be662788d4f79b80ba9a7a (MD5) Previous issue date: 2010
Resumo: Educação a distância populariza-se como meio prático de ensino com a expansão de recursos computacionais e da Internet. Apesar disto, ela traz dificuldades ao educador para compreender as necessidades de suas classes. A análise do uso desses Sistemas de Gerência de Aprendizado a distância por meio de técnicas de mineração de dados é uma forma de obter informações relevantes que permitam ao educador observar essas necessidades e modificar seus cursos de acordo. O objetivo deste trabalho é elaborar uma metodologia de trabalho que permita abordar problemas dessa natureza de forma objetiva e flexível, facilitando identificar potenciais problemas na análise e pontos de retorno adequados para correção e retomada do processo. Um conjunto de etapas é elaborado para compor esta metodologia e em seguida colocado à prova com um conjunto de dados reais obtidos através da instância do TIDIA-Ae utilizada pela UNICAMP como auxiliar às aulas presenciais. Os resultados mostram a eficácia do método proposto e permitiram a observação de diversos problemas devido à maneira de utilização do sistema por alunos e professores
Abstract: Computer-based distance education is becoming popular as computational resources and the Internet expand. Nevertheless, educators may have difficulties to understand the necessities of his classes and therefore improve their courses. Usage analysis of these distance Learning Management Systems through data mining techniques is a way of obtaining relevant information that allow the educator to observe some of the classes' needs and modify his courses accordingly. The goal of the work described in this thesis is to elaborate a methodology to allow tackling problems of this nature in an objective and flexible way, easing the identification of potential problems in the analysis and adequate points of feedback to correct and retake the process. A sequence of steps is elaborated to constitute this methodology and test it with real data obtained from the instance of TIDIA-Ae used by UNICAMP as an auxiliary to classes in campus. The results show the efficiency of the proposed method, though some problems surfaced on these results originated from the way the system is employed by students and teachers
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
CESARETTI, LORENZO. "How students solve problems during Educational Robotics activities: identification and real-time measurement of problem-solving patterns." Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/274358.
Full textThis dissertation aims to provide the results through the utilisation of data mining and machine learning techniques for the assessment with Educational Robotics (ER). This research work has three main objectives: identify different patterns in the students’ problem-solving trajectories; predict the students’ team final performance, with a particular focus on the identification of learners with difficulties in the resolution of the ER challenges; analyse the correlation of the discovered patterns of students’ problem-solving with the evaluation given by the educators. We analysed the literature on Educational Robotics’ traditional evaluation and Educational Data Mining for assessment in constructionist environments. An experimentation with 455 students in 16 primary and secondary schools from Italy was conducted, through updating Lego Mindstorms EV3 programming blocks in order to record log files containing the coding sequences designed by the students (within team work), during the resolution of two preliminary Robotics’ exercises (Exercise A and B). The collected data were analysed based on data mining methodology. We utilised five machine learning techniques (logistic regression, support vector machine, K-nearest neighbors, random forests and Multilayer perceptron neural network) to predict the students’ performance, comparing two approaches: - a supervised approach, calculating a feature matrix as input for the algorithms characterised by two parts: the team’s past problem-solving activity (thirteen parameters extracted from the log files) and the learners’ current activity (three indicators for Exercise A and four indicators for Exercise B); and - a mixed approach, applying an unsupervised technique (the k-means algorithm) to calculate the team’s past problem-solving activity, and considering the same indicators of the supervised approach representing the students’ current activity. Firstly, we wanted to verify if similar findings emerged comparing younger students and older students, so we divided the entire dataset in two subsets (students younger than 12 years old and students older than 12 years old) and applied the supervised and mixed approach in these two subgroups for the first exercise, and a clustering analysis for the second exercise. This process demonstrated that similar problem-solving strategies were applied by both younger and older students, so we aggregated the dataset and performed the supervised and the mixed approach comparing the performances of these two techniques considering the entire dataset. The results have highlighted that MLP neural network with the mixed approach outperformed the other techniques, and that three learning styles were predominantly emerged from the data mining. Furthermore, we deeply analysed the pedagogical meaning of these three different approaches and the correlation of the discovered patterns with the performance obtained by learners. We denote the added value of data mining and machine learning applied to Educational Robotics research and highlight the significance of further implications. Finally, we discuss the future further development of this work from educational and technical view.
Schultz, Sarah E. "Tracing Knowledge and Engagement in Parallel by Observing Behavior in Intelligent Tutoring Systems." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-theses/140.
Full textMartinez, Maldonado Roberto. "Analysing, visualising and supporting collaborative learning using interactive tabletops." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10409.
Full textFarghally, Mohammed Fawzi Seddik. "Visualizing Algorithm Analysis Topics." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73539.
Full textPh. D.
Sherzad, Abdul Rahman [Verfasser], Uwe [Akademischer Betreuer] Nestmann, Uwe [Gutachter] Nestmann, Niels [Gutachter] Pinkwart, Sebastian [Gutachter] Bab, and Nazir [Gutachter] Peroz. "Shaping the selection of fields of study in Afghanistan through educational data mining approaches / Abdul Rahman Sherzad ; Gutachter: Uwe Nestmann, Niels Pinkwart, Sebastian Bab, Nazir Peroz ; Betreuer: Uwe Nestmann." Berlin : Technische Universität Berlin, 2018. http://d-nb.info/1164076450/34.
Full textFernandes, Warley Leite. "Aplica??o do algoritmo de classifica??o associativa (CBA) em bases educacionais para predi??o de desempenho." UFVJM, 2017. http://acervo.ufvjm.edu.br/jspui/handle/1/1726.
Full textApproved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2018-06-05T14:49:36Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) warley_leite_fernandes.pdf: 2460576 bytes, checksum: d929e82a2e47dac8f54b1a1d52ed28fb (MD5)
Made available in DSpace on 2018-06-05T14:49:36Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) warley_leite_fernandes.pdf: 2460576 bytes, checksum: d929e82a2e47dac8f54b1a1d52ed28fb (MD5) Previous issue date: 2017
A Educa??o a Dist?ncia (EAD) tem-se confirmado como importante ferramenta de capacita??o a qualquer tempo e dist?ncia. Por?m, a maioria das Institui??es de Ensino tem encontrado dificuldades relacionadas ao grande n?mero de abandono dos cursos. Avan?os recentes em diversas ?reas da tecnologia possibilitaram o surgimento das Tecnologias da Informa??o e Comunica??o que se tornaram essenciais ? condu??o dos processos educacionais. Assim, imensos volumes de dados s?o gerados pela intera??o de usu?rios em Ambientes Virtuais de Aprendizagem (AVA). Esses dados ?escondem? informa??es ricas. Contudo, manipular tamanha quantidade de dados n?o ? uma tarefa simples. Neste sentido, uma solu??o promissora para extra??o de informa??o ? a Minera??o de Dados, que pode ser entendida como a transforma??o de dados brutos em conhecimento. Essa pesquisa apresenta um estudo para compreender os motivos do baixo desempenho dos alunos em cursos t?cnicos da EAD aplicando, para isto, o algoritmo de Classifica??o Associativa (CBA) em Minera??o de Dados Educacionais (EDM). Com o objetivo de gerar os melhores resultados preditivos de Classifica??o Associativa obtidos pelo CBA, aplicou-se o algoritmo de Regras de Associa??o denominado Predictive Apriori,ainda n?o empregados em trabalhos correlatos. Os resultados experimentais apontam que o CBA aplicado a Bases de Dados Educacionais atinge melhores resultados que os algoritmos de classifica??o tradicionais (alcan?ando uma marca de 85% de acur?cia). Mostrou-se tamb?m que o uso das ferramentas f?rum, quiz e folder t?m uma grande influ?ncia no desempenho dos estudantes.
Disserta??o (Mestrado Profissional) ? Programa de P?s-Gradua??o em Educa??o, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2017.
Distance Education (EAD) has been confirmed as an important training tool at any time and distance. However, most educational institutions have encountered difficulties related to the large number of dropouts. Recent advances in several areas of technology have enabled the emergence of Information and Communication Technologies that have become essential to the conduct of educational processes. Thus, immense data volumes are generated by the interaction of users in Virtual Learning Environments (AVA). These data "hide" rich information. However, handling such a large amount of data is not a simple task. In this sense, a promising solution for information extraction is Data Mining, which can be understood as the transformation of raw data into knowledge. This research presents a study to understand the reasons of the low performance of students in technical courses of the EAD applying, to this, the Association Classification (CBA) algorithm in Educational Data Mining (EDM). In order to further improve the results obtained by the CBA, the Association Rules algorithm called Predictive Apriori, not yet employed in related works, was applied in order to generate the best predictive results of Associative Classification. The experimental results point out that the CBA applied to Educational Databases achieves better results than traditional classification algorithms (reaching a mark of 85% accuracy). It was also shown that the use of the forum, quiz and folder tools have a great influence on student performance.
Pardos, Zachary Alexander. "Predictive Models of Student Learning." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/185.
Full textMiled, Mahdi. "Ressources et parcours pour l'apprentissage du langage Python : aide à la navigation individualisée dans un hypermédia épistémique à partir de traces." Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0045/document.
Full textThis research work mainly concerns means of assistance in individualized navigation through an epistemic hypermedia. We have a number of resources that can be formalized by a directed acyclic graph (DAG) called the graph of epistemes. After identifying resources and pathways environments, methods of visualization and navigation, tracking, adaptation and data mining, we presented an approach correlating activities of design or editing with those dedicated to resources‘ use and navigation. This provides ways of navigation‘s individualization in an environment which aims to be evolutive. Then, we built prototypes to test the graph of epistemes. One of these prototypes was integrated into an existing platform. This epistemic hypermedia called HiPPY provides resources and pathways on Python language. It is based on a graph of epistemes, a dynamic navigation and a personalized knowledge diagnosis. This prototype, which was experimented, gave us the opportunity to evaluate the introduced principles and analyze certain uses
Borges, Vanessa Araujo. "Definição de um modelo de referência de dados educacionais para a descoberta de conhecimento." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-09112018-103702/.
Full textEducational systems support dynamic, synchronous and asynchronous interaction between students and educators. Researches in Learning Analytics, Academic Analytics and Educational Data Mining explore data from educational systems for knowledge discovery through analytical processing, statistical analysis and data mining. However, there are some factors that hinder an efficient management of the educational process. The transformation of data from different kinds of educational system, as Learning Management Systems and Student Information Systems, can be even more difficult due to data heterogeneity. Data from these systems can be analyzed considering different stakeholders, under different perspectives and under different granularities. Motivated by this scenario, in this work we propose Modelo de Referência de Dados Educacionais (EDRM), a reference data model for knowledge discovery in data from educational systems. EDRM is an analytical model structured under a Data Warehouse architecture following a multidimensional data model. EDRM is projected for being an resource of integrated and correlated data focused in decision taking in the educational process. EDRM was developed considering a deep analysis of data and functionalities from different educational systems. In this sense, data from different kinds of systems and sources can be used unified, integrated and consistently. This allows institutions to better comprehend their data, as well as discover patterns, gaps and inefficiencies about their educational process. In this work, EDRM was validated in a case study using real-world databases from different educational systems. The results indicate that EDRM is efficient in tasks with different objectives, using Learning Analytics and Educational Data Mining techniques, and analyzing different perspectives.
MELO, Allan Sales da Costa. "Previsão automática de evasão estudantil: um estudo de caso na UFCG." Universidade Federal de Campina Grande, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/800.
Full textMade available in DSpace on 2018-05-24T14:28:20Z (GMT). No. of bitstreams: 1 ALLAN SALES DA COSTA MELO - DISSERTAÇÃO (PPGCC) 2016.pdf: 1339540 bytes, checksum: b3bbc96d990dd77ee344c4f5434a4d00 (MD5) Previous issue date: 2016
A evasão estudantil é uma das maiores preocupações dos institutos de ensino superior brasileiros já que ela pode ser uma das causas de desperdício de recursos da Universidade. A previsão dos estudantes com alta probabilidade de evasão, assim como o entendimento das causas que os levaram a evadir, são fatores cruciais para a definição mais efetiva de ações preventivas para o problema. Nesta dissertação, o problema da detecção de evasão foi abordado como um problema de aprendizagem de máquina supervisionada. Utilizou-se uma amostra de registros acadêmicos de estudantes considerando-se todos os 76 cursos da Universidade Federal de Campina Grande com o objetivo de obter e selecionar atributos informativos para os modelos de classificação e foram criados dois tipos de modelos, um que separa os estudantes por cursos e outro que não faz distinção de cursos. Os dois modelos criados foram comparados e pôde-se concluir que não fazer distinção de alunos por curso resulta em melhores resultados que fazer distinção de alunos por curso.
Students’ dropout is a major concern of the Brazilian higher education institutions as it may cause waste of resources. The early detection of students with high probability of dropping out, as well as understanding the underlying causes, are crucial for defining more effective actions toward preventing this problem. In this paper, we cast the dropout detection problem as a supervised learning problem. We use a large sample of academic records of students across 76 courses from a public university in Brazil in order to derive and select informative features for the employed classifiers. We create two classification models that either consider the course to which the target student is formally committed or not consider it, respectively. We contrast both models and show that not considering the course leads to better results.
Gottardo, Ernani. "Estimativa de desempenho acadêmico de estudantes em um AVA utilizando técnicas de mineração de dados." Universidade Tecnológica Federal do Paraná, 2012. http://repositorio.utfpr.edu.br/jspui/handle/1/439.
Full textSome educational environments have incorporated software to support or, in some cases, as a basic condition to the availability of courses. In this scenario, stand out Learning Management Systems (LMS) used to support the development of classroom, blended or distance courses. Learning Management System are characterized by storing a large volume of data. However, these environments lack tools to extract useful information for the development of efficient processes for monitoring students’. Thus, this research investigates how data stored in a LMS could be processed to generate information regarding estimates of students’ future academic performance. To obtain this information, first became necessary to select a set of attributes to represent students in an online course using a LMS. This set of attributes was chosen considering three dimensions, selected through the analysis of theoretical bases about online courses: LMS use profile, student-student interaction and bidirectional student-teacher interaction. Applying data mining techniques on the set of selected attributes, it was possible to obtain estimates of students’ future performance. These estimates can support the development of effective processes for monitoring students, activity of fundamental importance in distance learning. In this research, a study with seven experiments were conducted and present different scenarios where estimates of performance can be obtained. The results of these experiments indicate the viability of this proposal, given the promising accuracy rates obtained in the classification of students regarding their final performance in courses.
AMARAL, Marcelo Gomes do. "Mineração de dados aplicada à classificação do risco de evasão de discentes ingressantes em instituições federais de ensino superior." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/19502.
Full textMade available in DSpace on 2017-07-11T14:35:16Z (GMT). No. of bitstreams: 3 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) projeto_v26016.pdf: 1271790 bytes, checksum: f724d8523f2ffdb11ce599aff1eb8eb6 (MD5) projeto_v26016.pdf: 1271790 bytes, checksum: f724d8523f2ffdb11ce599aff1eb8eb6 (MD5) Previous issue date: 2016-07-08
As Instituições Federais de Ensino Superior (IFES) possuem um importante papel no desenvolvimento social e econômico do país, contribuindo para o avanço tecnológico e cientifico e fomentando investimentos. Nesse sentido, entende-se que um melhor aproveitamento dos recursos educacionais ofertados pelas IFES contribui para a evolução da educação superior, como um todo. Uma maneira eficaz de atender esta necessidade é analisar o perfil dos estudantes ingressos e procurar prever, com antecedência, casos indesejáveis de evasão que, quanto mais cedo identificados, melhor poderão ser estudados e tratados pela administração. Neste trabalho, propõe-se a definição de uma abordagem para aplicação de técnicas diretas de Mineração de Dados objetivando a classificação dos discentes ingressos de acordo com o risco de evasão que apresentam. Como prova de conceito, a análise dos aspectos inerentes ao processo de Mineração de Dados proposto se deu por meio de experimentações conduzidas no ambiente da Universidade Federal de Pernambuco (UFPE). Para alguns dos algoritmos classificadores, foi possível obter uma acurácia de classificação de 73,9%, utilizando apenas dados socioeconômicos disponíveis quando do ingresso do discente na instituição, sem a utilização de nenhum dado dependente do histórico acadêmico.
The Brazilian's Federal Institutions of Higher Education have an important role in the social and economic development of the country, contributing to the technological and scientific advances and encouraging investments. Therefore, it is possible to infer that a better use of the educational resources offered by those institutions contributes to the evolution of higher education as a whole. An effective way to meet this need is to analyze the profile of the freshmen students and try to predict, as soon as possible, undesirable cases of dropout that when earlier identified can be examined and addressed by the institution's administration. This work propose the development of a approach for direct application of Data Mining techniques to classify newcomer students according to their dropout risk. As a viability proof, the proposed Data Mining approach was evaluated through experimentations conducted in the Federal University of Pernambuco. Some of the classification algorithms tested had an classification accuracy of 73.9% using only socioeconomic data available since the student's admission to the institution, without the use of any academic related data.
Silva, Sandro José Ribeiro da. "TRILUA: um ambiente gamificado para apoio ao ensino de lógica de programação." Universidade do Vale do Rio dos Sinos, 2016. http://www.repositorio.jesuita.org.br/handle/UNISINOS/6050.
Full textMade available in DSpace on 2017-03-03T16:51:21Z (GMT). No. of bitstreams: 1 Sandro José Ribeiro da Silva_.pdf: 1958508 bytes, checksum: 927c5b673859ca465e35998f946b5a64 (MD5) Previous issue date: 2016-11-03
Nenhuma
O desenvolvimento de habilidades de programação de sistemas computacionais é uma necessidade crescente, devido ao amplo uso de recursos computacionais nas mais diversas áreas. Ao mesmo tempo, é conhecida a deficiência existente quanto à quantidade de profissionais sendo graduados nesta área. Alguns estudos indicam dificuldades dos estudantes e ao mesmo tempo falta de metodologias adequadas como possíveis elementos contribuindo para este contexto, corroborando a necessidade de desenvolvimento de pesquisas sobre o aprendizado de linguagens de programação. Entre as possíveis soluções para este problema de motivação, o desenvolvimento de um ambiente gamificado como ferramenta de ensino para linguagens de programação vem sendo explorado em projetos de pesquisa e também em opções comerciais. Uma das deficiências observadas nestas inciativas é justamente a falta de suporte aos professores para acompanhamento da evolução dos alunos. Buscando atender esta necessidade, o presente trabalho propõe um ambiente de apoio ao ensino de lógica de programação cujo diferencial é a inclusão de recursos de análise do comportamento dos alunos, voltados para o apoio ao professor. Desta forma, o trabalho proposto alia aos jogos eletrônicos o monitoramento on-line de suas etapas, através do uso de técnicas de mineração de dados educacionais. Com base em um framework para Gamificação, foi definido e desenvolvido um ambiente Web para ensino da linguagem Lua, com aspectos de Gamificação e Mineração de Dados Educacionais. Este ambiente foi utilizado em avaliações com alunos do ensino técnico, tendo sido observados resultados promissores nos aspectos motivacionais. As avaliações envolvendo a identificação de vantagens geradas para os professores com uso dos dados sobre o comportamento dos alunos também foram positivas e indicam um bom potencial para esta abordagem.
The development of computer systems programming skills is a growing necessity, due to the wide use of computational resources in different areas. At the same time, it is known the deficiency with respect to the amount of professionals being graduated in this area. Some studies indicates difficulties of students and lack of adequate methodologies as possible elements contributing to this context, supporting the need to develop research on learning programming languages. As a possible solution to this problem of motivation, the development of a gamified environment as a teaching tool for programming languages is being explored in research projects and also commercial options. One of the deficiencies observed in these initiatives is precisely the lack of support to teachers to follow up of the evolution of students, which consists in one of the differentials of the proposed work. In this way, the work integrates to electronic games the online monitoring through the use of educational data mining techniques. Based on the framework for gamification, has been defined and developed a web environment to the Lua language teaching, with aspects of gamification and education data mining. This environment has already been tested preliminarily with technical education students, being observed promising results. A new stage of development and testing is foreseen to deepening the identification of advantages generated for teachers with the use data on the behavior of students.
Xiong, Xiaolu. "Theory and Practice: Improving Retention Performance through Student Modeling and System Building." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/139.
Full textSantana, Marcelo Almeida. "Um estudo comparativo das técnicas de predição na identificação de insucesso acadêmico dos estudantes durante cursos de programação introdutória." Universidade Federal de Alagoas, 2015. http://www.repositorio.ufal.br/handle/riufal/1722.
Full textAs altas taxas de insucesso nas universidades nos cursos que contemplam a disciplina de programação introdutória na sua grade curricular tem alarmado e preocupado muitos educadores, pois o insucesso dos estudantes podem gerar prejuízos dos mais diversos tipos e interesses. Assim, há relevantes motivos para se tentar esclarecer eventuais fatores que afetam tal insucesso. Ainda neste contexto, um dos desafios importantes é o de identificar antecipadamente os estudantes propensos ao insucessos na disciplina de programação introdutória, assumindo-se em tempo hábil para permitir intervenção pedagógica eficaz. Deste modo, buscou-se neste trabalho um estudo em técnicas de mineração de dados educacionais , objetivando-se comparar a eficácia dos algoritmos de predição capazes de identificar, em tempo hábil para intervenção pedagógica, os estudantes propensos ao insucesso. Neste estudo, avaliou-se a eficácia de algoritmos de predição em duas fontes de dados diferentes e independentes, uma na modalidade presencial e outra na modalidade de ensino a distância sobre as disciplinas de programação introdutória. Os resultados mostraram que as técnicas analisadas no estudo são eficazes na identificação dos estudantes propensos ao insucesso no início da disciplina. Além disso, mostrou-se também que após a realização das etapas de pré-processamento e ajustes nos parâmetros de algoritmos, tais algoritmos analisados tiveram uma melhora em seus resultados. Ao fim do processo, o algoritmo máquina de vetor de suporte (SVM: Support Vector Machine) apresentou os melhores resultados, tanto na modalidade de ensino presencial quanto na modalidade a distância, alcançando uma taxa de f-measure de 83% e 92%, respectivamente.
Cambruzzi, Wagner Luiz. "GVwise: uma aplicação de learning analytics para a redução da evasão na educação à distância." Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4646.
Full textMade available in DSpace on 2015-07-28T20:32:18Z (GMT). No. of bitstreams: 1 27d.pdf: 4180188 bytes, checksum: 617cda1d8cedaa910bb66676e96c33d1 (MD5) Previous issue date: 2014-04-15
Nenhuma
Aplicações que fazem uso de tecnologias como Mineração de Dados Educacionais (MDE) e Learning Analytics (LA) vêm sendo adotadas na mitigação da evasão escolar, disponibilizando informações sobre os alunos que são utilizadas em intervenções pedagógicas. Os trabalhos estudados sobre a implementação destas aplicações priorizam a descrição das técnicas empregadas e existem poucas avaliações da sua utilização em larga escala, além da falta de detalhamento sobre as causas da evasão. Este trabalho apresenta um estudo de fatores envolvidos no fenô- meno de evasão escolar e descreve a utilização de um sistema para MDE e LA durante 18 meses em cursos de graduação na modalidade de Educação a Distância. É ampliada a análise dos fatores tradicionalmente monitorados e utilizados nos sistemas de MDA e LA, com a inclusão de elementos associados ao papel exercido pelos docentes e pelo conjunto de aspectos metodológicos de cada instituição. O sistema possui como diferencial a flexibilidade na integração e utilização dos dados gerados no processo de mediação digital, o que permite que necessidades de diferentes ferramentas de apoio sejam disponibilizadas. Resultados positivos destacados são a identificação de perfis de alunos evasores e a realização de intervenções pedagógicas, com redução das médias da evasão.
Educational Data mining (EDM) and Learning Analytics (LA) applications have been adopted in mitigation of dropout, providing information about students who are employed in pedagogical interventions. The most papers about the implementation of these systems describe the techniques employed, there are few evaluations of their large-scale use, apart from the lack of detail about the causes of dropout. This work presents a study of factors involved in dropout and describes the use of a system for EDM and LA during 18 months for undergraduate courses in distance education. The analysis of the factors traditionally monitored and used in EDM and LA systems is extended, with the inclusion of elements associated with the role exercised by the teachers and by institutional methodological aspects. The system has flexibility in integration and use of data generated in the process of digital mediation, which allows different support tools to be available. Some results are the identification of evaders students profiles and the realization of pedagogical actions with reducing evasion.
Sao, Pedro Michael A. "Real-time Assessment, Prediction, and Scaffolding of Middle School Students’ Data Collection Skills within Physical Science Simulations." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-dissertations/168.
Full textManspeaker, Rachel Bechtel. "Using data mining to differentiate instruction in college algebra." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/8542.
Full textDepartment of Mathematics
Andrew G. Bennett
The main objective of the study is to identify the general characteristics of groups within a typical Studio College Algebra class and then adapt aspects of the course to best suit their needs. In a College Algebra class of 1,200 students, like those at most state funded universities, the greatest obstacle to providing personalized, effective education is the anonymity of the students. Data mining provides a method for describing students by making sense of the large amounts of information they generate. Instructors may then take advantage of this expedient analysis to adjust instruction to meet their students’ needs. Using exam problem grades, attendance points, and homework scores from the first four weeks of a Studio College Algebra class, the researchers were able to identify five distinct clusters of students. Interviews of prototypical students from each group revealed their motivations, level of conceptual understanding, and attitudes about mathematics. The student groups where then given the following descriptive names: Overachievers, Underachievers, Employees, Rote Memorizers, and Sisyphean Strivers. In order to improve placement of incoming students, new student services and student advisors across campus have been given profiles of the student clusters and placement suggestions. Preliminary evidence shows that advisors have been able to effectively identify members of these groups during their consultations and suggest the most appropriate math course for those students. In addition to placement suggestions, several targeted interventions are currently being developed to benefit underperforming groups of students. Each student group reacts differently to various elements of the course and assistance strategies. By identifying students who are likely to struggle within the first month of classes, and the recovery strategy that would be most effective, instructors can intercede in time to improve performance.
Stützer, Cathleen M. "Informations- und Wissenstransfer in kollaborativen Lernsystemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-130139.
Full textIn the network society of the 21st century, a key strategy for web-based exchange of information and knowledge is their collaborative distribution and use. Technical hurdles of access are mostly being overcome with technological advances and traditional forms of passing on knowledge are being complemented by modern, e-learning environments. Within research into education, the foundation for socio-cultural progress is formed by involvement with collaborative teaching and learning scenarios in a dynamic exchange of information and knowledge. The emphasis of this work lay in the analysis of structures and relationships of social organisations within knowledge networks. The aim was to describe the exchange of information and knowledge in collaborative learning systems and to explore its influence on the potential for innovation and distribution of information and knowledge. A study was undertaken of the interaction of participants in discussion forums as exemplified by the learning platform OPAL – currently the most popular learning management system in secondary school education in Saxony, Germany. On the assumption that social interaction, particularly involving collaborative media, the progress of education and the construction of knowledge networks do influence teaching and learning processes, this work explored the structural conditions of OPAL's collaborative knowledge network and identified relationships between social role constructs in order to explain the effect of collaborative activities on the process of diffusion of information and knowledge in knowledge networks. Primarily the study was based on relationship oriented sociological models and communication theory models, and research methods for relationships, including SNA (Social Network Analysis) and DNA (Dynamic Network Analysis) were applied, so as to create a basis for further implementation of social network teaching and learning strategies in educational research. [...]