To see the other types of publications on this topic, follow the link: Effect drought stress on plants.

Dissertations / Theses on the topic 'Effect drought stress on plants'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Effect drought stress on plants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Leblanc, Rosanne. "Protein synthesis and drought stress in two rapeseed cultivars." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60487.

Full text
Abstract:
Desiccation effects on rate and pattern of protein synthesis in Brassica napus (cv westar) and Brassica juncea (cv cutlass) have been examined. Results showed that while the rate of water loss was similar in the two species, the inhibition of amino acid incorporation was greater in B. napus than B. juncea at any given level of desiccation. Electrolyte leakage increased with the degree of desiccation and was greater in B. napus than in B. juncea. In both, the increase in leakage was much sharper after 12 hours of desiccation. Quantitative changes in patterns of boiling-stable protein synthesis due to desiccation stress were observed. The control level of protein radioactivity which was boiling-stable in B. napus was 16.16% and 19.96% for B. juncea. After desiccation, the percentage of boiling-stable radioactivity increased to 23.30% for B. juncea and 16.63% for B. napus. In vitro translation of total RNA indicated that desiccation alone does not induce the synthesis of new mRNA species in either cultivar, but it may change the translation pattern resulting in different levels of abundance of proteins.
APA, Harvard, Vancouver, ISO, and other styles
2

Janislampi, Kaerlek W. "Effect of Silicon on Plant Growth and Drought Stress Tolerance." DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1360.

Full text
Abstract:
Silicon is not considered an essential nutrient, but it is typically abundant in soils and can be taken up in large amounts by plants. Silicon is known to have beneficial effects when added to rice and several other plants. These effects include disease and insect resistance, structural fortification, and regulation of the uptake of other ions. In this study, the effect of silicic acid fertilization on the growth and drought tolerance of four crop plants (corn, wheat, soybean, and rice) was analyzed. Plants were studied using three cultivation techniques: 1) hydroponic solution and subjected to salt stress, 2) low-silicon soil-less medium (peat) and subjected to gradual drought stress, and 3) low-silicon soil-less medium (peat) and subjected to acute drought stress. Silicon was added both as reagent-grade Na2SiO3 and as a siliceous liming agent (PlantTuff). Both forms of Si generally improved drought and salt stress tolerance, but the effects were inconsistent. Silicon increased corn dry mass by up to 18% and the effect was statistically significant (p<0.05) in two out of three techniques. Silicon increased water use efficiency in corn by up to 36% and the effect was statistically significant (p<0.05) in one out of two techniques. In the acute drought stress technique, silicon increased wheat dry mass by 17% and the effect was statistically significant (p<0.05). Silicon increased soybean and rice dry mass by 20 to 30%, but the effect was not statistically significant. Silicon in oldest corn leaves increased from 0.4% to 3% as Si increased from less than 0.01 to 0.8 mM in the hydroponic solution. There was a statistically significant effect of silicon supply on the concentration of some other nutrients, but the effect was often not great enough to be considered biologically important. Rice accumulated the greatest concentration of foliar silicon, corn and wheat were intermediate, and soybean accumulated the least. Collectively, these results indicate an effect of silicon in drought and salinity stress tolerance, but additional studies on the rate and onset of drought are needed to determine interacting factors and better understand the inconsistent results.
APA, Harvard, Vancouver, ISO, and other styles
3

Wongareonwanakij, Sathaporn. "Effects of water stress and partial soil-drying on senescence of sunflower plants." Title page, contents and summary only, 1995. http://web4.library.adelaide.edu.au/theses/09A/09aw872.pdf.

Full text
Abstract:
Bibliography: leaves 98-123. This thesis investigates the symptoms of leaf senescence in response to plant shoot water stress and demonstrates the effect of a non-hydraulic root signal in the senescence response of mature leaves of sunflower. The alleviation of the leaf soluble protein loss rate by excision of the root system in drying soil indicates that this signal originates in roots in dry soil and acts to promote protein loss.
APA, Harvard, Vancouver, ISO, and other styles
4

Tibbitts, Spencer A. "Effect of Silicon on Wheat Growth and Development in Drought and Salinity Stress." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/6925.

Full text
Abstract:
Silicon is a major component of most soils, and is found in significant concentration in plant tissue. Plants vary widely in the amount of silicon they take up, with some plants excluding it, and others using transporters to move the silicon from the soil into their roots. Early plant physiology studies were unable to determine conclusively whether silicon was essential to plant growth, but for some plants, most notably rice, it has proved to be important enough to justify fertilizing silicon deficient fields. Researchers at the USU Crop Physiology Lab tested the effect of silicon on wheat growth and seed yield components. One study was grown in buckets of peat moss, with half the buckets being stressed with low water. The other study was grown in hydroponic tubs, with half the tubs being stressed with high levels of salt. The results from these studies showed that silicon does increase wheat seed yield and vegetative mass. Wheat with low levels of silicon exhibited twisting of the awns and decreased roughness of leaf surfaces. Silicon also improved water efficiency of drought stressed plants, and affected the concentration of many micro- and macro-nutrients in leaf tissue.
APA, Harvard, Vancouver, ISO, and other styles
5

Naidu, Bodapati Purushothama. "Variability in the accumulation of amino acids and glycinebetaine in wheat and barley under environmental stress /." Title page, table of contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09phn155.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alshareef, Ibraheem. "The effect of temperature and drought stress on Bambara groundnut (Vigna subterranea (L.) Verdc) landraces." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/11809/.

Full text
Abstract:
Five experiments were conducted to investigate the effect of drought and high temperature stress on the growth and development of bambara groundnut (Vigna subterranea (L.) Verdc). Three glasshouse experiments were conducted at the University of Nottingham, Sutton Bonington Campus, UK, and two field experiments were conducted at the Botswana College of Agriculture, Gaborone, Botswana. In the glasshouse experiments, two landraces were grown, S19-3 (from hot, dry environment/ Namibia) and Uniswa Red (from cool, wet environment/ Swaziland) under two different temperatures, 33±5 oC and 23±5 oC. In the first experiment (2006), soil moisture was non-limiting. In the second experiment (2007) drought was imposed at pod filling stage (77 DAS). In the third experiment (2008), the same two landraces were grown under the same temperatures, but the drought was imposed at flowering (30 DAS). In the first field experiment, two landraces were grown under three sowing dates and two water regimes; rain fed and drought. The two landraces were Dip C (from hot, dry environment/ Botswana) and Uniswa Red. Drought was imposed approximately at pod filling (63 DAS). In the second field experiment, the same landraces were grown under the same sowing dates and water regimes with drought imposed at 30 DAS. Canopy development and growth were affected by temperature and water stress. In the glasshouse experiments, Uniswa Red always gave the highest leaf number at the high temperature and S19-3 had the lowest at the low temperature. Leaf number decreased with drought, it reached over 100 in the full irrigation treatment, and less than 100 in late season drought treatment and a maximum of 60 in the early season drought treatment. Crops grown under high temperature always had higher leaf area index and total dry matter. The highest yield (306 gm-2) was produced by S19-3 at 33°C in 2007 and the lowest (31.1 g m-2) by Uniswa Red at 33°C in 2008. Comparison of regressions showed no significant difference in water use efficiency (WUE) between treatments in 2007. However, there were significant differences in 2008 when S19-3 (1.80 g kg-1) had a greater WUE than Uniswa-Red (1.09 g kg-1) at the high temperature, but both landraces had similar WUE at the low temperature (S19-3 2.28 g kg-1, Uniswa Red 2.23 g kg-1). This indicates that, despite being from a hot, dry environment, S19-3 performs well at the low temperature, and this is supported by data from 2007 when S19-3 maintained the highest soil moisture content and the lowest evapotranspiration at the low temperature. For the field experiments, where the temperature decreased with delay in sowing, there was a reduction in development, growth and yield. The effect of sowing date on leaf number was significant in both field experiments. In the first field experiment, the four treatments mean of leaf number of leaves declined from 62 per plant in the first sowing date (D1) to 52 leaves per plant in the third sowing date (D3) and 46 leaves per plant in the fifth sowing date (D5) and it was 64, 52, and 37 for D1, D3, and D5 respectively in the second field experiment. WUE decreased with delay in sowing from average of 1.9 g kg-1 in D1 to average of 0.45 g kg-1 in D5. The landraces varied in their response to temperature and drought stress with respect to growth, development and resource capture and conversion. The landraces used different mechanisms to resist drought and temperature stress, that include high leaf water content, reduction in leaf area to reduce transpiration surface and avoidance through faster growth rate.
APA, Harvard, Vancouver, ISO, and other styles
7

Raeini, Sarjaz Mahmoud. "The influences of environmental diversity on water-use efficiency, carbon isotope discrimination leaf movements and nutrition of bush bean." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0028/NQ37014.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ercan, Oya. "Effect Of Drought And Salt Stresses On Antioxidant Defense System And Physiology Of Lentil (lens Culinaris M.) Seedlings." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609250/index.pdf.

Full text
Abstract:
In this study, 14 days old lentil seedlings (Lens culinaris Medik cv. Sultan), which were subjected to 7 days of drought (20% PEG 6000), and salt (150 mM NaCl ) stress , were examined in a comparative manner for the effects of drought and salt stress treatments. In shoot and root tissues physiological parameters such as wet-dry weight, relative water content, root-shoot lengths, membrane electrolyte leakage, and lipid peroxidation in terms of malondialdehyde (MDA) were determined. H2O2 content, proline accumulation and chlorophyll fluorescence analysis were also performed. Changes in the activity of antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6) ascorbate peroxidase (APX: EC 1.11.1.11) and glutathione reductase (GR: EC 1.6.4.2) were observed upon stress treatments. In salt treated lentil seedlings, significant decreases in wet-dry weight, RWC, shoot-root length and chlorophyll fluorescence measurements indicated a sensitivity, when compared to drought treated plants. Higher MDA concentration and higher electrolyte leakage amounts are supported these results. APX, GR and proline seem to play important roles in antioxidant defense against salt stress for both tissues by removing reactive oxygen species and protecting macromolecules and membranes. GR and proline are also maintains the main protective mechanism against drought stress effects. SOD is active in drought stressed roots and salt stressed shoots, where the H2O2 contents are also observed to be increased.
APA, Harvard, Vancouver, ISO, and other styles
9

Henry, Amelia. "Effect of Drought, Flooding, and Potassium Stress on the Quantity and Composition of Root Exudates in Axenic Culture." DigitalCommons@USU, 2003. https://digitalcommons.usu.edu/etd/5633.

Full text
Abstract:
Root exudates include important chelating compounds and can change the rhizosphere pH by several units. These changes are essential for nutrient uptake and can also alter solubility of soil contaminants and increase plant uptake. Mild root-zone stress may increase exudation and more severe stress can damage membranes and increase root turnover, all of which increase root-zone carbon. Increased carbon from this rhizodeposition can increase microbial activity, which might help degrade contaminants. We studied the effect of three types of stress on root exudation of crested wheatgrass (Agropyron cristatum): low K+, drought, and flooding. These stresses were compared to two types of controls: 100% NO3- and high NH4+:NO3- ratio. We developed an improved axenic system to keep plants microbe-free for 70 days while analyzing exudates for total organic carbon (TOC) and organic acids. Axenic conditions were confirmed by plate counts of the leachate and microscopic observations of the leachate and roots. Optimal conditions for plant growth were maintained by monitoring temperature, light, humidity, water, O2, CO2, nutrient availability, and root-zone pH. Plants were grown in Ottawa sand that was layered by size to optimize water availability. Total organic carbon released over the 70-day growth period in mg per gram dry plant was 2.6 in the control, 2.3 in the NH4+ treatment, 3.7 in the flood and K+ stress treatments, and 4.4 in the drought treatment, which was the only treatment significantly higher than controls (p = 0.05). TOC and organic acid levels in the exudates peaked before the end of the study. The peak TOC levels, expressed as mg TOC per gram new dry plant mass, were 1.9 in the control, 3.0 in the NH4+ treatment, 2.9 in the flood, and 5.8 in the drought and K+ stress treatments. Organic acids were measured by gas chromatography-mass spectrometry (GC-MS). Malic acid was the predominant organic acid, and accounted for the majority of the TOC in the drought treatment. Oxalic, succinic, fumaric, and malonic acids accounted for less than 10% of the TOC. These data indicate that stress may enhance phytoremediation by changing root-zone exudate composition.
APA, Harvard, Vancouver, ISO, and other styles
10

Souza, César Bueno de 1982. "Biotecnologia de cana-de-açúcar (Saccharum spp.) para tolerância a estresse hídrico." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317054.

Full text
Abstract:
Orientador: Marcelo Menossi Teixeira, Andrea Akemi Hoshino
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-21T05:45:50Z (GMT). No. of bitstreams: 1 Souza_CesarBuenode_D.pdf: 2755272 bytes, checksum: 945d7a45c10893c9a58603f1e04813ef (MD5) Previous issue date: 2012
Resumo: O Brasil é o maior produtor mundial de cana-de-açúcar e no cenário atual, em que o aumento na busca por energia renovável é visível, o aumento na produtividade da cana é de extremo interesse para o setor sucroalcooleiro. Estresses abióticos influenciam grandemente a produtividade de espécies como a cana e, sendo assim, estudos relacionados com a tentativa de diminuir esse impacto na produtividade são de grande importância. A seca é o estresse ambiental que mais causa prejuízos ao agronegócio e por esse motivo é muito desejável que se desenvolvam novas variedades de cana-de-açúcar que sejam mais tolerantes a esses estresses e com isso o setor sucroalcooleiro será largamente beneficiado. A transgenia é uma das ferramentas utilizadas na produção de novos cultivares comerciais com características agronômicas interessantes e, para o seu sucesso, a identificação de genes com potencial para melhorar essas características faz-se necessária. Sendo assim, o maior objetivo desse trabalho foi a avaliação do potencial biotecnológico de seis genes de cana-de-açúcar que são modulados por seca. Os genes aqui estudados tiveram seu perfil de resposta a seca anteriormente avaliado por microarranjos de DNA e foram selecionados como candidatos para a produção de um novo cultivar de cana-de-açúcar que seja mais tolerante a estresses abióticos. Esses genes foram analisados em plantas transgênicas de tabaco, cana-de-açúcar e/ou Brachypodium. A superexpressão de dois genes de cana em tabaco conferiu maior tolerância a seca e salinidade das plantas transgênicas quando comparadas às selvagens e a proteção de seus usos na produção de plantas tolerantes a estresses abióticos foi solicitada. Há evidências de que um terceiro gene de cana conferira tolerância ao estresse oxidativo em plantas transgências de cana. Além disso, outros três genes de cana foram inseridos em Brachypodium, mas os eventos gerados ainda não foram avaliados. Com o trabalho desevolvido foi, portanto, possível gerar plantas transgênicas tolerantes a estresses abióticos e com isso é possível concluir que a seleção de genes candidatos para melhorias de características agronômicas de interesse através de microarranjos é algo que deve ser explorado e pode-se concluir, ainda, que alguns dos genes analisados estão envolvidos na resposta a seca e/ou aos estresses ambientais em geral
Abstract: Brasil is the largest producer of sugarcane in the world and the seeking for renewable energy is currently visible what makes the increase of sugarcane productivity highly desirable. Abiotic stresses greatly influence the productivity of species such sugarcane. Therefore, studies related to the reduction of these impacts on productivity are highly important. Drought is the environmental stress that causes more damage to agribusiness and because of it the development of new cultivars with higher tolerance to abiotic stresses is desirable since the sugar and ethanol sector will be largely benefited. Transgenic plants production is one of the tools that have been used in the development of new cultivars with interesting agronomic traits and for its success identifying genes that can improve these characteristics is necessary. Thus, the main objective of this study was evaluating the biotechnological potential of six drought-modulated genes from sugarcane. The genes studied here have their drought response profile previously showed by microarray and were selected as candidates for the production of a new sugarcane cultivar with higher tolerance to abiotic stresses. These genes were analyzed in transgenic tobacco, sugarcane and/or Brachypodium plants. The overexpression of two sugarcane genes in tobacco conferred higher drought and salinity tolerance in tobacco plants compared to wild-type and the protection of their uses in the production of plants with higher tolerance to abiotic stress was requested. There are evidences that a third sugarcane gene confers tolerance to oxidative stress in transgenic sugarcane. Furthermore, three other genes were inserted in Brachypodium but these transgenic events were not yet analyzed. With this work was possible to produce transgenic plants that are tolerant to abiotic stresses what let us to conclude that the selection of candidate genes to improve agronomic traits by microarrays is useful and that some of the analyzed genes are involved into drought and/or abiotic stresses in general responses
Doutorado
Genetica Vegetal e Melhoramento
Mestre em Genética e Biologia Molecular
APA, Harvard, Vancouver, ISO, and other styles
11

Tufail, Muhammad Aammar. "Use of plant growth promoting endophytic bacteria to alleviate the effects of individual and combined abiotic stresses on plants as an innovative approach to discover new delivery strategies for bacterial bio-stimulants." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/305571.

Full text
Abstract:
Bacterial endophytes are the organisms that live inside the plant for a full or a part of their life cycle. Endophytic bacteria have captured the interest of agriculture industry due to their plant beneficial properties, such as synthesis of phytohormones, solubilization of soil nutrients, and alleviation of biotic and abiotic stresses. Several studies have reported that stress tolerant endophytic bacteria can work with a similar performance as non-stressed conditions when inoculated to the plants under stressed conditions. Combination of abiotic stresses such as salinity, drought and low nitrogen stress can have additive or agonistic effects on bacterial and plant growth, and their interactions. However, very few studies have reported the impact of combined stress on endophytic bacterial assisted plant growth promotion. Therefore, understanding the underlying mechanisms of endophytic bacterial assisted plant’s tolerance abiotic stresses may provide the means of better exploiting the beneficial abilities of endophytic bacteria in agricultural production. Thus, the aim of this thesis was to study the stress tolerance mechanisms, beneficial characteristics, and plant growth promotion characteristics of endophytic bacteria under individual and combined abiotic stresses. Transcriptome analysis of endophytic bacteria revealed that tolerance mechanisms to deal with one kind of stress is different than concurrent stresses. Salinity and drought stress largely modulated the genes involved in flagellar assembly and membrane transport, showing reduced motility under stress conditions to preserve the energy. Additionally, bacterial endophyte that can fix nitrogen was studied with maize plant growth promotion under drought and low nitrogen stress conditions. The results suggested that diazotrophic bacterial endophyte can promote plant growth under moderate individual and combined stress conditions. Plant growth promoting endophytic bacteria can be utilized as an efficient tool to increase crop production under individual and concurrent abiotic stresses.
APA, Harvard, Vancouver, ISO, and other styles
12

Carroll, David A. "Drought and Nitrogen Effects on Maize Canopy Temperature and Stress Indices." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5932.

Full text
Abstract:
Increased water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Management practices, such as controlled deficit irrigation, that seek to maximize the productivity of a limited water supply are critical. When using controlled deficit irrigation, remote sensing of crop canopy temperature is a useful tool for assessing crop water status and for more precise irrigation management. However, there is potential that nutrient deficiencies could compound the interpretation of water status from leaf temperature by altering leaf color and radiation balance. One objective of this thesis was to evaluate whether nitrogen fertility status of maize interacts with remotely sensed leaf temperature under full and limited irrigation. Another objective was to evaluate the effect of varying irrigation and nitrogen regimes on three water stress indices: Crop Water Stress Index (CWSI), Degrees Above Non-Stressed (DANS), and Degrees Above Canopy Threshold (DACT). Replicated studies were conducted using maize grown in both the glasshouse and the field. The glasshouse study consisted of combinations of well-watered and drought irrigation and sufficient and deficient nitrogen levels, while the field study consisted of combinations of well-watered, limited or controlled deficit, and drought irrigation and sufficient, sufficient delayed, and deficient nitrogen levels. In the glasshouse, leaf chlorophyll content was reduced moderately by limited irrigation and more so by N deficiency. For most observations in the glasshouse, the remotely sensed leaf temperatures were affected by irrigation, but not by N level. With drought irrigation, leaf temperature averaged 29.0° C, compared to 27.9 °C for the well-watered treatment. Similar results were observed in the field, illustrating the utility of canopy temperature in detecting water stress and that the measurement was not confounded by N status. It was also found that irrigation had a significant effect on all three water stress indices. For example, in the glasshouse, cumulative DANS was 32.2 for the drought treatment and 15.5 for the well-watered treatment. Similar results were found for other stress index measurements both in the glasshouse and the field. DANS underestimated stress on days when the reference crop was stressed and overestimated stress on low temperature days. DACT risks finding no stress when temperatures are below the canopy threshold temperature of 28.0 °C. Thus, CWSI is the most effective index, given that it takes humidity and air temperature into account. Indices were only weakly related to leaf area, biomass or grain yield, or crop water productivity. Linear regression of Nitrogen Sufficiency Index and its effect on crop growth found significant effects on biomass and grain yield, crop water productivity, and final leaf area. Thus, water stress indices are useful tools in evaluating crop water status, but consideration of other factors, such as nutrient status, must be taken for prediction of crop growth and yield.
APA, Harvard, Vancouver, ISO, and other styles
13

Simpson, Katrina Lynn Scott. "Interactions between aphids and their host plants under drought stress." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8294.

Full text
Abstract:
Interactions between host plants and aphids under water stress conditions were examined. Two controlled environment room studies, a Veld experiment and phenological modelling analysis were used to investigate three different plant-aphid relationships. The aim of these studies was to determine the results of water shortage on plant and pest populations, which are likely to result under climate change scenarios. The central hypothesis was that mild drought stress would lead to greater aphid populations through a beneficial increase of small nitrogenous molecules in the phloem sap providing improved diet quality — the Plant Stress Hypothesis (White, 1969). Myzus persicae (the peach–potato aphid) is a broad-range feeder with a preference for senescent foliage. Contrary to expectations, on young cabbage plants, Brassica oleracea var capitata, it was found to increase faster and to a greater extent on well-watered hosts. Aphids were also found to prevent osmoregulation in droughted plants. Despite this, the aphid infestation led to a drought-like response in all plants irrespective of watering regime, causing significantly reduced growth. Metopolophium dirhodum (the rose–grain aphid) overwinters as eggs on Rosa spp. but most of its life-cycle is spent on grasses and cereal crops. As with M. persicae, aphid infestation caused drought-like symptoms even in well-watered plants. The mechanism of reduction in plant health is most likely through aphid damage to the efficiency of Photosystem a within 7 days of infestation. On young barley plants, Hordeum vulgare, the rose–grain aphid was found to increase faster and to greater extent on droughted hosts. In contrast to M. persicae, the study strongly supported the Plant Stress Hypothesis, Finding that even mild water stress of approximately −0.3 MPa could lead to conditions favourable to rapid aphid population increase. The difference in the response of different species of aphids may be associated more with the levels of soluble nitrogen in their diet than specifically host plant water status. Drepanosiphum platanoidis is an aphid specific to sycamore, Acer pseudoplatanus and spends its entire life-cycle on that species. In the Veld, the total number of aphids supported by a single tree was found to correlate most strongly with soluble leaf nitrogen. In addition, the number of aphids on individual leaves was found to correlate strongly and negatively with stomatal conductance and leaf water potential. Finally, analysis of historical aphid suction-trap data was carried out. UK Rothamsted suction-traps are 12.2 m tall and sample air at 0.75 m3 s-1, with daily aphid sampling between April and November. The traps are designed to catch the largest proportion of aphids in the total insect sample and to reduce the effect of surrounding land-use on the sample. The area represented by a trap may be as much as 700 km2 (Harrington and Woiwod, 2007). The dataset is the longest and most geographically extensive for aphid populations, comprising 46 sites across Europe as of 2011. In this analysis, aphid and meteorological data from the Edinburgh East Craigs site were used. This also enabled comparison with D. platanoidis numbers collected in the Veld, which showed a strongly significant positive relationship between the two. Since the data collected in suction-traps are correlated with numbers in the Veld, aphid population analysis can be improved with use of these longer datasets, without reliance on shorter-term Veld surveys. The various population characteristics examined were found to be strongly correlated with each other, but were unconnected to data from previous years. The date of first catch was found to be significantly advancing over time, with strong influences from daily minimum temperatures and vapour pressure deficits of the air within the year. Higher temperatures with lower humidity tend to bring forward the date of first catch. Lower tends to depress the population in the summer. The overall hypothesis that mild drought would benefit aphid populations cannot be accepted, but in two cases of the experiment sections of the work there were strong relationships between aphid numbers and both leaf temperature and soil moisture. The meteorological data analysis indicates that climatic changes towards a hotter, drier climate could substantially alter population dynamics. Harrington, R. and Woiwod, I. (2007). Foresight from hindsight: The Rothamsted Insect Survey. Outlooks on Pest Management, 18, 9–14. White, T. (1969). An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology, 50, 905–909.
APA, Harvard, Vancouver, ISO, and other styles
14

Krishnan, Arjun. "Systems analysis of stress response in plants." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/77221.

Full text
Abstract:
The response of plants to environmental stress spans several orders of magnitude in time and space, causing system-wide changes. These changes comprise of both protective responses and adverse reactions in the plant. Stresses like water deficit or drought cause a drastic effect in crop yield, while concomitantly agriculture consumes 1/3rd of the fresh water available to us and there is widespread water scarcity around the world. It is, hence, a fundamental goal of modern biology and applied biotechnology to unravel this complex stress response in laboratory model plants like Arabidopsis and crop models like rice. Such an understanding, especially at the cellular level, will aid in informed engineering of stress tolerance in plants. We have developed and used integrative functional genomics approaches to characterize environmental stress response at various levels of organization including genes, modules and networks in Arabidopsis and rice. We have also applied these methods in problems concerning bioenergy. Since the poor knowledge of the cellular roles of a large portion of plant genes remains a fundamental barrier to using such approaches, we have further explored the problem of 'gene function prediction'. And, finally, as a contribution to the community, we have curated a large mutant resource for the crop model, rice, and established a web resource for exploratory analysis of abiotic stress in this model. All together, this work presents insights into several facets of stress response, offers numerous novel predictions for experimental validation, and provides principled analysis frameworks for systems level analysis of environmental stress response in plants.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
15

Terry, Christian James. "Gene expression and ABA biosynthesis in water stressed plants." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Banfield-Zanin, Jennifer A. "The effect of drought stress on the green spruce aphid." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18966.

Full text
Abstract:
The green spruce aphid, Elatobium abietinum (Walker) (Hemiptera: Aphididae), is the most important defoliating pest of Sitka spruce, Picea sitchensis (Bong.) Carr., in the U.K. Currently, populations of this aphid are limited by freezing periods in the winter, while interactions between climate and other factors regulate population dynamics. Climate change in the U.K. is predicted to result in: (1) warmer winters, improving overwinter survival by aphid populations, and (2) an increase in hot and dry summers, likely to place Sitka spruce under drought stress. These could promote aphid densities and increased damage to the trees, resulting in losses to plant growth and productivity. Few studies have been conducted on the effect of drought stress on arboreal herbivores. This project sought to explore the effects of different intensities of spring-summer drought stress on E. abietinum on Sitka spruce. Populations and their effects on their host plant, in terms of needle retention and impact on tree growth, were observed in a semi-field nursery setting. The performance of individual aphids was also observed under controlled conditions at intervals following bud-burst in spring, and again in autumn. Finally, a study was conducted on the consumption rates of specialist and generalist Coccinellid predators feeding on aphids reared under differing drought intensities. Elatobium abietinum exhibited an overall positive response to moderate intermittent drought stress, while severe stress was typically detrimental. When considered with aphid size, Coccinellid predator consumption rates reflected these findings. Changes to damage levels on Sitka spruce can therefore be expected under drought stress; increases are likely under moderate intermittent stress, though the nature of changes under severe stress levels remain unclear. The results revealed complex interactions between drought stress, E. abietinum and Sitka spruce. Given the potential impact of the aphid, it is important to understand the possible responses under climate change.
APA, Harvard, Vancouver, ISO, and other styles
17

Abd, El-Hakeem Mohamed Mahmoud. "In vitro selection of stress tolerant cell lines and plants of Tagetes spp." Thesis, Coventry University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kleczewski, Nathan Michael. "Nutrient And Drought Effects On Biomass Allocation, Phytochemistry, And Ectomycorrhizae Of Birch." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1230730880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pradhan, Gautam Prasad. "Effects of drought and/or high temperature stress on wild wheat relatives (AEGILOPS species) and synthetic wheats." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/11980.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
P.V. Vara Prasad
High temperature (HT) and drought are detrimental to crop productivity, but there is limited variability for these traits among wheat ([italics]Triticum aestivum[end italics] L.) cultivars. Five [italics]Aegilops[end italics] species were screened to identify HT (52 accessions) and drought (31 accessions) tolerant species/accessions and ascertaining traits associated with tolerance. Four synthetic wheats were studied to quantify independent and combined effects of HT and drought. [italics]Aegilops[end italics] species were grown at 25/19°C day/night and 18 h photoperiod. At anthesis, HT was imposed by transferring plants to growth chambers set at 36/30°C, whereas in another experiment, drought was imposed by withholding irrigation. Synthetic wheats were grown at 21/15°C day/night and 18 h photoperiod. At anthesis or 21 d after anthesis, plants were exposed to optimum condition (irrigation + 21/15°C), HT (irrigation + 36/30°C), drought (withhold irrigation + 21/15°C), and combined stress (withhold irrigation + 36/30°C). Stresses were imposed for 16 d. High temperature and drought stress significantly decreased chlorophyll, grain number, individual grain weight, and grain yield of [italics]Aegilops[end italics] species (≥ 25%). Based on a decrease in grain yield, [italics]A. speltoides[end italics] and [italics]A. geniculata[end italics] were most tolerant (~ 61% decline), and [italics]A. longissima[end italics] was highly susceptible to HT stress (84% decline). Similarly, [italics]A. geniculata[end italics] had greater tolerance to drought (48% decline) as compared to other species (≥ 73% decline). Tolerance was associated with higher grains spike [superscript]-1 and/or heavier grains. Within [italics]A. speltoides[end italics], accession TA 2348 was most tolerant to HT with 13.5% yield decline and a heat susceptibility index (HSI) 0.23. Among [italics]A. geniculata[end italics], TA 2899 and TA 1819 were moderately tolerant to HT with an HSI 0.80. TA 10437 of [italics]A. geniculata[end italics] was the most drought tolerant accession with 7% yield decline and drought susceptibility index 0.14. Irrespective of the time of stress, HT, drought, and combined stress decreased both individual grain weight and grain yield of synthetic wheats by ≥ 37%, 26%, and 50%, respectively. These studies suggest a presence of genetic variability among [italics]Aegilops[end italics] species that can be utilized in breeding wheat for HT and drought tolerance at anthesis; and combined stress of drought and high temperature on synthetic wheats are hypo-additive in nature.
APA, Harvard, Vancouver, ISO, and other styles
20

Hale, Bethan Katy. "Effects of host plant drought stress on the performance of the Bird Cherry-Oat aphid, Rhopalosiphum padi (L.)." Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Guretzki, Sebastian [Verfasser]. "Development of plant species and ecotypes tolerant to drought stress as crop plants / Sebastian Guretzki." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1053414587/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vasquez-Robinet, Cecilia. "Relationships Between Expression of Heat Shock Protein Genes and Photosynthetic Behavior During Drought Stress in Plants." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27009.

Full text
Abstract:
Heat shock proteins (HSPs) are expressed in response to environmental stresses. Compared to other kingdoms, plant HSP families are larger, presumably the result of adaptation to a wide range of stresses. Following on an analysis of drought stress characteristics in loblolly pine (Watkinson et al., 2003), expression patterns of HSP gene expression during photosynthetic acclimation were examined. One cycle of mild (-1Mpa) followed by two cycles of severe stress (-1.7Mpa) were probed for conditioning effects. Photosynthetic acclimation occurred after the first cycle. No acclimation occurred without the first mild cycle. Microarray/RT-PCR analyses showed that a pine homolog to GRP94 (ER-resident HSP90) was up-regulated after rehydration coincident with acclimation. This GRP94 is closely related to GRP94 from the desiccation tolerant plant X. viscosa, supporting the importance of this gene during acclimation to water deficit. HSP genes whose products localized to the mitochondrion showed gradual up-regulation after consecutive cycles of severe drought. The Arabidopsis pine GRP94 homolog, (AtHSP90-7) was then analyzed, using bioinformatics (Pati et al., 2006) and laboratory tools. Genes encoding putative candidate co-chaperones for GRP94 and other HSP90s were discovered, which contained water stress-related cis-elements. Arabidopsis (Col-0) wild type and two T-DNA insertion mutants in HSP90-7 were used to study the importance of this gene for photosynthetic acclimation. Only the mutants were able to acclimate to drought stress, with the level of AtHSP90-7 expression in the mutants being reduced compared to the wild type. AtHSP90-7 may have a different role in Arabidopsis, and its reduced expression activated other protective genes (Klein et al., 2006). Responses to extreme drought in resistant (Sullu) and susceptible (Negra Ojosa) lines of Andean potatoes were also compared in order to identify relationships between HSPs gene expression, and tolerance, defined as the ability to maintain photosynthesis at 50% after 25 days of drought and to recover from the stress. Tolerance was correlated with up-regulation of HSPs (mostly chaperonins) and antioxidant genes all of whose gene products are located in the chloroplast.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
23

Eakes, Donald Joseph. "Moisture stress conditioning, potassium nutrition, and tolerance of Salvia splendens 'Bonfire' to moisture stress." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54350.

Full text
Abstract:
The objective of this study was to determine the leaf water relations, gas exchange, and growth of the bedding plant salvia Salvia splendens 'Bonfire‘ as influenced by moisture stress conditioning (MSC - exposing plants to 4 sublethal dry-down cycles) and potassium (K) nutrition. Plants were fertilized with one of six K rates: 25, 75, 150, 300, 450, and 600 ppm as KCl in experiment one. Seven weeks after seeding plants were subjected to MSC. MSC and increasing K rate resulted in osmotic adjustment and increased cellular turgor potentials. Foliar K content increased as osmotic potentials decreased due to treatment. Although there was no interaction, MSC and high K rates both reduced transpiration (E), leaf conductance (g₁), and daily gravimetric water loss during well watered conditions. Greatest shoot dry weight occurred for plants grown with 300 ppm K and no-MSC. Gas exchange of salvia as influenced by MSC during the onset of moisture stress was determined in experiment two. On day one following final irrigation, MSC plants had lower mid-day E, g₁, hourly gravimetric water loss per unit leaf area, and net photosynthesis (Pn) compared to controls, despite no differences in leaf water potential (ψ₁). Percentage of stomatal inhibition of Pn (SI) was greater for MSC plants than controls with no differences in mesophyllic resistance to CO₂ (rm). On day two, MSC plants had greater Pn, E, g₁, and hourly gravimetric water loss per unit leaf area, while SI and rm were lower than controls. MSC plants maintained positive Pn rates and turgor to lower ψ₁ than control plants. Water use efficiency (WUE) estimates for MSC plants were greater than for controls. Salvia plants were fertilized with 75, 300, or 600 ppm K to determine the influence of K rate on gas exchange during the onset of moisture stress in a third experiment. On day one following final irrigation, plants grown with K rates of 300 and 600 ppm had lower E, g₁, hourly gravimetric water loss per unit leaf area, and Pn compared to 75 ppm K plants. On day two, 600 ppm K plants had greater Pn, E, and g₁ as the experiment was terminated compared to plants grown with 75 ppm K, although ψ₁ was similar. Potassium rate had little affect on WUE.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
24

Pessarakli, Mohammed, K. B. Marcum, and David M. Kopec. "Drought Tolerance of Twenty one Saltgrass (Distichlis) Accessions Compared to Bermudagrass." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2001. http://hdl.handle.net/10150/216354.

Full text
Abstract:
Fourteen (14) Arizona accessions and 7 Colorado accessions of Saltgrass (Distichlis spicata), collected from Arizona and Colorado and 1 Bermudagrass (Cynodon dactylon), cultivar Midiron (check), were studied in a greenhouse to evaluate their growth responses in terms of shoot dry weights and percentage of visual green under drought stress conditions. Plants were grown under normal (daily watering and weekly fertilizer application) for one year for complete establishment. Then, the plants were deprived from water for four months (January 5, 2001 - May 5, 2001). Plant clippings were harvested weekly, oven dried at 60 °C, and the dry weights were recorded. At each harvest, percentage of green cover were also estimated and recorded. After the last harvest, plants were re-watered to assess and compare the percent of recovery. Overall, the results (both shoot dry weights and the percent of the visual green) show that the A138 and A137 (Arizona accessions) were the best accessions and the C66 (Colorado accession) was the worst. Both the shoot dry weights and the percent of visual green cover decreased as the drought period progressed. In general, most of the saltgrass accessions were more tolerant to drought stress than the bermudagrass.
APA, Harvard, Vancouver, ISO, and other styles
25

Yang, Yang. "Non-contacting techniques for detecting plant drought stress in a closed environment." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1068499233.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2003.
Title from first page of PDF file. Document formatted into pages; contains xx, 245 p.; also includes graphics. Includes bibliographical references (p. 206-216).
APA, Harvard, Vancouver, ISO, and other styles
26

Pfunde, Cleopatra Nyaradzo. "Parent characterization of quality protein maize (Zea mays L.) and combining ability for tolerance to drought stress." Thesis, University of Fort Hare, 2012. http://hdl.handle.net/10353/d1007536.

Full text
Abstract:
Quality protein maize (QPM) has enhanced levels of two essential amino acids, lysine and tryptophan compared to normal maize. This makes QPM an important cereal crop in communities where maize is a staple crop. The main abiotic factor to QPM production is drought stress. Little information is available on the effect of drought stress on QPM. Therefore, the objectives of this study were to: (i) conduct diversity analysis of QPM inbred lines using morpho-agronomic and simple sequence repeat markers, (ii) screen available QPM inbred lines and F1 progeny for tolerance to seedling drought stress, (iii) determine the combining ability and type of gene action of QPM inbred lines for tolerance to seedling drought stress, grain yield and endosperm modification. The study was conducted in South Africa, at the University of Fort Hare. Morphological characterisation of 21 inbred lines was done using quantitative and qualitative traits. A randomised complete block design with three replicates was used for characterizing the inbred lines in the field. Genstat statistical software, version 12 (Genstat ®, 2009) was used for analysis of variance (ANOVA) and descriptive statistics. Analysis of variance was performed on all quantitative data for morphological traits. Data for qualitative traits was tabulated in their nominal classes. Traits that contributed most to the variation were days to anthesis, days to silking, anthesis-silking interval, plant height, number of kernel rows, ear length and grain yield. Cluster analysis grouped the inbred lines into three main clusters. The first cluster was characterised by tall and average yielding lines, while the second cluster showed the least anthesis-silking interval, and had the highest yield. Cluster three consisted of lines that were early maturing, but were the least yielding. Genetic distances between maize inbred lines were quantified by using 27 simple sequence repeat markers. The genetic distances between genotypes was computed using Roger’s (1972) genetic distances. Cluster analysis was then carried out using the neighbour-joining tree method using Power Marker software version 3.25. A dendrogram generated from the genetic study of the inbred lines revealed three groups that concurred with expectations based upon pedigree data. These groups were not identical to the groups generated using morpho-agronomic characterisation. Twenty one QPM inbred lines were crossed using a North Carolina design II mating scheme. These were divided into seven sets, each with three inbred lines. The three inbred lines in one set were used as females and crossed with three inbred lines in another set consisting of males. Each inbred line was used as a female in one set, and as a male in a second set. Sixty three hybrids (7 sets x 9 hybrids) were formed and evaluated in October 2011, using a 6x8 alpha-lattice incomplete block design with three replicates under glasshouse and optimum field conditions. A randomised complete block design with three replicates was used for the 21 parental inbred lines. Traits recorded for the glasshouse study were, canopy temperature, chlorophyll content, leaf roll, stem diameter, plant height, leaf number, leaf area, fresh and dry root and shoot weights. Data for the various traits for each environment, 25 percent (stress treatment) and 75 percent (non-stress) of field capacity, were subjected to analysis of variance using the unbalanced treatment design in Genstat statistical package Edition 12. Where varietal differences were found, means were separated using Tukey’s test. Genetic analyses for grain yield and agronomic traits were performed using a fixed effects model in JMP 10 following Residual Maximum Likelihood procedure (REML). From the results, inbred lines that were not previously classified into heterotic groups and drought tolerance categories were classified based on their total dry weight performance and drought susceptibility index. Inbred lines L18, L9, L8, L6 and L3, in order of their drought tolerance index were the best performers under greenhouse conditions and could be recommended for breeding new varieties that are tolerant to seedling drought stress. Evaluation of maize seedlings tolerant to drought stress under glasshouse conditions revealed that cross combination L18 x L11 was drought tolerant, while cross L20 x L7 was susceptible. Total dry weight was used as the major criteria for classifying F1 maize seedlings as being resistant or susceptible. General combining ability effects accounted for 67.43 percent of the genetic variation for total dry weight, while specific combining ability effects contributed 37.57 percent. This indicated that additive gene effects were more important than non-additive gene action in controlling this trait. In the field study (non-drought), the experimental design was a 6x8 alpha lattice incomplete block design with three replicates. On an adjacent field a randomised complete block design with three replicates was used to evaluate the parental inbred lines. The following variables were recorded: plant height, ear height, ears per plant, endosperm modification, days to silking and days to anthesis, anthesis-silking interval, number of kernels per row, number of rows per ear and grain yield. General analyses for the incomplete lattice block design and randomised complete block design for hybrid and inbred data respectively were performed using JMP 10 statistical software. Means were separated using the Tukey's test. Genetic analyses of data for grain yield and agronomic traits were conducted using a fixed effects model using REML in JMP 10. The importance of both GCA (51 percent) and SCA (49 percent) was observed for grain yield. A preponderance of GCA existed for ear height, days to anthesis, anthesis-silking interval, ears per plant and number of kernels per row, indicating that predominantly, additive gene effects controlled hybrid performance under optimum field conditions. The highest heritability was observed for days to silking (48.27 percent) suggesting that yield could be improved through selection for this trait. Under field conditions, variation in time to maturity was observed. This implies that these inbred lines can be recommended for utilisation in different agro-ecologies. Early maturing lines such as L18 can be used to introduce earliness in local cultivars, while early maturing single crosses such as L18 x L2, L5 x L9, L3 x L4 and L2 x L21 could be recommended for maize growers in drought prone areas such as the former Ciskei. Single crosses L18xL11, L16xL18, L8xL21 and L9xL6 had good tolerance to seedling drought stress. On the other hand, single crosses L18xL11 and L11xL13 had high grain yield and good endosperm modification. All these single crosses could be recommended for commercial production after evaluation across locations in the Eastern Cape Province. Alternatively they can be crossed with other superior inbreds to generate three or four way hybrids, which could then be evaluated for potential use by farmers in the Eastern Cape.
APA, Harvard, Vancouver, ISO, and other styles
27

Choudhury, Feroza Kaneez. "Rapid Metabolic Response of Plants Exposed to Light Stress." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157543/.

Full text
Abstract:
Environmental stress conditions can drastically affect plant growth and productivity. In contrast to soil moisture or salinity that can gradually change over a period of days or weeks, changes in light intensity or temperature can occur very rapidly, sometimes over the course of minutes or seconds. So, in our study we have taken an metabolomics approach to identify the rapid response of plants to light stress. In the first part we have focused on the ultrafast (0-90 sec) metabolic response of local tissues to light stress and in the second part we analyzed the metabolic response associated with rapid systemic signaling (0-12 min). Analysis of the rapid response of Arabidopsis to light stress has revealed 111 metabolites that significantly alter in their level during the first 90 sec of light stress exposure. We further show that the levels of free and total glutathione accumulate rapidly during light stress in Arabidopsis and that the accumulation of total glutathione during light stress is dependent on an increase in nitric oxide (NO) levels. We further suggest that the increase in precursors for glutathione biosynthesis could be linked to alterations in photorespiration, and that phosphoenolpyruvate could represent a major energy and carbon source for rapid metabolic responses. Taken together, our analysis could be used as an initial road map for the identification of different pathways that could be used to augment the rapid response of plants to abiotic stress. In addition, it highlights the important role of glutathione in initial stage of light stress response. Light-induced rapid systemic signaling and systemic acquired acclimation (SAA) are thought to play an important role in the response of plants to different abiotic stresses. Although molecular and metabolic responses to light stress have been extensively studied in local leaves, and to a lesser degree in systemic leaves, very little is known about the metabolic responses that occur in the different tissues that connect the local to the systemic leaves. These could be important in defining the specificity of the systemic response as well as in supporting the propagation of different systemic signals, such as the reactive oxygen species (ROS) wave. Here we report that local application of light stress to one rosette leaf resulted in a metabolic response that encompassed local, systemic and transport tissues (tissues that connect the local and systemic tissues), demonstrating a high degree of physical and metabolic continuity between different tissues throughout the plant. We further show that the response of many of the systemically altered metabolites could be associated with the function of the ROS wave, and that the level of eight different metabolites is altered in a similar way in all tissues tested (local, systemic, and transport tissues). These compounds could define a core metabolic signature for light stress that propagates from the local to the systemic leaves. Taken together, our findings suggest that metabolic changes occurring in cells that connect the local and systemic tissues could play an important role in mediating rapid systemic signaling and systemic acquired acclimation to light stress.
APA, Harvard, Vancouver, ISO, and other styles
28

Almaghamsi, Afaf. "EFFECTS OF ABIOTIC STRESSES ON SORBITOL AND RIBITOL ACCUMULATION AND SORBITOL BIOSYNTHESIS AND METABOLISM IN TOMATO [Solanum lycopersicum L.]." UKnowledge, 2019. https://uknowledge.uky.edu/pss_etds/119.

Full text
Abstract:
Abiotic stresses are responsible for limiting crop production worldwide. Among diverse abiotic stresses, drought and salinity are the most challenging. Plants under these conditions have diverse strategies for tolerating stress. Osmotic adjustment and osmoprotection occur in plants during salinity and drought stress through accumulation of compatible solutes to a high level without interfering with cellular metabolism. Polyols (sugar alcohols) including sorbitol and ribitol are one such class of compatible solutes. Using plants of wild-type (WT) and three genetically-modified lines of tomato (Solanum lycopersicum cv. ‘Ailsa Craig’), an empty vector line ‘TR22’, and 2 sdh anti-sense lines ‘TR45’, and ‘TR49’ designed to severely limit sorbitol metabolism, the objective of this work was to characterize the sorbitol cycle in tomato in response to abiotic stresses. Sorbitol and ribitol content, as well as the enzymatic activities, protein accumulation, and gene expression patterns of the key sorbitol cycle enzymes ALDOSE-6-PHOSPHATE REDUCTASE (A6PR), ALDOSE REDUCTASE (AR), and SORBITOL DEHYDROGENASE (SDH), were measured in mature leaves in response to drought stress by withholding water and by using polyethylene glycol as a root incubation solution to mimic drought stress, to salt stress by incubating roots in NaCl solution, and to incubation of roots in 100 mM sorbitol and ribitol. A6PR, not previously reported for tomato, and AR both exhibited increased activity correlated to sorbitol accumulation during the drought osmotic, and salt stresses, with SDH also increasing in WT and TR22 to metabolize sorbitol. The level of sorbitol accumulation was considerably lower than that of the common sugars glucose and fructose so was not enough to have a significant impact on tissue osmotic potential but could provide other important osmoprotective effects. Use of the sdh antisense lines indicated that SDH has the key role in sorbitol metabolism in tomato as well as a likely role in ribitol metabolism. Like sorbitol, ribitol also accumulated significantly more in the antisense lines during the stresses. Expression and/or activity of A6PR, AR, and SDH were also induced by the polyols, although it is not clear if the induction was due to a polyol signal, the osmotic effect of the incubation solution, or both. In addition, a unique post-abiotic stress phenotype was observed in the sdh anti-sense lines. After both drought and salt stresses and during a recovery phase after re-watering, the antisense lines failed to recover. This may have been due to their accumulation of ribitol. The sdh anti-sense lines were uniquely sensitive to ribitol but not sorbitol, with an apparent foliar and seed germination toxicity to ribitol. The determination that sorbitol, and perhaps ribitol as well, plays a role in abiotic responses in tomato provides a cornerstone for future studies examining how they impact tomato tolerance to abiotic stresses, and if their alteration could improve stress tolerance.
APA, Harvard, Vancouver, ISO, and other styles
29

Cenador, Susanne Tábara. "The Effect of "Drought Tolerant" Plant Labeling on Consumers' Preferences and Willingness to Pay for Ornamental Plants." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7459.

Full text
Abstract:
Utah’s water resources are endangered by low rainfall rates, high per capita water consumption and a strong projected increase of residents. The irrigation of ornamental plant landscaping is estimated to account for 60% of residential water use, and is, therefore, a target of education programs in the effort to promote water conservancy. The water-wise “Yellow Tag” program developed by the Utah Division of Water Resources seeks to provide retail nurseries with free tags for labeling plants which are considered low water use with the objective of promoting water conservation. The objective of this study is to determine consumer preferences for plants labeled with the Yellow Tag. As a means of measuring consumer preference we use willingness-to-pay (WTP). We give participants the choice between daylily, spiderwort and neither. Choice alternatives differ in flower color, purported irrigation need, production location and price. The data for this study was collected through an online survey instrument applied to 463 participants residing in the state of Utah. Our results show that consumers prefer daylilies labeled with the Yellow Tag, and dislike spiderwort labeled with a high irrigation need. Special preference for Yellow Tag labeled ornamentals was found for respondents who are female, living in single houses, are concerned about the price of water and are drought aware. We do not find a preference for flower color or production location. These promising results may encourage Utah governmental and education agencies to continue the Water-Wise program, expand educational programs to increase drought awareness and help retailers optimize their future product mixes.
APA, Harvard, Vancouver, ISO, and other styles
30

Marchand, Gwenaëlle. "Gene regulatory networks involved in drought stress responses : identification, genetic control and variability in cultivated sunflower, Helianthus annuus and its relatives." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2597/.

Full text
Abstract:
La sécheresse affecte le rendement des plantes de grande culture comme le tournesol. Ces plantes développent des réponses morpho-physiologiques pour améliorer leur tolérance au manque d'eau. De nombreux gènes formant un réseau de régulation (GRN) contribuent à un contrôle génétique complexe de ces réponses. Le travail présenté étudie ce réseau, ses différents gènes et leurs interactions chez le tournesol. Tout d'abord, nous avons mis en évidence trois gènes récepteurs du signal environnemental afin de construire un biomarqueur du statut hydrique. Puis, par une étude d'association, nous avons reconstruit le GRN reliant les gènes de réponse au stress et déchiffré leur contrôle génétique. Enfin, par une approche de biologie des systèmes, nous avons inféré le GRN groupant des gènes de régulation et de réponse. Cette étude nous a permis d'identifier des mécanismes majeurs de tolérance à la sécheresse chez le tournesol, ainsi que le rôle de ce réseau dans l'évolution du genre Heliantus
Drought is a major stress that affects growth, physiology and therefore yield of crops as sunflower. To become more tolerant, plants develop complex morpho-physiological responses. Various genes interacting between them and with the environment are involved in the genetic control of those responses. They form together a gene regulatory network (GRN). Here, we focused on these drought GRN, its different gene groups and their interactions in the cultivated sunflower. First, we highlighted three genes reflecting the environmental signal. From their expression we built a plant water status biomarker. Then through an association study, we built the GRN connecting drought responsive genes and we deciphered their genetic control. Finally, thanks to a systems biology approach we inferred the GRN linking regulatory and drought responsive genes. Studying this network, we examined how it could drive phenotypic changes and how it was related to Heliantus evolution and sunflower breeding
APA, Harvard, Vancouver, ISO, and other styles
31

Kalifa, Ali. "Salt stress, and phosphorus absorption by potato plants cv. 'Russet Burbank'." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29727.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sorooshzadeh, Ali. "Environmental stress and calcium nutrition during the seed-filling stage of soybean." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0015/NQ44594.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Attumi, Al-Arbe. "Effect of salt stress on phosphorus and sodium absorptions by soybean plants." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20242.

Full text
Abstract:
The radiotracer methodology was combined with the Hoagland solution culture of growing soybean in a greenhouse to investigate the absorptions of phosphorus (P), calcium (Ca), and sodium (Na) as a function of salinity. Salt stress was varied by using zero to 120 mM NaCl. The research was initiated because of a need to increase soybean production in the saline soils of the semi-arid regions of the world. Although P absorption increased with time at each concentration of NaCl, increasing its concentrations ([NaCl]) to 120 mM reduced P uptake considerably. The addition of inorganic P (Pi) to the salt medium improved P absorption significantly (P < 0.0001) in stem, petiole, and roots. Polynomial regressions showed the relationship between 22Na activity and [NaCl] for leaves and petiole to be cubic (R2 = 1) while in the stem a quadratic relationship prevailed. A maximum of P and Na absorption was observed at 40 mM NaCl. The relationship between 32P activity and increasing [NaCl] was linear for the roots (a positive slope) and the stem (a negative slope). 45Ca and 32P dual labelling part of the experiments failed to produce results because an unexpectedly high degree of tissue quenching which prevented from obtaining the minimum counting requirements for separation. Shoot fresh and dry weights decreased linearly with increasing [NaCl] as did the root fresh and dry weights. Leaf chlorophyll content during the last week of the final harvest showed a linear relationship with time. Chlorophyll increased with time linearly when the growth medium contained zero and 40 mM NaCl; whereas a negative slope was obtained for 80 and 120 mM NaCl. It seems that P fertilization of the soil could ameliorate the salt effect. 22 Na uptake results indicated that there is a mechanism for exclusion of Na from soybean plant parts.
APA, Harvard, Vancouver, ISO, and other styles
34

Pessarakli, Mohammad, David M. Kopec, and Jeff J. Gilbert. "Growth Responses of Selected Warm-Season Turfgrasses under Salt Stress." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2008. http://hdl.handle.net/10150/216638.

Full text
Abstract:
Use of low quality/saline water for turf irrigation, especially in regions experiencing water shortage is increasing. This imposes more salt stress on turfgrasses which are already under stress in these regions. Therefore, there is a great need for salt tolerant turfgrasses to survive under such stressful conditions. This study was conducted in a greenhouse, using hydroponics system, to compare growth responses of three warm-season turfgrasses, bermudagrass (Cynodon dactylon L.), cv. Tifway 419, seashore paspalum (Paspalum vaginatum Swartz), cv. Sea Isle 2000, and saltgrass (Distichlis spicata L), accession A55 in terms of shoot and root lengths and DM, and canopy green color (CGC) under salt stress condition. Whole plants, stolons, and rhizomes were grown in Hoagland solution for 4 months prior to initiation of salt stress. Then, plants were grown for 12 weeks under 4 treatments (control, 7000, 14000, and 21000 mg/L NaCl) with 4 replications in a RCB design trial. During the stress period, shoots were clipped bi-weekly for DM production, shoot and root lengths were measured, and CGC was evaluated weekly. The bi-weekly clippings and the roots at the last harvest were oven dried at 60o C and DM weights were recorded. Shoot and root lengths and shoot DM weights decreased linearly with increased salinity for bermudagrass and paspalum. However, for saltgrass these values increased at all NaCl levels compared with the control. For bermudagrass and paspalum, the highest values were obtained when the whole plants were used, and the lowest ones resulted when the rhizomes were used. The reverse was found for saltgrass. For the control plants, the measured factors were higher and the canopy colors were greener for bermudagrass and paspalum compared with saltgrass. The canopy color changed to lighter green for bermudagrass and paspalum as NaCl salinity increased, but saltgrass maintained the same color regardless of the level of salinity.
APA, Harvard, Vancouver, ISO, and other styles
35

Akhzari, Davoud, and Mohammad Pessarakli. "Effect of Drought Stress on Total Protein, Essential Oil Content, and Physiological Traits of Levisticum Officinale Koch." Taylor & Francis, 2015. http://hdl.handle.net/10150/615121.

Full text
Abstract:
Levisticum officinale Koch is one of the most important plants producing essential oil. An experiment was conducted to determine the effect of drought stress on growth, total protein and essential oil content of Levisticum officinale. The experiment was conducted in a greenhouse, in a completely randomized design using 5 replications. Aridity levels of field capacity irrigation (as control), −0.6 and −1.0 MPa were applied. There was significant effect of aridity on leaf area in Levisticum officinale. The highest leaf area values were found in the lowest aridity (FC) level. The root weight and root length in the −0.6 MPa aridity level were more than that of the control aridity level, but, shoot height and shoot weight were highest in the control treatment. Total soluble protein contents under −0.6 MPa drought stress was numerically lower than that in the control treatment, but statistically there was no significant difference between protein contents in the −0.6 MPa and the control treatment. Compared to the control treatment, total soluble protein contents of Levisticum officinale were significantly decreased in the −1.0 MPa drought treatment. Essential oil content of Levisticum officinale was significantly increased in the −0.6 MPa drought treatment compared to the control. Compared to control treatment, there was a significant reduction found in essential oil content of Levisticum officinale in the −1.0 MPa aridity treatment. The results suggest that in the drought levels between −0.6 to −1.0 MPa, Levisticum officinale could be used for arid and semi-arid lands economical use.
APA, Harvard, Vancouver, ISO, and other styles
36

Khan, Habib Ur Rahman. "Responses of chickpea (Cicer arietinum L.) to zinc supply and water deficits." Title page, contents and summary only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phk4446.pdf.

Full text
Abstract:
Bibliography: leaves 201-228. Widespread deficiencies of mineral nutrients in soils along with limited moisture supply are considered major environmental stresses leading to yield losses in chickpea. This study was conducted to determine the zinc requirement of chickpea and the effect on plant water relations. Critical zinc concentration was estimated. It was found that high and low moisture regimes had no effect on critical zinc concentration and that the value remained almost the same in all chickpea genotypes. Sensitivity of 28 chickpea genotypes were evaluated at two zinc levels. Field studies on zinc fertilization in both Australia and Pakistan showed that the application of zinc increased grain yield in all chickpea genotypes. It was found that plants grown under zinc deficiency could not exploit available soil moisture and water use and water use efficiency was reduced, and concluded that high zinc availability may enhance the ability of plants to endure periods of drought by promoting osmotic adjustment.
APA, Harvard, Vancouver, ISO, and other styles
37

MASON, HUGH STANLEY. "ALTERATIONS IN POLYRIBOSOME AND MESSENGER RIBONUCLEIC ACID METABOLISM AND MESSENGER RIBONUCLEOPROTEIN UTILIZATION IN OSMOTICALLY STRESSED PLANT SEEDLINGS (WATER STATUS, GROWTH, HORDEUM VULGARE)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/188155.

Full text
Abstract:
Polyribosome aggregation state in growing tissues of barley and wheat leaf or stems of pea and squash was studied in relation to seedling growth and water status of the growing tissue in plants at various levels of osmotic stress. It was found to be highly correlated with water potential and osmotic potential of the growing tissue and with leaf or stem elongation rate. Stress rapidly reduced polyribosome content and water status in growing tissues of barley leaves; changes were slow and slight in the non-growing leaf blade. Membrane-bound and free polyribosomes were equally sensitive to stress-induced disaggregation. Incorporation of ³²PO₄³⁻ into ribosomal RNA was rapidly inhibited by stress, but stability of poly(A) ⁺RNA relative to ribosomal RNA was similar in stressed and unstressed tissues, with a half-life of about 12 hours. Stress also caused progressive loss of poly(A) ⁺RNA from these tissues. Quantitation of poly(A) and in vitro messenger template activity in polysome gradient fractions showed a shift of activity from the polysomal region to the region of 20-60 S in stressed plants. Messenger RNA in the 20-60 S region coded for the same peptides as mRNA found in the polysomal fraction. Nonpolysomal and polysome-derived messenger ribonucleoprotein complexes (mRNP) were isolated, and characteristic proteins were found associated with either fraction. Polysomal mRNP from stressed or unstressed plants were translated with similar efficiency in a wheat germ cell-free system; activity of nonpolysomal mRNP was variable, but usually less than that of polysomal mRNP. Deproteinization of mRNP failed to improve its activity. No inhibition of translation of poly(A) ⁺RNA by nonpolysomal mRNP was observed in mixing experiments with the wheat germ cell-free system. It was concluded that no translational inhibitory activity was associated with nonpolysomal mRNP from barley prepared as described.
APA, Harvard, Vancouver, ISO, and other styles
38

Larsson, Marie-France. "The Effect of Plants on Individuals' Stress Level in an Indoor Work Environment." Thesis, Mid Sweden University, Department of Social Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-11141.

Full text
Abstract:

Many instances of sick leave can be linked to diseases caused by stress. An efficient way to counter the negative effects of stress is coping. However, trying to fit coping activities into an already busy schedule can be stressful in itself. Therefore it is interesting to study passive stress-reducing methods, for instance interaction with nature. This paper studied the effect of the presence of plants in a work-like environment on the stress level of 30 participants divided equally in a control group and a test group by measuring their heart rate. A factorial analysis of variance and a multivariate analysis of variance were used to analyze the data. Despite the heart rate of the control group being on an average 5 beats per minute higher than the test group, the difference was found not to be statistically significant. An explanation for this could be the poor reliability of heart rate as a measure of stress.

Keywords: coping, heart rate, indoors, nature, plants, stress, work

APA, Harvard, Vancouver, ISO, and other styles
39

Zhou, Maoqian 1961. "Nitrogen fixation by alfalfa as affected by salt stress and nitrogen levels." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277231.

Full text
Abstract:
The growth and Nitrogen fixation by one low salt tolerant alfalfa (Medicago sativa L.) and two germination salt tolerant selections inoculated with were investigated at two salt levels (0, -0.6 Mpa) and two N rates (1, 5ppm) using a system which automatically recirculates a nutrient solution. The high level of salinity (-0.6 Mpa osmotic potential of culture solution) resulted in substantial reduction in the N fixation percentage and total fixed N. The effect of salinity was more pronounced for later cuttings than for the earlier cutting. The N fixation percentages were substantially decreased by increasing N level and the reduction was enhanced by time. The N treatment levels did not exhibit a significant effect on total fixed N. Cultivars did not differ in either growth or N fixation. However, the interaction of N and salinity significantly decreased the percentage and amount of N fixation.
APA, Harvard, Vancouver, ISO, and other styles
40

Atti, Sarra. "Assessment of soybean (Glycine max (L.) Merr.) water stress : lipo-chitooligosaccharides application and spectral response." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=78242.

Full text
Abstract:
This study was conducted to improve knowledge of the impact of chronic soil water deficit and to test a novel technique of water management consisting of Lipo-chitooligosaccharides (LCO) spray application. It also aimed at evaluating changes in canopy reflectance due to water stress and LCO spray. Water stress during reproductive development resulted in an important decrease of plant physiological activity, vegetative growth, and productivity, and accelerated plant senescence at both water stress levels. Water deficit increased leaf reflectance in the visible and decreased it in the infrared ranges of the spectrum at both imposed stress levels. Foliar application of LCO affected overall plant physiological activity, increased flower and pod numbers. LCO treatment had the largest positive effect on the growth pattern of soybean at the medium stress level, which is the stress level most commonly observed in standard farm-field conditions. LCO treatment constitutes a potential technology for reducing water deficit effects. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
41

Le, Fevre Ruth Elizabeth. "Phytate and plant stress responses." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ingarfield, Patricia Jean. "Effect of water stress and arbuscular mycorrhiza on the plant growth and antioxidant potential of Pelargonium reniforme Curtis and Pelargonium sidoides DC." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2794.

Full text
Abstract:
Thesis (MTech (Horticulture))--Cape Peninsula University of Technology, 2018.
Pelargoniums have been studied extensively for their medicinal properties. P. reniforme and P. sidoides in particular are proven to possess antimicrobial, antifungal and antibiotic abilities due to their high antioxidant potential from compounds isolated from their tuberous roots. These plants have now been added to the medicine trade market and this is now causing concern for conservationists and they are generally harvested from the wild populations. This study evaluated the effect of water stress alone and in conjunction with arbuscular mycorrhiza on two species of Pelargoniums grown in a soilless medium. The experiment consisted of five different watering regimes which were applied to one hundred plants of each species without inoculation with arbuscular mycorrhiza and to one hundred plants of each species in conjunction with inoculation with AM. All the plants in the experiment were fed with a half-strength, standard Hoagland nutrient solution at varying rates viz. once daily to pot capacity, every three days to pot capacity, every six days to pot capacity, every twelve days to pot capacity and every twenty-four days to pot capacity. The objectives of the study were to measure the nutrient uptake, SPAD-502 levels (chlorophyll production) and metabolite (phenolics) formation of both species, grown under various rates of irrigation and water stress, as well with or without the addition of arbuscular mycorrhiza at planting out. Each treatment consisted of 10 replicates. SPAD-502 levels were measured weekly using a hand held SPAD-502 meter. Determination of nutrient uptake of macronutrients N, K, P, Ca, Mg and Na and micronutrients Cu, Zn, Mn, Al and B were measured from dry plant material at the end of the experiment by Bemlab, 16 Van Der Berg Crescent, Gants Centre, Strand. Plant growth in terms of wet and dry shoot and root weight were measured after harvest. Determination of concentrations of secondary metabolites (phenolic compounds) were assayed and measured spectrophotometrically at the end of the experiment. The highest significant reading of wet shoot weight for P. reniforme was taken in treatments 1 and 2 with and without mycorrhiza i.e. WF1, WF1M, WF2 and WF2M, with the highest mean found in WF1 with no mycorrhiza. This indicates that under high irrigation AM plays no part in plant growth, possibly due to leaching. More research is necessary in this regard. With regard to wet root weight, this was found to be not significant in any of the treatments, other than the longest roots being found in WF4. Measurements for dry root weight showed that WF1,2,3 and 5 were the most significant at P≤ 0.001 significance, with the highest weight found at treatment being WF3 and WF3M. The highest mean of shoot length of the plants was measured in treatment WF2 at moderate watering, but no statistical difference was found with water application and mycorrhiza addition. Nutrient uptake was increased in P. sidoides in all the different watering levels in the experiment except in the uptake of Mg. AM inoculation showed an increase in the uptake of Ca, while absorption of N occurred at higher water availability. K uptake was enhanced by the addition of AM in high water availability and K utilisation decreased as water stress increased. Medium to low watering resulted in higher leaf content in P. sidoides while the interaction between water availability and AM inoculation increased chlorophyll production towards the end of the experiment.
APA, Harvard, Vancouver, ISO, and other styles
43

Aksoy, Emre. "Effect Of Drought And Salt Stresses On The Gene Expression Levels Of Antioxidant Enzymes In Lentil (lens Culinaris M.) Seedlings." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609960/index.pdf.

Full text
Abstract:
This study was carried out for understanding of antioxidant mechanisms of lentil under abiotic stress conditions. For this aim, 14 days old lentil seedlings (Lens culinaris Medik cv. Sultan-1) were subjected to drought (20% PEG 6000), and salt (150 mM NaCl ) stress for 6, 12 and 24 hours, for 3, 5 and 7 days. PCR conditions for Mn SOD, Cu/Zn SOD, chloroplastic/mitochondrial GR, CAT and chloroplast /stromal APX antioxidant enzymes were optimized. Then, total RNA was isolated from stressed and non-stressed plant roots and shoots. The gene expression levels of Mn SOD and Cu/Zn SOD were examined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) technique. Arabidopsis 18S rRNA was used as internal control in multiplex PCR technique. Relative expression levels of Mn SOD were lower in shoots and roots under salt stress while no significant change was obtained under drought conditions in both tissues. Relative expression levels of Mn SOD were increased on 5th day of salt and drought applications in both shoots and roots. Relative expression levels of Cu/Zn SOD increased after 5th, and on 1st and 7th days of drough treatment in shoots and roots, respectively. On the other hand, expression levels of Cu/Zn SOD increased on 3rd and 5th days of salt treatment in shoot tissues. Although it is nearly impossible to understand the whole antioxidant mechanism of plants under environmental stresses, this study was the first step to learn about molecular background of antioxidant defence mechanisms in lentil.
APA, Harvard, Vancouver, ISO, and other styles
44

Alghabari, Fahad. "Effect of Rht alleles on the tolerance of wheat to high temperature and drought stress during booting and anthesis." Thesis, University of Reading, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606370.

Full text
Abstract:
Human induced climate change is predicted to increase mean surface air temperature by 2 to 4 degrees C with significant drying in some regions by the end of this century which will affect wheat production and billions of people who depend on the crop for their livelihood. Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain yield, grain set (grains/spikelet) and grain quality of near-isogenic lines (NILs) were assessed following three day transfers to controlled environments imposing day temperatures from 20 to 40 degrees C at the Plant Environmental Laboratory (PEL), University of Reading, UK.
APA, Harvard, Vancouver, ISO, and other styles
45

Phillips, Trevor David. "Stress manipulation in Dunaliella salina and dual-stage [beta]-carotene production." Thesis, Rhodes University, 1994. http://hdl.handle.net/10962/d1004097.

Full text
Abstract:
The alga Dunaliella salina accumulates large quantities of β-carotene in response to certain environmental and physiological stresses. This hyper-accumulation process has been commercially exploited. However, the currently employed averaging or single-stage process produces β-carotene yields well below the genetic potential of the organism due to the inverse relationship between growth and secondary metabolite production. A dual-stage process, which separates the distinctive growth and secondary metabolite production stages of the alga, has been proposed. The broad aim of the research programme was to evaluate the practicality, scale-up and economic viability of a dual-stage β-carotene production process from D. salina. Preliminary laboratory studies showed that although stress factors such as high salinity and a range of nutrient limitations enhance β-carotene accumulation in D. salina, high light intensity is the single most important factor inducing β-carotene hyper-accumulation in the alga. Furthermore, the preliminary studies indicated that 6-carotene production could be successfully manipulated by the imposition of stress. The stress response of D. salina to high light stress was examined at a fundamental level. The relative partitioning of β-carotene between thylakoid membrane and interthylakoid globular β-carotene has revealed two responses to high light stress. The first is a response in which the alga adapts to the photoinhibitory effects of high light stress by the rapid accumulation and the peripheral localisation of Jl-carotene to the outer extremities of the chloroplast. This is followed by a maintenance response which is characterised by the recovery of the photosynthetic rate and cell growth. A possible interrelationship between the extent of the photo inhibitory response and the amount of β-carotene hyper-accumulation has been noted. An outdoor evaluation of the growth stage of the dual-stage system has demonstrated that D. salina can be grown in a relatively low salinity, nutrient sufficient medium for extended periods without overgrowth by small non-carotenogenic Dunaliella species. In addition, biomass productivities of three times greater than those obtained in the currently employed averaging system were achieved. The role of high light intensity in β-carotene hyper-accumulation was confirmed in outdoor scale-up stress pond studies. The studies demonstrated the feasibility of stress induced ll-carotene production in outdoor cultures of D. salina and β-carotene yields three times greater than those obtained in the currently employed averaging process were achieved. The dual-stage process imposes the specific requirement of viable cell separation on the harvesting system employed. A flocculation-flotation process and an air-displacement crossflow ultrafiltration system were developed and successfully evaluated for the separation of D. salina from the brine solution in a viable form. The extraction of β-carotene from D. salina was evaluated. Supercritical fluid extraction studies showed that the use of a co-solvent mixture of carbon dioxide and propane could effectively reduce the high extraction pressures associated with supercritical carbon dioxide extraction. In addition, a novel hydrophobic membrane assisted hot oil extraction process was developed which separates the complex oil-water emulsions produced during hot oil extraction of 6-carotene from wet D. salina biomass. Process design and economic evaluation studies were undertaken and showed that the economics of the dual-stage process offer significant advantages over the currently employed averaging process.
APA, Harvard, Vancouver, ISO, and other styles
46

Alm, David Michael. "Comparison and interaction of heat and salt stress in cultured tobacco cells." Virtual Press, 1986. http://liblink.bsu.edu/uhtbin/catkey/445616.

Full text
Abstract:
Cultured tobacco cells (Nicotiana tabacum L., cv Wisconsin-38) were subjected to temporary sub-lethal heat and salt shock treatments to determine the effects of these treatments on various physiological parameters after subsequent lethal heat or salt stresses. Tobacco cells developed a tolerance to a non-permissive temperature stress (54C for 14 min) when pretreated with heat shock of 38C for 2h but not when pretreated at 42C for 2h. Cells pretreated at 38 (2h) exhibited less than 30% normal growth when the 54C stress came immediately after the 38C treatment. Tolerance to the 54C stress developed with increased interval between shock and stress with cells exhibiting 95% normal regrowth when the 54C stress was administered 8h after the 38C shock. The developement of heat tolerance was inhibited if heat shock was done in the presence of a non-injuring level of EGTA (.0.5mM). Cells treated with EGTA during heat shock grew normally at 23C but not after a 54C heat stress. EDTA (0.5mM) had little effect on the acquisition of tolerance to heat stress.Wisconsin-38 cells developed a tolerance to a non-permissive salt stress (2% NaCl for 16h) when pretreated at a lower salt level (1.2% NaCl) for 3h. Cells heat shocked at 38C exhibited increased tolerance of the lethal salt stress up to 8h. Conversely, cells heat shocked at 42C exhibited immediate tolerance to lethal salt stress and this tolerance decayed over eight hours. The heat shock-induced acquisition of salt tolerance was inhibited by both EGTA and EDTA.Proteins synthesized during heat and salt stress treatments were labeled with [35S]-methionine and/or [3H]-leucine and separated using Sodium dodecylsulfate polyacrylamide gel electrophoresis. Fluorographic analysis of the gels indicate that a number of proteins are produced in response to heat shock. Similar analysis of proteins from salt shocked cells indicates that no salt shock proteins are produced in response to a brief low-level sodium chloride shock.
APA, Harvard, Vancouver, ISO, and other styles
47

Phillips, Lesley Gail. "Constituent processes contributing to stress induced β-carotene accumulation in Dunaliella salina." Thesis, Rhodes University, 1995. http://hdl.handle.net/10962/d1005341.

Full text
Abstract:
The alga Dunaliella salina possesses the unique ability to accumulate up to 14 % of it's dry weight as β-carotene in response to stress conditions. This hyper-accumulation of β-carotene has led to the commercial exploitation of this alga for the biotechnological production of this important carotenoid. In order to maximise β-carotene production, a dual-stage process which separates the distinctive growth phase from the β-carotene accumulating stress phase has recently been patented. Preliminary laboratory studies showed that although stress factors such as high salinity and nutrient limitation enhance β-carotene accumulation in D. salina (± 10 pg.cell⁻¹), high light intensity was the single most important factor contributing to the induction of β-carotene accumulation in this alga (± 20 pg.cell⁻¹). Moreover, it was demonstrated that β-carotene accumulation can be further stimulated by exposing the alga to a combination of high light intensity, salt and nutrient stresses (± 30-60 pg.cell⁻¹). The response of D. salina to stress was shown to occur in two phases. The first phase occurred within 24 hours and was characterized most importantly by higher rates of β-carotene accumulation for all the stresses investigated. In cells exposed to multiple stress factors in mass culture, the β-carotene accumulation rate was as much as 9.5 pg.cell⁻¹.day⁻¹ in the first phase compared to only 3 pg.cell·day⁻¹ in the second phase. Since the rate of β-carotene accumulation was higher within the first 24 hours after exposure to stress, the first phase was considered crucial for stress-induced β-carotene accumulation. Characterization of this phase revealed that the stress response was multifaceted. Transition of cells from the growth stage to stress conditions was characterized by the following: 1) Change in cell volume. Hypersalinity caused cell shrinkage while cells exposed to nutrient limitation and/or high light intensity caused cells to swell. Restoration of cell volume was shown to occur within 8 hours for all stresses investigated. 2) Altered photosynthesis. Inhibition of both carbon fixation and oxygen evolution was demonstrated in cells immediately after exposure to multiple stress factors. 3) Production of abscisic acid. Intracellular ABA levels increased within 6-8 hours after exposure to all stresses investigated. The rise in intracellular ABA levels coincided with an increase or return to starting cell volume. High intracellular ABA levels were however transient and within 24 hours ABA began to partition into the culture medium. 4) Change in pigment composition. Changes in xanthophyll cycle pigment content was demonstrated soon after exposure to stress conditions. In hypersalinity shocked cells, initial epoxidation of zeaxanthin to violaxanthin and subsequent de-epoxidation to zeaxanthin occurred, whereas exposure to high stress resulted in an immediate and continued decrease in the epoxidation state indicating accumulation of zeaxanthin. A rapid rate of chlorophyll depletion was also demonstrated. In addition to the above responses a rapid decrease in growth rate during this phase was also noted. An interrelationship between cell volume change, ABA production, maintenance of xanthophyll cycle operation and β-carotene accumulation therefore appeared to exist. ABA production was shown to be stoichiometrically related to changes in xanthophyll content with r² = 0.84 and slope of the curve = 0.91 being achieved for high light stressed cells. This study therefore presents strong circumstantial evidence in support of a carotenoid origin for ABA in Dunaliella. In addition, enhanced β-carotene content was achieved by the application of exogenous ABA and related compounds suggesting a role for ABA as a regulator of the overall stress response. Furthermore, zeaxanthin accumulation was shown to be positively correlated ( r²≥ 0.81) to β-carotene accumulation for all the stresses investigated. The second phase was characterized by a return to homoeostasis of the physiological processes mentioned above, indicating acclimation of the cell to prevailing conditions. This stage was characterised by continued β-carotene accumulation and a decreased epoxidation state of the xanthophyll cycle which together appeared to sustain photosynthesis, allowing this organism to tolerate stress conditions.
APA, Harvard, Vancouver, ISO, and other styles
48

Effa, Effa Branly Wilfried. "Effets de la symbiose endomycorhizienne sur la tolérance au stress hydrique chez le riz." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTG035.

Full text
Abstract:
La symbiose endomycorhizienne peut améliorer la croissance et la résistance aux stress abiotiques chez le riz en améliorant son accès à l’eau et aux nutriments. L’utilisation de champignons mycorhiziens à arbuscules (CMA) comme bio-fertilisants représente donc une perspective intéressante pour améliorer la résilience et la durabilité de la riziculture dans un contexte de dégradation des sols et de changement climatique. Cependant, la symbiose endomycorhizienne peut dans certains contextes s'avérer inefficace ou même induire des effets négatifs sur la croissance du riz. Des études récentes suggèrent que la réponse du riz à l’inoculation par un champignon endomycorhizien pourrait être contrôlée, en plus des paramètres fongiques et environnementaux, par les caractéristiques génétiques de la plante de riz. L’objectif de cette thèse est d’identifier des traits à caractères quantitatifs (QTLs) associés à la réponse du riz à l’inoculation par un CMA au cours de sa croissance en condition irriguée et de stress hydrique. Pour cela, des conditions favorisants l’infection des racines de riz par le CMA Rhizophagus irregularis et compatibles avec le phénotypage haut-débit ont d’abord été déterminées. Dans un second temps, un panel de 150 génotypes de riz africain (Oryza glaberrima) aux génomes séquencés a été phénotypé pour la biomasse des parties aériennes au cours de la croissance en condition inoculé et non-inoculé grâce à une plateforme de phénotypage haut-débit. Les plantes ont ainsi été cultivées en conditions inoculées ou non-inoculées pendant quatre semaines avec irrigation suivies de trois semaines de déficit hydrique. Un effet négatif de l’inoculation sur la croissance a pu être observé au stade précoce en condition irriguée (à 28 jours après semis ; JAS) et après un stress hydrique (à 46 JAS) chez la majorité de génotypes. Des analyses d’expression de gènes marqueurs de l'interaction riz/RI couplées à l’observation visuelle des structures fongiques dans la racine ont révélé la mise en place d’un dialogue pré-symbiotique, sans mettre en évidence l’établissement d’une symbiose fonctionnelle. Des analyses d’association entre génotype et la biomasse aérienne en traitement inoculé à 28 JAS ont permis d’identifier un QTL contenant un gène impliqué dans le transport du nitrate. Ces résultats ouvrent des perspectives intéressantes sur le rôle de la nutrition azotée dans l’établissement de la symbiose endomycorhizienne
Establishment of arbuscular mycorrhizal (AM) symbiosis in rice can promote its growth and tolerance to abiotic stress such as drought by improving its access to nutrient and water. The use of AM fungi (AMF) as bio-fertilizer therefore represent an interesting avenue for improving sustainability and resilience of rice cultivation in a context of land degradation and climate change. However, AM-symbiosis can in some context lead to detrimental effect on rice growth. Recent studies suggest that rice response to inoculation can, in addition to fungi and to environmental characteristics, be influenced by specific genetic determinants in rice. In this work, our objectives were to identify QTLs associated with plant response to AM-symbiosis when grown under irrigated and water deficit conditions. For this, plant growth conditions allowing root infection by the AM fungi Rhizophagus irregularis and compatible with high-throughput phenotyping were first determined. Secondly, a fully sequenced panel of 150 African rice (O. glaberrima) was phenotyped for shoot biomass across growth in inoculated and non-inoculated conditions using an imaged-based high-throughput phenotyping platform. Plants were grown in inoculated or non-inoculated conditions for four weeks under irrigation followed by a water deficit for three weeks. In our conditions, a negative effect of inoculation on shoot growth was observed at early vegetative growth under irrigated conditions (at 28 days after sowing; DAS) and after drought stress (at 46 DAS). Expression analyses of rice marker genes involved in different steps of rice/RI interaction, combined with visual observations of fungi structures in the root revealed that the plant established a pre-symbiotic dialogue with the fungi without establishing functional symbiosis. Association analyses between genotype and phenotype for shoot biomass under the inoculated treatment at 28 DAS identified a QTL containing a gene involved in nitrate transport. Our results open interesting ways regarding the role of nitrogen nutrition on AM-symbiosis establishment
APA, Harvard, Vancouver, ISO, and other styles
49

Sun, Chao [Verfasser], Ralf [Akademischer Betreuer] Oelmüller, Jutta [Akademischer Betreuer] Ludwig-Müller, and Axel [Akademischer Betreuer] Mithöfer. "The beneficial fungus Piriformospora indica confers tolerance to plants under drought stress and pathogen attack / Chao Sun. Gutachter: Ralf Oelmüller ; Jutta Ludwig-Müller ; Axel Mithöfer." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2015. http://d-nb.info/1069105392/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rasmussen, Scott Lynn 1958. "The effects of salinity stress on the development of Pythium blight of Agrostis palustris." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276627.

Full text
Abstract:
Salinity stress predisposed Penncross creeping bentgrass to cottony blight caused by P. aphanidermatum. Studies were conducted on the effects of salinity on the mycelial growth of P. aphanidermatum and on the growth of Penncross bentgrass. Mycelial growth increased significantly up to Ec levels of 7.1 ds/m when compared to mycelial growth at the control Ec levels of 0.5 ds/m. Plant growth was reduced to 50% of the control at Ec levels of 4.3 ds/m. 3-month-old Penncross bentgrass plants were inoculated and incubated at two differing temperatures. At 32 C, all plants died within 3 days regardless of salinity treatment. Rates of plant death were greatest at salinity levels over 2.8 ds/m. At 27 C, plants irrigated with water at Ec levels from 4.3 to 7.1 ds/m showed complete necrosis within 5 days, while treatments irrigated with tap water showed no disease symptoms.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography