Journal articles on the topic 'Efferocytose'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Efferocytose.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Larson, Sandy R., Stacey Thomas, Shaikh M. Atif, Sophie Gibbings, Miglena Prabagar, Peter M. Henson, and Claudia Jakubzick. "Ly6C+ monocyte efferocytosis and cross-presentation of cell-associated antigen." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 116.12. http://dx.doi.org/10.4049/jimmunol.196.supp.116.12.
Full textVetter, Mathieu, and Philippe Saas. "« Fort comme la mort », où comment l’efferocytose contrôle la résolution de l’inflammation." médecine/sciences 40, no. 5 (May 2024): 428–36. http://dx.doi.org/10.1051/medsci/2024050.
Full textHigham, Andrew, Tom Scott, Jian Li, Rosemary Gaskell, Aisha Baba Dikwa, Rajesh Shah, M. Angeles Montero-Fernandez, Simon Lea, and Dave Singh. "Effects of corticosteroids on COPD lung macrophage phenotype and function." Clinical Science 134, no. 7 (April 2020): 751–63. http://dx.doi.org/10.1042/cs20191202.
Full textLam, Austin Le, and Bryan Heit. "Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes." Cells 10, no. 5 (May 20, 2021): 1265. http://dx.doi.org/10.3390/cells10051265.
Full textAitcheson, Savannah M., Francesca D. Frentiu, Sheree E. Hurn, Katie Edwards, and Rachael Z. Murray. "Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds." Molecules 26, no. 16 (August 13, 2021): 4917. http://dx.doi.org/10.3390/molecules26164917.
Full textMyers, Kayla V., Amber E. de Groot, Anna L. Gonye, Luke V. Loftus, Sarah R. Amend, and Kenneth J. Pienta. "Abstract 2546: Targeting MerTK-mediated efferocytosis in the prostate cancer TME." Cancer Research 82, no. 12_Supplement (June 15, 2022): 2546. http://dx.doi.org/10.1158/1538-7445.am2022-2546.
Full textBanerjee, Somenath, Jagdish C. Joshi, Vijayalakshmi Yalagala, and Dolly Mehta. "Loss of myeloid S1PR1 makes dysfunctional alveolar macrophages and vascular injury by inducing myeloid bias." Journal of Immunology 206, no. 1_Supplement (May 1, 2021): 112.17. http://dx.doi.org/10.4049/jimmunol.206.supp.112.17.
Full textAbbasi, Muddasir H., Nimra Shehzadi, Arooj Safdar, Rabia Aslam, Arsha Tariq, Misbah Shahid, Azka Zafar, Nadeem Sheikh, and Muhammad Babar Khawar. "Role of Efferocytosis in Health and Diseases." Albus Scientia 2024, no. 1 (May 18, 2024): 1–12. http://dx.doi.org/10.56512/as.2024.1.e240518.
Full textLi, Vivien, Michele D. Binder, and Trevor J. Kilpatrick. "The Tolerogenic Influence of Dexamethasone on Dendritic Cells Is Accompanied by the Induction of Efferocytosis, Promoted by MERTK." International Journal of Molecular Sciences 24, no. 21 (November 2, 2023): 15903. http://dx.doi.org/10.3390/ijms242115903.
Full textPoe, S. L., M. Arora, T. B. Oriss, M. Yarlagadda, K. Isse, A. Khare, D. E. Levy, et al. "STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia." Mucosal Immunology 6, no. 1 (July 11, 2012): 189–99. http://dx.doi.org/10.1038/mi.2012.62.
Full textJondle, Christopher Ned, Bibhuti Mishra, and Jyotika Sharma. "Impact of Klebsiella pneumoniae on efferocytosis of polymorphonuclear cells." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 131.4. http://dx.doi.org/10.4049/jimmunol.196.supp.131.4.
Full textThomas, Sean M., Kathryn Wierenga, James Pestka, and Andrew J. Olive. "Functional characterization of a self-replicating and genetically tractable murine alveolar macrophage model." Journal of Immunology 206, no. 1_Supplement (May 1, 2021): 17.28. http://dx.doi.org/10.4049/jimmunol.206.supp.17.28.
Full textKumar, Sushil, and Raymond B. Birge. "Efferocytosis." Current Biology 26, no. 13 (July 2016): R558—R559. http://dx.doi.org/10.1016/j.cub.2016.01.059.
Full textGuan, Xiaoyue, Yuting Wang, Wenlan Li, Wenli Mu, Yifei Tang, Mingfei Wang, Abdelrahman Seyam, Yao Yang, Lifei Pan, and Tiezhou Hou. "The Role of Macrophage Efferocytosis in the Pathogenesis of Apical Periodontitis." International Journal of Molecular Sciences 25, no. 7 (March 29, 2024): 3854. http://dx.doi.org/10.3390/ijms25073854.
Full textTabas, Ira, and Karin E. Bornfeldt. "Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis." Circulation Research 126, no. 9 (April 24, 2020): 1209–27. http://dx.doi.org/10.1161/circresaha.119.315939.
Full textVandivier, R. William, Tiffany R. Richens, Sarah A. Horstmann, Aimee M. deCathelineau, Moumita Ghosh, Susan D. Reynolds, Yi-Qun Xiao, et al. "Dysfunctional cystic fibrosis transmembrane conductance regulator inhibits phagocytosis of apoptotic cells with proinflammatory consequences." American Journal of Physiology-Lung Cellular and Molecular Physiology 297, no. 4 (October 2009): L677—L686. http://dx.doi.org/10.1152/ajplung.00030.2009.
Full textSchilke, Robert Michael, Cassidy M. R. Blackburn, Shashanka Rao, David M. Krzywanski, and Matthew D. Woolard. "Macrophage-associated lipin-1 regulates lipid catabolism to promote effective efferocytosis." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 69.22. http://dx.doi.org/10.4049/jimmunol.204.supp.69.22.
Full textYanagihashi, Yuichi, Katsumori Segawa, Ryota Maeda, Yo-ichi Nabeshima, and Shigekazu Nagata. "Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis." Proceedings of the National Academy of Sciences 114, no. 33 (August 2, 2017): 8800–8805. http://dx.doi.org/10.1073/pnas.1705365114.
Full textZheng, Wenxue, Zhengjie Zhou, Xiaoping Guo, Xu Zuo, Jiaqi Zhang, Yiming An, Haoyu Zheng, Yuan Yue, Guoqiang Wang, and Fang Wang. "Efferocytosis and Respiratory Disease." International Journal of Molecular Sciences 24, no. 19 (October 3, 2023): 14871. http://dx.doi.org/10.3390/ijms241914871.
Full textJuban, Gaëtan, and Bénédicte Chazaud. "Efferocytosis during Skeletal Muscle Regeneration." Cells 10, no. 12 (November 23, 2021): 3267. http://dx.doi.org/10.3390/cells10123267.
Full textTsay, Gregory, Ting-Yin Xue, Fei-Hung Hsieh, Jun-Chieh Tsay, Hsin-Yi Peng, Yung-Ju Yeh, Yen-Chi Tsao, et al. "Hydroxychloroquine and its derivative enhance efferocytosis and modulate the gut microbiome in pristane-induced lupus mice." Journal of Immunology 212, no. 1_Supplement (May 1, 2024): 0435_4594. http://dx.doi.org/10.4049/jimmunol.212.supp.0435.4594.
Full textPurnama, Chandra Agung, Anna Meiliana, Melisa Intan Barliana, Keri Lestari, and Andi Wijaya. "The Important Role of Phosphatidylserine, ADAM17, TNF-Alpha, and Soluble MER on Efferocytosis Activity in Central Obesity." Journal of Obesity 2024 (March 20, 2024): 1–10. http://dx.doi.org/10.1155/2024/1424404.
Full textGuo, Linlin, Yangzhen Wang, Xiaodan Qiu, Wenfang Su, Yixuan Chen, and Yuanqing Chen. "Identification of diagnostic biomarkers related to the efferocytosis pathway and immune cell infiltration characteristics in pediatric sepsis by bioinformatics analysis." Medicine 104, no. 6 (February 7, 2025): e41267. https://doi.org/10.1097/md.0000000000041267.
Full textZheng, Qian, Ning Gao, Qiling Sun, Xiaowen Li, Yanzhe Wang, and Hui Xiao. "bfc, a novel serpent co-factor for the expression of croquemort, regulates efferocytosis in Drosophila melanogaster." PLOS Genetics 17, no. 12 (December 3, 2021): e1009947. http://dx.doi.org/10.1371/journal.pgen.1009947.
Full textDas, Dipankar, Harsha Bhattacharjee, Kasturi Bhattacharjee, Prerana S. Tahiliani, Pankaj Bhattacharyya, Manabjyoti Barman, Sumita Sarma Barthakur, Panna Deka, Apurba Deka, and Rajashree Paul. "Efferocytosis in Retinoblastoma." Journal of Cancer Therapy 04, no. 09 (2013): 1443–47. http://dx.doi.org/10.4236/jct.2013.49172.
Full textHenson, Peter M. "Cell Removal: Efferocytosis." Annual Review of Cell and Developmental Biology 33, no. 1 (October 6, 2017): 127–44. http://dx.doi.org/10.1146/annurev-cellbio-111315-125315.
Full textPurnama, Chandra Agung, Anna Meiliana, Melisa Intan Barliana, Keri Lestari Dandan, and Andi Wijaya. "Apoptosis and Efferocytosis in Inflammatory Diseases." Indonesian Biomedical Journal 13, no. 3 (September 9, 2021): 242–55. http://dx.doi.org/10.18585/inabj.v13i3.1608.
Full textAnandan, Vinitha, Thushara Thulaseedharan, Aishwarya Suresh Kumar, Karthika Chandran Latha, Amjesh Revikumar, Ajit Mullasari, Chandrasekharan C. Kartha, Abdul Jaleel, and Surya Ramachandran. "Cyclophilin A Impairs Efferocytosis and Accelerates Atherosclerosis by Overexpressing CD 47 and Down-Regulating Calreticulin." Cells 10, no. 12 (December 20, 2021): 3598. http://dx.doi.org/10.3390/cells10123598.
Full textFige, Éva, Zsolt Sarang, László Sós, and Zsuzsa Szondy. "Retinoids Promote Mouse Bone Marrow-Derived Macrophage Differentiation and Efferocytosis via Upregulating Bone Morphogenetic Protein-2 and Smad3." Cells 11, no. 18 (September 19, 2022): 2928. http://dx.doi.org/10.3390/cells11182928.
Full textFerracini, Matheus, Francisco J. O. Rios, Mateus Pecenin, and Sonia Jancar. "Clearance of Apoptotic Cells by Macrophages Induces Regulatory Phenotype and Involves Stimulation of CD36 and Platelet-Activating Factor Receptor." Mediators of Inflammation 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/950273.
Full textFernandez-Boyanapalli, Ruby F., S. Courtney Frasch, Kathleen McPhillips, R. William Vandivier, Brian L. Harry, David W. H. Riches, Peter M. Henson, and Donna L. Bratton. "Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4." Blood 113, no. 9 (February 26, 2009): 2047–55. http://dx.doi.org/10.1182/blood-2008-05-160564.
Full textYoshida, S., N. Minematsu, S. Chubachi, H. Nakamura, M. Miyazaki, K. Tsuduki, S. Takahashi, et al. "Annexin V decreases PS-mediated macrophage efferocytosis and deteriorates elastase-induced pulmonary emphysema in mice." American Journal of Physiology-Lung Cellular and Molecular Physiology 303, no. 10 (November 15, 2012): L852—L860. http://dx.doi.org/10.1152/ajplung.00066.2012.
Full textZhang, Yan, Ying Wang, Dong Zhou, Li-Sha Zhang, Fu-Xue Deng, Shan Shu, Li-Jun Wang, et al. "Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT1R/ROS/p38 MAPK/ADAM17 pathway." American Journal of Physiology-Cell Physiology 317, no. 4 (October 1, 2019): C776—C787. http://dx.doi.org/10.1152/ajpcell.00145.2019.
Full textTsay, Gregory J., Fei-Hung Hsieh, Ting-Yin Xue, Hsin-Yi Peng, Yan-Chi Tsao, Mei-Chin Yin, Jiunn-Horng Chen, Chung-Ming Huang, Der-Yuan Chen, and Joung-Liang Lan. "Hydroxychloroquine enhances efferocytosis and inhibits IL-6 and TNF-α productions through upregulating both Gas6/Axl and MFG-E8/TG2 Signaling pathways in Pristine-induced lupus mice." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 236.18. http://dx.doi.org/10.4049/jimmunol.204.supp.236.18.
Full textTsay, Gregory J. "Resveratrol increases efferocytosis via both Mertk-GAS6/PROS and Integrin-TG2-Mfge8 pathway." Journal of Immunology 200, no. 1_Supplement (May 1, 2018): 176.9. http://dx.doi.org/10.4049/jimmunol.200.supp.176.9.
Full textSchrodt, Michael V., Riley M. Behan-Bush, Jesse N. Liszewski, Madeleine E. Humpal-Pash, Lauren K. Boland, Sabrina M. Scroggins, Donna A. Santillan, and James A. Ankrum. "Efferocytosis of viable versus heat-inactivated MSC induces human monocytes to distinct immunosuppressive phenotypes." Stem Cell Research & Therapy 14, no. 1 (August 17, 2023). http://dx.doi.org/10.1186/s13287-023-03443-z.
Full textMyers Chen, Kayla V., Amber E. de Groot, Sabrina A. Mendez, Mikaela M. Mallin, Sarah R. Amend, and Kenneth J. Pienta. "Targeting MerTK decreases efferocytosis and increases anti-tumor immune infiltrate in prostate cancer." Medical Oncology 40, no. 10 (August 29, 2023). http://dx.doi.org/10.1007/s12032-023-02153-z.
Full textLacey, Keenan A., Adam M. Pickrum, Sandra Gonzalez, Eric Bartnicki, Ashley H. Castellaw, Tori C. Rodrick, Drew R. Jones, Kamal M. Khanna, and Victor J. Torres. "Dietary and water restriction leads to increased susceptibility to antimicrobial resistant pathogens." Science Advances 10, no. 30 (July 26, 2024). http://dx.doi.org/10.1126/sciadv.adi7438.
Full textZhao, Jiayi, Weiqi Zhang, Tingting Wu, Hongyi Wang, Jialiang Mao, Jian Liu, Ziheng Zhou, Xianfeng Lin, Huige Yan, and Qingqing Wang. "Efferocytosis in the Central Nervous System." Frontiers in Cell and Developmental Biology 9 (December 3, 2021). http://dx.doi.org/10.3389/fcell.2021.773344.
Full textSheng, Yan−Ran, Wen−Ting Hu, Siman Chen, and Xiao−Yong Zhu. "Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms." Frontiers in Immunology 15 (May 8, 2024). http://dx.doi.org/10.3389/fimmu.2024.1275203.
Full textYin, Charles, and Bryan Heit. "Cellular Responses to the Efferocytosis of Apoptotic Cells." Frontiers in Immunology 12 (April 20, 2021). http://dx.doi.org/10.3389/fimmu.2021.631714.
Full textSahebi, Keivan, Hassan Foroozand, Mobina Amirsoleymani, Saghi Eslamzadeh, Manica Negahdaripour, Amir Tajbakhsh, Abbas Rahimi Jaberi, and Amir Savardashtaki. "Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery." Cell Death Discovery 10, no. 1 (July 11, 2024). http://dx.doi.org/10.1038/s41420-024-02049-5.
Full textBatoon, Lena, Amy J. Koh, Rahasudha Kannan, Laurie K. McCauley, and Hernan Roca. "Caspase-9 driven murine model of selective cell apoptosis and efferocytosis." Cell Death & Disease 14, no. 1 (January 24, 2023). http://dx.doi.org/10.1038/s41419-023-05594-6.
Full textKang, Yoon‐Young, Dong‐Young Kim, Sang‐Yong Lee, Hee‐Joong Kim, Taehawn Kim, Jeong A. Cho, Taewon Lee, and Eun Young Choi. "Innate Immune Training Initiates Efferocytosis to Protect against Lung Injury." Advanced Science, January 26, 2024. http://dx.doi.org/10.1002/advs.202308978.
Full textKoenis, Duco Steven, Roberta de Matteis, Vinothini Rajeeve, Pedro Cutillas, and Jesmond Dalli. "Efferocyte‐Derived MCTRs Metabolically Prime Macrophages for Continual Efferocytosis via Rac1‐Mediated Activation of Glycolysis." Advanced Science, December 8, 2023. http://dx.doi.org/10.1002/advs.202304690.
Full textSingh, Bandana, Kathryn Li, Kui Cui, Qianman Peng, Douglas B. Cowan, Da-Zhi Wang, Kaifu Chen, and Hong Chen. "Defective efferocytosis of vascular cells in heart disease." Frontiers in Cardiovascular Medicine 9 (September 30, 2022). http://dx.doi.org/10.3389/fcvm.2022.1031293.
Full textZhao, Xiao-Hu, Ting Yang, Meng-Yao Zheng, Peinan Zhao, Li-Ya An, Yu-Xing Qi, Ke-Qian Yi, Peng-Cheng Zhang, and Da-Li Sun. "Cystathionine gamma-lyase (Cth) induces efferocytosis in macrophages via ERK1/2 to modulate intestinal barrier repair." Cell Communication and Signaling 21, no. 1 (January 23, 2023). http://dx.doi.org/10.1186/s12964-022-01030-y.
Full textJamalvandi, Mona, Sayyed Saeid Khayyatzadeh, Mohammad Javad Hayati, and Seyed Mohammad Gheibihayat. "The role of fat‐soluble vitamins in efferocytosis." Cell Biochemistry and Function 42, no. 2 (March 2024). http://dx.doi.org/10.1002/cbf.3972.
Full textBravo, Daniel D., Yongchang Shi, Allison Sheu, Wei-Ching Liang, WeiYu Lin, Yan Wu, Minhong Yan, and Jianyong Wang. "A Real-Time Image-Based Efferocytosis Assay for the Discovery of Functionally Inhibitory Anti-MerTK Antibodies." Journal of Immunology, March 1, 2023. http://dx.doi.org/10.4049/jimmunol.2200597.
Full textGe, Yun, Man Huang, and Yong-ming Yao. "Efferocytosis and Its Role in Inflammatory Disorders." Frontiers in Cell and Developmental Biology 10 (February 25, 2022). http://dx.doi.org/10.3389/fcell.2022.839248.
Full text