Contents
Academic literature on the topic 'Effet cytopathique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Effet cytopathique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Effet cytopathique"
Billaudel, S., C. Moyon, F. Raffi, N. Milpied, M. Hourmant, B. Milpied, and A. L. Courtieu. "Diagnostic rapide de l'infection a cmv par anticorps monoclonaux: Comparaison avec la détection du virus par effet cytopathique." Médecine et Maladies Infectieuses 17, no. 11 (November 1987): 676. http://dx.doi.org/10.1016/s0399-077x(87)80008-2.
Full textShenge, J. A., G. N. Odaibo, and D. O. Olaleye. "Outbreak of Measles in vaccinated population in Southeastern Nigeria." African Journal of Clinical and Experimental Microbiology 22, no. 3 (July 2, 2021): 336–43. http://dx.doi.org/10.4314/ajcem.v22i3.4.
Full textDissertations / Theses on the topic "Effet cytopathique"
Vanhove, Audrey. "Survie intracellulaire, effets cytopathiques et virulence de Vibrio tasmaniensis LGP32, pathogène de l’huître Crassostrea gigas." Thesis, Montpellier 1, 2014. http://www.theses.fr/2014MON13518.
Full textVibrio strains belonging to the Splendidus Clade have been repeatedly found in juvenile diseased oysters affected by summer mortalities. V. tasmaniensis LGP32 is an intracellular pathogen of oyster hemocytes which has been reported to alter the oxidative burst and inhibit phagosome maturation. We show here that LGP32 behaves as an intravacuolar pathogen that survives within large cytoplasmic vacuoles. LGP32 induces cytotoxic effects such as membrane disruptions and cytoplasmic disorders. Cytotoxicity was shown to be entirely dependent on LGP32 entry into hemocytes. Moreover, LGP32 releases outer membrane vesicles (OMVs) inside the phagosome. LGP32 OMVs were found to be protective against host defenses and to serve as vehicles for the delivery of LGP32 virulence factors to oyster immune cells. Indeed, OMVs conferred a high resistance to antimicrobial peptides. They also displayed a high content in hydrolases (25 % of total proteome) among which a serine protease, named Vsp for vesicular serine protease, was found to be specifically secreted through OMVs. Vsp was shown to participate in the virulence phenotype of LGP32 in oyster experimental infections but did not degrade AMPs entrapped in OMVs. By developing a transcriptomic approach, we identified a series of Vibrio antioxidant and copper efflux genes whose expression is strongly induced within oyster hemocytes. Construction of isogenic deletion mutants showed that resistance to reactive oxygen species and copper efflux are two important functions required for LGP32 intracellular survival, cytotoxic effects and virulence. Their high conservation among vibrios suggests they could contribute to intracellular survival of other Vibrio species
Rossignol, Rodrigue. "Expression métabolique de défauts dans le fonctionnement des oxydations phosphorylantes mitochondriales : effet de seuil et théorie du contrôle du métabolisme appliqués à l'étude de la spécificité tissulaire des cytopathies." Bordeaux 2, 2000. http://www.theses.fr/2000BOR28781.
Full textPitzalis, Nicolas. "Plant-virus interactions : role of virus- and host-derived small non-coding RNAs during infection and disease." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ103.
Full textIn this thesis, I investigated the role of host- and virus-derived sRNAs during infection of Rapeseed (Brassica napus, Canola) by the UK1 strain of Turnip mosaic virus (TuMV-UK1). By using a TuMV derivative tagged with a gene encoding green fluorescent protein (TuMV-GFP), two rapeseed cultivars (‘Drakkar’ and ‘Tanto’) that differ in susceptibility to this virus were identified. Transcriptional profiling of local infection foci in Drakkar and Tanto leaves by next generation sequencing (NGS) revealed numerous differentially expressed genes. The same RNA samples from mock- and virus- treated Drakkar and Tanto leaves were also used for the global NGS profiling of sRNAs (sRNAseq) and their potential RNA targets (PAREseq). The bioinformatic analysis and their in vivo validation led to the identification of transcript cleavage events involving known and yet unknown miRNAs. Importantly, the results indicate that TuMV hijacks the host RNA silencing pathway with siRNAs derived from its own genome (vsiRNAs) to target host genes. The virus also triggers the widespread targeting of host messenger RNAs (mRNAs) through activation of phased, secondary siRNA production from PHAS loci. In turn, both vsiRNAs and host-derived siRNAs (hsRNAs) target and cleave the viral RNA by the RISC-mediated pathway. These observations illuminate the role of host and virus-derived sRNAs in the coordination of virus infection. Another chapter of this thesis is dedicated to the analysis of virus-induced diseases by using Arabidopsis plants infected with the Oilseed rape mosaic tobamovirus (ORMV) as a model. Initially, the infected plants develop leaves with strong disease symptoms. However, at a later stage, disease-free, “recovered” leaves start to appear. Analysis of symptoms recovery led to the identification of a mechanism in which the VSR and virus derived-siRNAs play a central role. I used Arabidopsis mutants impaired in transcriptional and post-transcriptional silencing pathways (TGS and PTGS respectively) and a plant line carrying a promoter-driven GFP transgene silenced by PTGS (Arabidopsis line 8z2). Using various techniques able to monitor virus infection, small and long viral RNA molecules, VSR activity, as well as phloem-mediated transport with in these lines, this study led to the identification of genes required for disease symptoms and disease symptom recovery. Moreover, the observations allowed to propose a model in which symptoms recovery occurs upon robust delivery of antiviral secondary vsiRNAs from source to sink tissues, and establishment of a vsiRNA dosage able to block the VSR activity involved in the formation of disease symptoms
Pinilla, Vicente. "In vitro and in vivo effects of deoxynivalenol (DON) mycotoxin on porcine reproductive and respiratory syndrome virus (PRRSV) in piglets." Thèse, 2015. http://hdl.handle.net/1866/13368.
Full textCereal crops are often contaminated with moulds that grow during harvest and storage and produce secondary metabolites called mycotoxins. Pig is known to be sensitive to deoxynivalenol (DON). On the other hand, infection by porcine reproductive and respiratory syndrome virus (PRRSV) causes a flu-like syndrome and reproductive disorders. The objectives of this project were to determine the in vitro effect of DON on the replication of PRRSV in permissive cell lines, MARC-145 and PAM and the in vivo impact of DON-naturally contaminated feed on PRRSV infection in piglets. Firstly, cells were incubated with gradually increasing doses of DON and were infected with PRRSV to evaluate cytopathic effect and to assess cell viability, virus replication and cytokine mRNA expression on infected and uninfected cells. Results showed that DON concentrations of 560 ng/ml and higher were significantly detrimental to the survival of MARC-145 cells infected with PRRSV. In contrast, there was a significant increase of cell viability and decreased of cell mortality at DON concentrations within 140 to 280 ng/ml for PAM cells and 70 to 280 ng/ml ranges for MARC-145 showing a reduced cytopathic effect (CPE) caused by PRRSV. In vivo study was carried out on 30 piglets divided into 3 groups of 10 piglets fed naturally contaminated diets with different levels of DON; 0, 2.5 and 3.5 mg/kg. After 2 weeks, pigs were further divided into 6 subgroups, 3 subgroups of 6 piglets were infected intra tracheally and intramuscularly with PRRSV. The other 3 subgroups of 4 piglets were used as uninfected controls. Clinical signs were recorded for 21 days post-infection (p.i.). Sera were evaluated for viremia by PCR. At the end of the experiment, piglets were euthanized and pulmonary lesions were evaluated. Results showed that ingestion of diet highly contaminated with DON at 3.5 mg/kg increased the effect of PRRSV infection on the severity of clinical signs, weight loss, lung lesions and mortality. Diet with DON at 2.5 mg/kg showed an increase of viremia at day 3 but had not significant impact on clinical signs and lung lesions. Keywords: DON, PRRSV, MARC-145, PAM, cytopathic effect, cytokines, PCR