Academic literature on the topic 'Effet Zeeman'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Effet Zeeman.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Effet Zeeman"
Sakho, Ibrahima. "« Principe 7 » De La Pédagogie, Effet Zeeman-Effet Prérequis, Architecture Pyramidale Du Système Lmd: Mise En Œuvre D’une Pédagogie Discriminatoire Pour Un Enseignement De Qualité." European Scientific Journal, ESJ 14, no. 24 (August 31, 2018): 159. http://dx.doi.org/10.19044/esj.2018.v14n24p159.
Full textCalderón Chamochumbi, Carlos. "Efecto Zeeman Normal." Campus 20, no. 20 (December 30, 2015): 39–43. http://dx.doi.org/10.24265/campus.2016.v20n20.03.
Full textKanamori, Hideto, Morihisa Momona, and Katsumi Sakurai. "Diode laser spectroscopy of the atmospheric oxygen band." Canadian Journal of Physics 68, no. 3 (March 1, 1990): 313–16. http://dx.doi.org/10.1139/p90-049.
Full textZhang, Rui, Teng Wu, Jingbiao Chen, Xiang Peng, and Hong Guo. "Frequency Response of Optically Pumped Magnetometer with Nonlinear Zeeman Effect." Applied Sciences 10, no. 20 (October 10, 2020): 7031. http://dx.doi.org/10.3390/app10207031.
Full textKhvingia, N. L., and A. V. Turbiner. "The Zeeman effect revisited." Journal of Physics B: Atomic, Molecular and Optical Physics 25, no. 2 (January 28, 1992): 343–53. http://dx.doi.org/10.1088/0953-4075/25/2/004.
Full textLIU, C. P. "ZEEMAN EFFECT ON THE ELECTRONIC STRUCTURE OF CARBON NANOTORI IN A STRONG MAGNETIC FIELD." International Journal of Modern Physics B 22, no. 27 (October 30, 2008): 4845–52. http://dx.doi.org/10.1142/s0217979208049030.
Full textKozhevnikov, Sergey, Frédéric Ott, and Florin Radu. "Data representations of Zeeman spatial beam splitting in polarized neutron reflectometry." Journal of Applied Crystallography 45, no. 4 (July 14, 2012): 814–25. http://dx.doi.org/10.1107/s0021889812018043.
Full textZhao, Jingxiang, Xu Yan, and Qiang Gu. "The Zeeman-split superconductivity with Rashba and Dresselhaus spin–orbit coupling." International Journal of Modern Physics B 31, no. 25 (October 10, 2017): 1745011. http://dx.doi.org/10.1142/s0217979217450114.
Full textRobishaw, Timothy, Carl Heiles, and Eliot Quataert. "Zeeman splitting in OH megamasers." Proceedings of the International Astronomical Union 3, S242 (March 2007): 467–70. http://dx.doi.org/10.1017/s1743921307013610.
Full textTan, C. Z. "Zeeman effect in α-quartz." Physica B: Condensed Matter 404, no. 16 (August 2009): 2229–33. http://dx.doi.org/10.1016/j.physb.2009.04.014.
Full textDissertations / Theses on the topic "Effet Zeeman"
Richard, Cyril. "Spectroscopie électronique et effet zeeman dans le radical NiH." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00595685.
Full textOmar, Abdelaziz. "Détection ultrasensible de molécules d'intérêts atmosphériques dans l'infrarouge lointain." Thesis, Littoral, 2016. http://www.theses.fr/2016DUNK0430/document.
Full textQThe detection of trace pollutants is an important issue for monitoring air quality. Terahertz spectroscopy, used to probe spectral regions rich in molecular absorption, is an appropriate technique for measuring atmospheric pollution. This work of thesis consisted in developing and characterizing an ultrasensitive spectrometer to measure molecules of atmospheric interest. A terahertz spectrometer was mounted using a frequency multiplication chain emitting up to 900 GHz. The detection sensitivity has been optimized and characterized. In collaboration with the IEMN, a terahertz spectrometer using a vector network analyzer transmitting up to 500 GHz as a source, has been set up and characterized. The potential of terahertz spectroscopy has been demonstrated to monitor in real time the evolution of concentrations of gaseous pollutants during a chemical reaction and to deduce the kinetic rates. Following the rotational transitions of H2CO and CO of a photolysis reaction of formaldehyde, kinetic reaction rates were determined. Detection of radicals is a challenge because of their high reactivity. The configuration of our spectrometer was adapted to optimize sensitivity and to study the photolysis reaction of acetaldehyde using "Photosensitization" by mercury. Frequency modulation and Zeeman effect modulation were used to study HCO. The sensitivity was optimized, quantified HCO and measured over 200 absorption lines. A spectroscopy study of HCO is initiated in order to optimize the parameters of the international data bases
Amiryan, Arevik. "Formation of narrow optical resonances in thin atomic vapor layers of Cs, Rb, K and applications." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK028/document.
Full textThis thesis presents the study of coherent light interaction with a sub-wavelength atomic alkali vapor layer confined in a nano-cell and applications for the formation of narrow optical resonances.We develop a theoretical model describing the resonant interaction of the laser light with the thin alkali vapor layer in the presence of an external static magnetic field. We show that due to a transient regime of interaction, only slow atoms contribute to the signal and their transmission spectrum is essentially Doppler-free. The nature of the obtained spectra makes the transmission spectroscopy from a nano-cell a convenient technique to perform studies of closely-spaced atomic transitions and investigate their behavior in magnetic fields. Experimental realizations for magnetic field up to 7000~G show an excellent agreement between theory and experiment.We also explore the Faraday rotation of the plane polarization of light with the propagation through the thin atomic slab. We see that despite a small angle of rotation, Faraday rotation spectra exhibit resonances narrower than that for transmission. At last, we investigate new possibilities to form narrow optical resonances in nano-cells and show that second derivation processing of transmission spectra yields the strongest line narrowing among all methods studied in this thesis
Papageorgiou, Nicolas. "Spectroscopie de réflexion à très haute résolution sur la vapeur de Césium : Déplacement collisionnel, structure Zeeman et effets de saturation sur la raie D2." Paris 13, 1994. http://www.theses.fr/1994PA132044.
Full textMiniatura, Christian. "Production et analyse d'un faisceau d'hydrogène atomique métastable. : Etude de la collision hydrogene (deuterium) atomique métastable sur hydrogène (deuterium) moléculaire aux énergies thermiques." Paris 13, 1990. http://www.theses.fr/1990PA132012.
Full textLe, Targat Rodolphe. "Horloge à réseau optique au Strontium : une deuxième génération d'horloges à atomes froids." Phd thesis, Paris, ENST, 2007. https://pastel.hal.science/pastel-00553253.
Full textAtomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10^{-16}. It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an opticallattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a weil chosen, weakly allowed, J=0 -> J=0 clock transition can be free from light shift effects. Ln this respect, the strontium atom is one of the most promising candidate, the ^1 S_0 -> ^3P _0 transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 μK. This thesis demonstrates the experimental feasability of an opticallattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope ^{87}Sr, at a level of a few 10^ {15}
Tonoyan, Ara. "Study of optical and magneto-optical processes in cesium, rubidium and potassium micro- and nano-metric thin atomic layers." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS063/document.
Full textIt has been investigated the D1 line transitions of 39K atoms in external magnetic fields using nanocells for the cases of sigma+ and pi polarizations of laser radiation. For the first time it is demonstrated the decoupling of electronic total angular momentum J and nuclear momentum I (complete hyperfine Paschen-Back regime) in external magnetic field. For 39K the decoupling takes place at B >> 165 G. In the case of linear polarization it is shown that for B > 400 G the transmission spectrum consists of 2 groups of transitions and each group contains of one so-called "Guiding transition" (GT). The GT indicates the asymptotic value of all transitions probabilities in the group and the frequency shifts derivatives value (frequency slopes) in magnetic field.For the first time it is demonstrated the absence of cross-over resonances in the spectrum of saturated absorption. For that Rb filled micro-cell has been used with atomic vapor thickness 30-40 µm. The use of micro cell allowed the investigation of individual atomic transitions in strong external magnetic fields 30 - 6000 G ) using the saturated absorption technique. It is experimentally and theoretically manifested that at certain values of the external magnetic fields (300 - 2000 G) the probabilities of the Cs D2 line Fg=3 --> Fe=5 atomic transitions experience huge increase. These probabilities, which are forbidden at zero magnetic field, exceed the probabilities of allowed atomic transitions
Rosato, Joël. "Modélisation en spectroscopie et application au plasma de bord des tokamaks." Aix-Marseille 1, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX11025.pdf.
Full textThis thesis brings theoretical results on spectroscopy of hydrogen and gives some applications to tokamak edge plasmas. Miscellaneous line broadening models are developed and applied in three ways: diagnostic of plasma parameters, diagnostic of turbulent fluctuations of the plasma, and opacity studies. A review is first made (Chap. 1) on physical mechanisms which contribute to line broadening, such as for example motion of the emitters (Doppler effect) or electric field of the plasma (Stark effect). An analytical model is developed (Chap. 2) for opacity of Lyman a line (transition 2 → 1); this model, which takes into account Doppler effect, Zeeman effect, Stark effect and fine structure, has been incorporated into a transport code for studies of radiative transfer in ITER edge plasma. A refinement of Stark broadening description is next made (Chap. 3), in order to take into account quadratic Stark effect induced by the Zeeman degeneracy removal of atomic levels. The model is validated by a numerical simulation method. Finally, a study is presented (Chap. 4) on line broadening in presence of turbulence. It is shown how a line profile is related to the probability density function (PDF) of fluid fields; an application of formalism is then made to describe Doppler broadening of Da line (transition 3 → 2 of deuterium) and Stark broadening of D10 line (transition 10 → 2). Consequences for diagnostic interpretation are discussed
Marianne, Catherine. "Validation de la recherche d'aluminium dans l'albumine par spectrophotométrie d'absorption atomique à effet Zeeman." Bordeaux 2, 1991. http://www.theses.fr/1991BOR2P102.
Full textGUIZARD, STEPHANE. "Effet zeeman dans les etats de rydberg de no, sondes par ionisation multiphotonique resonnante." Paris 11, 1990. http://www.theses.fr/1990PA112373.
Full textBooks on the topic "Effet Zeeman"
Evans, Myron W. A theoretical development of the optical Zeeman effect. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1990.
Find full textSaillard, Michel. Histoire de la spectroscopie: De la théorie de la lumière et des couleurs de I. Newton (1672) à la découverte de l'effet Zeeman (1897). Paris: Société française d'histoire des sciences et des techniques, 1988.
Find full textTelahun, Tesfaye. The Cu²⁺ center in the II-VI semiconductors ZnS and CdS calculation of the fine structure and Zeeman behavior. Berlin: Verlag Köster, 1994.
Find full textArteca, G. A. Large order perturbation theory and summation methods in quantum mechanics. Berlin: Springer-Verlag, 1990.
Find full textKleinfeld, Jeffery A. Design of a Zeeman-shift spontaneous-force optical trap for the optical confinement and cooling of rubidium atoms in vapor. 1991.
Find full textKleinfeld, Jeffery A. Design of a Zeeman-shift spontaneous-force optical trap for the optical confinement and cooling of rubidium atoms in vapor. 1991.
Find full textAllen, Gary G., West Elizabeth A, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. The SAMEX vector magnetograph: A design study for a space-based solar vector magnetograph. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textMorawetz, Klaus. Kinetic Theory of Systems with SU(2) Structure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0021.
Full textDuncan, Anthony, and Michel Janssen. Constructing Quantum Mechanics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198845478.001.0001.
Full textBook chapters on the topic "Effet Zeeman"
Baker, Joanne. "Zeeman-Effekt." In 50 Schlüsselideen Quantenphysik, 44–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45033-8_12.
Full textHentschel, Klaus. "Zeeman Effect." In Compendium of Quantum Physics, 862–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_241.
Full textKnecht, Josef. "Zeeman-Effekt." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49054-9_3347-1.
Full textWeik, Martin H. "Zeeman effect." In Computer Science and Communications Dictionary, 1941. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_21313.
Full textKnecht, J. "Zeeman-Effekt." In Springer Reference Medizin, 2531. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3347.
Full textKastberg, Anders. "The Zeeman Effect." In Structure of Multielectron Atoms, 229–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36420-5_11.
Full textSchwabl, Franz. "Zeeman-Effekt und Stark-Effekt." In Springer-Lehrbuch, 259–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-22375-8_14.
Full textSchwabl, Franz. "Zeeman-Effekt und Stark-Effekt." In Quantenmechanik, 243–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-12867-1_14.
Full textSchwabl, Franz. "Zeeman-Effekt und Stark-Effekt." In Quantenmechanik, 243–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-09626-0_14.
Full textSchwabl, Franz. "Zeeman-Effekt und Stark-Effekt." In Quantenmechanik, 231–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-09627-7_14.
Full textConference papers on the topic "Effet Zeeman"
VAN LINDEN VAN DEN HEUVELL, H. B., J. T. M. WALRAVEN, and M. W. REYNOLDS. "ATOMIC PHYSICS 15." In Fifteenth International Conference on Atomic Physics, Zeeman-Effect Centenary. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529549.
Full textBabin, S. A., S. I. Kablukov, M. I. Kondratenko, and D. A. Shapiro. "Nonlinear interference effect in ionic Zeeman laser." In The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51783.
Full textNenashev, A. V., A. Dvurechenskii, and A. F. Zinovieva. "Hole Zeeman effect in Ge/Si quantum dots." In SPIE Proceedings, edited by Yuri I. Ozhigov. SPIE, 2003. http://dx.doi.org/10.1117/12.517895.
Full textBarbarat, J., J. Gillot, H. Alvarez-Martinez, R. Le Targat, P.-E. Pottie, J. Hrabina, M.-T. Pham, P. Tuckey, and O. Acef. "Linear Zeeman Effect on Iodine-Based Frequency Stabilized Laser." In 2019 Joint Conference of the IEEE International Frequency Control Symposium anEuropean Frequency and Time Forum (EFTF/IFC). IEEE, 2019. http://dx.doi.org/10.1109/fcs.2019.8856044.
Full textBizdadea, Constantin, Eugen-Mihaita Cioroianu, and Solange-Odile Saliu. "Zeeman-like effect in a spontaneous symmetry-breaking scheme." In TIM 18 PHYSICS CONFERENCE. Author(s), 2019. http://dx.doi.org/10.1063/1.5090053.
Full textNomura, Toshihiro, Yasuhiro H. Matsuda, Shojiro Takeyama, Akira Matsuo, Koichi Kindo, and Tatsuo C. Kobayashi. "Orbital Zeeman Effect of Liquid Oxygen in High Magnetic Fields." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.017004.
Full textSmith, T. B., B. B. Ngom, and A. D. Gallimore. "Optogalvanic spectroscopy of the zeeman effect in singly-ionized xenon." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1706887.
Full textCrutcher, Richard. "MAPPING MAGNETIC FIELDS IN MOLECULAR CLOUDS WITH THE CN ZEEMAN EFFECT." In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.tf10.
Full textUllrich, C. A., I. D'Amico, F. Baboux, and F. Perez. "Intrinsic normal Zeeman effect for spin plasmons in semiconductor quantum wells." In SPIE NanoScience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2025458.
Full textBorkov, Yu G., A. A. Ionin, Yu M. Klimachev, I. O. Kinyaevskiy, A. A. Kotkov, A. Yu Kozlov, and O. N. Sulakshina. "Zeeman Effect treatment in the infrared spectrum of the nitric oxide molecule." In 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2014. http://dx.doi.org/10.1117/12.2075283.
Full text