Journal articles on the topic 'Efficient reprogramming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Efficient reprogramming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gallego-Perez, Daniel, Jose J. Otero, Catherine Czeisler, Junyu Ma, Cristina Ortiz, Patrick Gygli, Fay Patsy Catacutan, et al. "Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers." Nanomedicine: Nanotechnology, Biology and Medicine 12, no. 2 (February 2016): 399–409. http://dx.doi.org/10.1016/j.nano.2015.11.015.
Full textDeng, Wenbin. "AID in reprogramming: Quick and efficient." BioEssays 32, no. 5 (April 14, 2010): 385–87. http://dx.doi.org/10.1002/bies.201000014.
Full textHorna, David, Juan Carlos Ramírez, Anna Cifuentes, Antonio Bernad, Salvador Borrós, and Manuel A. González. "Efficient Cell Reprogramming Using Bioengineered Surfaces." Advanced Healthcare Materials 1, no. 2 (February 16, 2012): 177–82. http://dx.doi.org/10.1002/adhm.201200017.
Full textKang, Martin H., Jiabiao Hu, Richard E. Pratt, Conrad P. Hodgkinson, Aravind Asokan, and Victor J. Dzau. "Optimizing delivery for efficient cardiac reprogramming." Biochemical and Biophysical Research Communications 533, no. 1 (November 2020): 9–16. http://dx.doi.org/10.1016/j.bbrc.2020.08.104.
Full textMiller, Chris, and Christian Poellabauer. "Reliable and efficient reprogramming in sensor networks." ACM Transactions on Sensor Networks 7, no. 1 (August 2010): 1–32. http://dx.doi.org/10.1145/1806895.1806901.
Full textKulkarni, Sandeep, and Limin Wang. "Energy-efficient multihop reprogramming for sensor networks." ACM Transactions on Sensor Networks 5, no. 2 (March 2009): 1–40. http://dx.doi.org/10.1145/1498915.1498922.
Full textHermann, Andreas, Jeong Beom Kim, Sumitra Srimasorn, Holm Zaehres, Peter Reinhardt, Hans R. Schöler, and Alexander Storch. "Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors." Stem Cells International 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/4736159.
Full textYu, Junying, Kevin Fongching Chau, Maxim A. Vodyanik, Jinlan Jiang, and Yong Jiang. "Efficient Feeder-Free Episomal Reprogramming with Small Molecules." PLoS ONE 6, no. 3 (March 1, 2011): e17557. http://dx.doi.org/10.1371/journal.pone.0017557.
Full textHu, Kejin, Junying Yu, Kran Suknuntha, Shulan Tian, Karen Montgomery, Kyung-Dal Choi, Ron Stewart, James A. Thomson, and Igor I. Slukvin. "Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells." Blood 117, no. 14 (April 7, 2011): e109-e119. http://dx.doi.org/10.1182/blood-2010-07-298331.
Full textBussmann, Lars H., Alexis Schubert, Thien Phong Vu Manh, Luisa De Andres, Sabrina C. Desbordes, Maribel Parra, Timo Zimmermann, et al. "A Robust and Highly Efficient Immune Cell Reprogramming System." Cell Stem Cell 5, no. 5 (November 2009): 554–66. http://dx.doi.org/10.1016/j.stem.2009.10.004.
Full textDe, P., Yonghe Liu, and S. K. Das. "Energy-Efficient Reprogramming of a Swarm of Mobile Sensors." IEEE Transactions on Mobile Computing 9, no. 5 (May 2010): 703–18. http://dx.doi.org/10.1109/tmc.2009.159.
Full textDong, Chuchu, and Fengqi Yu. "An efficient network reprogramming protocol for wireless sensor networks." Computer Communications 55 (January 2015): 41–50. http://dx.doi.org/10.1016/j.comcom.2014.08.017.
Full textSteinle, Heidrun, Marbod Weber, Andreas Behring, Ulrike Mau-Holzmann, Christian Schlensak, Hans Peter Wendel, and Meltem Avci-Adali. "Generation of iPSCs by Nonintegrative RNA-Based Reprogramming Techniques: Benefits of Self-Replicating RNA versus Synthetic mRNA." Stem Cells International 2019 (June 19, 2019): 1–16. http://dx.doi.org/10.1155/2019/7641767.
Full textPark, Joo Hyun, Laurence Daheron, Sibel Kantarci, Byung Seok Lee, and Jose M. Teixeira. "Human Endometrial Cells Express Elevated Levels of Pluripotent Factors and Are More Amenable to Reprogramming into Induced Pluripotent Stem Cells." Endocrinology 152, no. 3 (March 1, 2011): 1080–89. http://dx.doi.org/10.1210/en.2010-1072.
Full textPaoletti, Camilla, Carla Divieto, and Valeria Chiono. "Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes." Cells 7, no. 9 (August 21, 2018): 114. http://dx.doi.org/10.3390/cells7090114.
Full textArnholdt-Schmitt, Birgit, José H. Costa, and Dirce Fernandes de Melo. "AOX – a functional marker for efficient cell reprogramming under stress?" Trends in Plant Science 11, no. 6 (June 2006): 281–87. http://dx.doi.org/10.1016/j.tplants.2006.05.001.
Full textKrasniewski, Mark D., Rajesh Krishna Panta, Saurabh Bagchi, Chin-Lung Yang, and William J. Chappell. "Energy-efficient on-demand reprogramming of large-scale sensor networks." ACM Transactions on Sensor Networks 4, no. 1 (January 2008): 1–38. http://dx.doi.org/10.1145/1325651.1325653.
Full textBaek, Soonbong, Xiaoyuan Quan, Soochan Kim, Christopher Lengner, Jung-Keug Park, and Jongpil Kim. "Electromagnetic Fields Mediate Efficient Cell Reprogramming into a Pluripotent State." ACS Nano 8, no. 10 (October 2014): 10125–38. http://dx.doi.org/10.1021/nn502923s.
Full textPanta, Rajesh Krishna, Saurabh Bagchi, and Issa M. Khalil. "Efficient wireless reprogramming through reduced bandwidth usage and opportunistic sleeping." Ad Hoc Networks 7, no. 1 (January 2009): 42–62. http://dx.doi.org/10.1016/j.adhoc.2007.11.015.
Full textLee, Jieun, Nazish Sayed, Arwen Hunter, Kin Fai Au, Wing H. Wong, Edward S. Mocarski, Renee Reijo Pera, Eduard Yakubov, and John P. Cooke. "Activation of Innate Immunity Is Required for Efficient Nuclear Reprogramming." Cell 151, no. 3 (October 2012): 547–58. http://dx.doi.org/10.1016/j.cell.2012.09.034.
Full textYe, Huahu, and Qiwei Wang. "Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai Virus." Cellular Physiology and Biochemistry 50, no. 4 (2018): 1318–31. http://dx.doi.org/10.1159/000494589.
Full textTendean, Marshel, Yudi Her Oktaviono, and Ferry Sandra. "Cardiomyocyte Reprogramming: A Potential Strategy for Cardiac Regeneration." Molecular and Cellular Biomedical Sciences 1, no. 1 (March 1, 2017): 1. http://dx.doi.org/10.21705/mcbs.v1i1.5.
Full textYuan, Xia, Chen Zhang, Ruifeng Zhao, Jingyi Jiang, Xiang Shi, Ming Zhang, Hongyan Sun, et al. "Glycolysis Combined with Core Pluripotency Factors to Promote the Formation of Chicken Induced Pluripotent Stem Cells." Animals 11, no. 2 (February 6, 2021): 425. http://dx.doi.org/10.3390/ani11020425.
Full textLiu, Kuangpin, Wei Ma, Chunyan Li, Junjun Li, Xingkui Zhang, Jie Liu, Wei Liu, et al. "Advances in transcription factors related to neuroglial cell reprogramming." Translational Neuroscience 11, no. 1 (February 20, 2020): 17–27. http://dx.doi.org/10.1515/tnsci-2020-0004.
Full textOvchinnikova, Leyla A., Stanislav S. Terekhov, Rustam H. Ziganshin, Dmitriy V. Bagrov, Ioanna N. Filimonova, Arthur O. Zalevsky, and Yakov A. Lomakin. "Reprogramming Extracellular Vesicles for Protein Therapeutics Delivery." Pharmaceutics 13, no. 6 (May 21, 2021): 768. http://dx.doi.org/10.3390/pharmaceutics13060768.
Full textMerling, Randall K., Colin L. Sweeney, Uimook Choi, Suk See De Ravin, Timothy G. Myers, Francisco Otaizo-Carrasquero, Jason Pan, et al. "Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells." Blood 121, no. 14 (April 4, 2013): e98-e107. http://dx.doi.org/10.1182/blood-2012-03-420273.
Full textPoleganov, Marco Alexander, Sarah Eminli, Tim Beissert, Stephanie Herz, Jung-Il Moon, Johanna Goldmann, Arianne Beyer, et al. "Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion." Human Gene Therapy 26, no. 11 (November 2015): 751–66. http://dx.doi.org/10.1089/hum.2015.045.
Full textZhang, Yu, Xing She Zhou, Yee Wei Law, and Marimuthu Palaniswami. "Efficient Homomorphic Hashing Approach for Secure Reprogramming in Wireless Sensor Networks." International Journal of Wireless and Microwave Technologies 2, no. 1 (February 15, 2012): 1–9. http://dx.doi.org/10.5815/ijwmt.2012.01.01.
Full textOh, Seung-ick, Hang-soo Park, Insik Hwang, Han-kyul Park, Kyung-Ah Choi, Hyesun Jeong, Suhng Wook Kim, and Sunghoi Hong. "Efficient Reprogramming of Mouse Fibroblasts to Neuronal Cells including Dopaminergic Neurons." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/957548.
Full textKim, Seung-Ku, Jae-Ho Lee, Kyeong Hur, Kwang-il Hwang, and Doo-Seop Eom. "Tiny module-linking for energy-efficient reprogramming in wireless sensor networks." IEEE Transactions on Consumer Electronics 55, no. 4 (November 2009): 1914–20. http://dx.doi.org/10.1109/tce.2009.5373750.
Full textWang, Weijian, Xiao Yu, Yongjun Wei, Rodrigo Ledesma-Amaro, and Xiao-Jun Ji. "Reprogramming the metabolism of Klebsiella pneumoniae for efficient 1,3-propanediol production." Chemical Engineering Science 236 (June 2021): 116539. http://dx.doi.org/10.1016/j.ces.2021.116539.
Full textApura, Patrícia, Susana Domingues, Sandra C. Viegas, and Cecília M. Arraiano. "Reprogramming bacteria with RNA regulators." Biochemical Society Transactions 47, no. 5 (October 23, 2019): 1279–89. http://dx.doi.org/10.1042/bst20190173.
Full textKikyo, N., and A. P. Wolffe. "Reprogramming nuclei: insights from cloning, nuclear transfer and heterokaryons." Journal of Cell Science 113, no. 1 (January 1, 2000): 11–20. http://dx.doi.org/10.1242/jcs.113.1.11.
Full textTanihara, Fuminori, Tatsuya Takemoto, Eri Kitagawa, Shengbin Rao, Lanh Thi Kim Do, Akira Onishi, Yukiko Yamashita, et al. "Somatic cell reprogramming-free generation of genetically modified pigs." Science Advances 2, no. 9 (September 2016): e1600803. http://dx.doi.org/10.1126/sciadv.1600803.
Full textKumar, Satish, Joanne E. Curran, Erika C. Espinosa, David C. Glahn, and John Blangero. "Highly efficient induced pluripotent stem cell reprogramming of cryopreserved lymphoblastoid cell lines." Journal of Biological Methods 7, no. 1 (January 8, 2020): 124. http://dx.doi.org/10.14440/jbm.2020.296.
Full textZhu, Xiaorui, Xianping Tao, Tao Gu, and Jian Lu. "ReLog: A systematic approach for supporting efficient reprogramming in wireless sensor networks." Journal of Parallel and Distributed Computing 102 (April 2017): 132–48. http://dx.doi.org/10.1016/j.jpdc.2016.12.010.
Full textYoo, Junsang, Yujung Chang, Hongwon Kim, Soonbong Baek, Hwan Choi, Gun-Jae Jeong, Jaein Shin, Hongnam Kim, Byung-Soo Kim, and Jongpil Kim. "Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues." Journal of Biomedical Nanotechnology 13, no. 3 (March 1, 2017): 269–79. http://dx.doi.org/10.1166/jbn.2017.2347.
Full textKrontiris, Ioannis, and Tassos Dimitriou. "Scatter – secure code authentication for efficient reprogramming in wireless sensor networks." International Journal of Sensor Networks 10, no. 1/2 (2011): 14. http://dx.doi.org/10.1504/ijsnet.2011.040900.
Full textDong, Wei, Chun Chen, Jiajun Bu, and Chao Huang. "Enabling efficient reprogramming through reduction of executable modules in networked embedded systems." Ad Hoc Networks 11, no. 1 (January 2013): 473–89. http://dx.doi.org/10.1016/j.adhoc.2012.07.007.
Full textSanthosh Kumar, S. V. N., Yogesh Palanichamy, M. Selvi, Sannasi Ganapathy, Arputharaj Kannan, and Sankar Pariserum Perumal. "Energy efficient secured K means based unequal fuzzy clustering algorithm for efficient reprogramming in wireless sensor networks." Wireless Networks 27, no. 6 (June 13, 2021): 3873–94. http://dx.doi.org/10.1007/s11276-021-02660-9.
Full textMujica, Gabriel, and Jorge Portilla. "Distributed Reprogramming on the Edge: A New Collaborative Code Dissemination Strategy for IoT." Electronics 8, no. 3 (February 28, 2019): 267. http://dx.doi.org/10.3390/electronics8030267.
Full textMarkov, Glenn J., Thach Mai, Surag Nair, Anna Shcherbina, Yu Xin Wang, David M. Burns, Anshul Kundaje, and Helen M. Blau. "AP-1 is a temporally regulated dual gatekeeper of reprogramming to pluripotency." Proceedings of the National Academy of Sciences 118, no. 23 (June 4, 2021): e2104841118. http://dx.doi.org/10.1073/pnas.2104841118.
Full textMollinari, Cristiana, and Daniela Merlo. "Direct Reprogramming of Somatic Cells to Neurons: Pros and Cons of Chemical Approach." Neurochemical Research 46, no. 6 (March 5, 2021): 1330–36. http://dx.doi.org/10.1007/s11064-021-03282-5.
Full textFink, Kyle D., Julien Rossignol, Ming Lu, Xavier Lévêque, Travis D. Hulse, Andrew T. Crane, Veronique Nerriere-Daguin, et al. "Survival and Differentiation of Adenovirus-Generated Induced Pluripotent Stem Cells Transplanted into the Rat Striatum." Cell Transplantation 23, no. 11 (November 2014): 1407–23. http://dx.doi.org/10.3727/096368913x670958.
Full textJeong, Pil-Soo, Bo-Woong Sim, Soo-Hyun Park, Min Ju Kim, Hyo-Gu Kang, Tsevelmaa Nanjidsuren, Sanghoon Lee, Bong-Seok Song, Deog-Bon Koo, and Sun-Uk Kim. "Chaetocin Improves Pig Cloning Efficiency by Enhancing Epigenetic Reprogramming and Autophagic Activity." International Journal of Molecular Sciences 21, no. 14 (July 8, 2020): 4836. http://dx.doi.org/10.3390/ijms21144836.
Full textFrakolaki, Efseveia, Panagiota Kaimou, Maria Moraiti, Katerina Kalliampakou, Kalliopi Karampetsou, Eleni Dotsika, Panagiotis Liakos, et al. "The Role of Tissue Oxygen Tension in Dengue Virus Replication." Cells 7, no. 12 (December 1, 2018): 241. http://dx.doi.org/10.3390/cells7120241.
Full textSuresh, Bharathi, Junwon Lee, Kye-Seong Kim, and Suresh Ramakrishna. "The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming." Stem Cells International 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/6705927.
Full textRoy, Bibhas, Luezhen Yuan, Yaelim Lee, Aradhana Bharti, Aninda Mitra, and G. V. Shivashankar. "Fibroblast rejuvenation by mechanical reprogramming and redifferentiation." Proceedings of the National Academy of Sciences 117, no. 19 (April 29, 2020): 10131–41. http://dx.doi.org/10.1073/pnas.1911497117.
Full textAnokye-Danso, Frederick, Chinmay M. Trivedi, Denise Juhr, Mudit Gupta, Zheng Cui, Ying Tian, Yuzhen Zhang, et al. "Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency." Cell Stem Cell 8, no. 4 (April 2011): 376–88. http://dx.doi.org/10.1016/j.stem.2011.03.001.
Full textAnokye-Danso, Frederick, Chinmay M. Trivedi, Denise Juhr, Mudit Gupta, Zheng Cui, Ying Tian, Yuzhen Zhang, et al. "Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency." Cell Stem Cell 11, no. 6 (December 2012): 853. http://dx.doi.org/10.1016/j.stem.2012.11.006.
Full text