Academic literature on the topic 'Effort estimation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Effort estimation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Effort estimation"

1

Tunalilar, Seckin. "Efes: An Effort Estimation Methodology." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613847/index.pdf.

Full text
Abstract:
The estimation of effort is at the heart of project tasks, since it is used for many purposes such as cost estimation, budgeting, monitoring, project planning, control and software investments. Researchers analyze problems of the estimation, propose new models and use new techniques to improve accuracy. However up to now, there is no comprehensive estimation methodology to guide companies in their effort estimation tasks. Effort estimation problem is not only a computational but also a managerial problem. It requires estimation goals, execution steps, applied measurement methods and updating mechanisms to be properly defined. Besides project teams should have motivation and responsibilities to build a reliable database. If such methodology is not defined, common interpretation will not be constituted among software teams of the company, and variances in measurements and divergences in collected information prevents to collect sufficient historical information for building accurate models. This thesis proposes a methodology for organizations to manage and execute effort estimation processes. The approach is based on the reported best practices, v empirical results of previous studies and solutions to problems &amp<br>conflicts described in literature. Five integrated processes: Data Collection, Size Measurement, Data Analysis, Calibration, Effort Estimation processes are developed with their artifacts, procedures, checklists and templates. The validation and applicability of the methodology is checked in a middle-size software company. During the validation of methodology we also evaluated some concepts such as Functional Similarity (FS) and usage of Base Functional Components (BFC) in effort model on a reliable dataset. By this way we evaluated whether these subjects should be a part of methodology or not. Besides in this study it is the first time that the COSMIC has been used for Artificial Neural Network models.
APA, Harvard, Vancouver, ISO, and other styles
2

Nabi, Mina. "A Software Benchmarking Methodology For Effort Estimation." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614648/index.pdf.

Full text
Abstract:
Software project managers usually use benchmarking repositories to estimate effort, cost, and duration of the software development which will be used to appropriately plan, monitor and control the project activities. In addition, precision of benchmarking repositories is a critical factor in software effort estimation process which plays subsequently a critical role in the success of the software development project. In order to construct such a precise benchmarking data repository, it is important to have defined benchmarking data attributes and data characteristics and to have collected project data accordingly. On the other hand, studies show that data characteristics of benchmark data sets have impact on generalizing the studies which are based on using these datasets. Quality of data repository is not only depended on quality of collected data, but also it is related to how these data are collected. In this thesis, a benchmarking methodology is proposed for organizations to collect benchmarking data for effort estimation purposes. This methodology consists of three main components: benchmarking measures, benchmarking data collection processes, and benchmarking data collection tool. In this approach results of previous studies from the literature were used too. In order to verify and validate the methodology project data were collected in two middle size software organizations and one small size organization by using automated benchmarking data collection tool. Also, effort estimation models were constructed and evaluated for these projects data and impact of different characteristics of the projects was inspected in effort estimation models.
APA, Harvard, Vancouver, ISO, and other styles
3

Usman, Muhammad. "Supporting Effort Estimation in Agile Software Development." Licentiate thesis, Karlskrona, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-10961.

Full text
Abstract:
Background: In Agile Software Development (ASD) planning is valued more than the resulting plans. Planning and estimation are carried out at multiple levels in ASD. Agile plans and estimates are frequently updated to reflect the current situation. It supports shorter release cycles and flexibility to incorporate changing market and customer needs. Many empirical studies have been conducted to investigate effort estimation in ASD. However, the evidence on effort estimation in ASD has not been aggregated and organized. Objective: This thesis has two main objectives: First, to identify and aggregate evidence, from both literature and industry, on effort estimation in ASD. Second, to support research and practice on effort estimation in ASD by organizing the identified knowledge. Method: In this thesis we conducted a Systematic Literature Review (SLR), a systematic mapping study, a questionnaire based industrial survey and an interview based survey. Results: The SLR and survey results showed that agile teams estimate effort, mostly during release and iteration planning, using techniques that are based on experts' subjective assessments. During effort estimation team related cost drivers, such as team members’ expertise, are considered important. The results also highlighted that implementation and testing are the only activities that are accounted for in effort estimates by most agile teams. Our mapping study identified that taxonomies in SE are mostly designed and presented in an ad-hoc manner. To fill this gap we updated an existing method to design taxonomies in a systematic way. The method is then used to design taxonomy on effort estimation in ASD using the evidence identified in our SLR and survey as input. Conclusions: The proposed taxonomy is evaluated by characterizing effort estimation cases of selected agile projects reported in literature. The evaluation found that the reporting of the selected studies lacks information related to the context and predictors used during effort estimation in ASD. The taxonomy can be used in consistently reporting effort estimation studies in ASD to facilitate identification, aggregation and analysis of the evidence. The proposed taxonomy was also used to characterize the effort estimation activity of agile teams in three different software companies. The proposed taxonomy was found to be useful by interviewed agile practitioners in documenting important effort estimation related knowledge, which otherwise remain tacit in most cases.
APA, Harvard, Vancouver, ISO, and other styles
4

Vukovic, Divna, and Cecilia Wester. "Staff Prediction Analysis : Effort Estimation In System Test." Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1739.

Full text
Abstract:
This master thesis is made in 2001 at Blekinge Institute of Technology and Symbian, which is a software company in Ronneby, Sweden. The purpose of the thesis is to find a suitable prediction and estimation model for the test effort. To do this, we have studied the State of the Art in cost/effort estimation and fault prediction. The conclusion of this thesis is that it is hard to make a general proposal, which is applicable for all organisations. For Symbian we have proposed a model based on use and test cases to predict the test effort.
APA, Harvard, Vancouver, ISO, and other styles
5

Sarro, Federica. "Search-based approaches for software development effort estimation." Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1969.

Full text
Abstract:
2011 - 2012<br>Effort estimation is a critical activity for planning and monitoring software project development and for delivering the product on time and within budget. Significant over or under-estimates expose a software project to several risks. As a matter of fact under-estimates could lead to addition of manpower to a late software project, making the project later (Brooks’s Law), or to the cancellation of activities, such as documentation and testing, negatively impacting on software quality and maintainability. Thus, the competitiveness of a software company heavily depends on the ability of its project managers to accurately predict in advance the effort required to develop software system. However, several challenges exists in making accurate estimates, e.g., the estimation is needed early in the software lifecycle, when few information about the project are available, or several factors can impact on project effort and these factor are usually specific for different production contexts. Several techniques have been proposed in the literature to support project manager in estimating software project development effort. In the last years the use of Search-Based (SB) approaches has been suggested to be employed as an effort estimation technique. These approaches include a variety of meta-heuristics, such as local search techniques (e.g., Hill Climbing, Tabu Search, Simulated Annealing) or Evolutionary Algorithms (e.g., Genetic Algorithms, Genetic Programming). The idea underlying the use of such techniques is based on the reformulation of software engineering problems as search or optimization problems whose goal is to find the most appropriate solutions which conform to some adequacy criteria (i.e., problem goals). In particular, the use of SB approaches in the context of effort estimation is twofold: they can be exploited to build effort estimation models or to enhance the use of existing effort estimation techniques. The usage reported in the literature of SB approaches for effort estimation have provided promising results that encourage further investigations. However, they can be considered preliminary studies. As a matter of fact, the capabilities of these approaches were not fully exploited, either the employed empirical analyses did not consider the more recent recommendations on how to carry out this kind of empirical assessment in the effort estimation and in the SBSE contexts. The main aim of the PhD dissertation is to provide an insight on the use of SB techniques for the effort estimation trying to highlight strengths and weaknesses of these approaches for both the uses above mentioned. [edited by Author]<br>XI n.s.
APA, Harvard, Vancouver, ISO, and other styles
6

Marshall, Ian Mitchell. "Evaluating courseware development effort estimation measures and models." Thesis, University of Abertay Dundee, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Azzeh, Mohammad Y. A. "Analogy-based software project effort estimation : contributions to projects similarity measurement, attribute selection and attribute weighting algorithms for analogy-based effort estimation." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4442.

Full text
Abstract:
Software effort estimation by analogy is a viable alternative method to other estimation techniques, and in many cases, researchers found it outperformed other estimation methods in terms of accuracy and practitioners' acceptance. However, the overall performance of analogy based estimation depends on two major factors: similarity measure and attribute selection & weighting. Current similarity measures such as nearest neighborhood techniques have been criticized that have some inadequacies related to attributes relevancy, noise and uncertainty in addition to the problem of using categorical attributes. This research focuses on improving the efficiency and flexibility of analogy-based estimation to overcome the abovementioned inadequacies. Particularly, this thesis proposes two new approaches to model and handle uncertainty in similarity measurement method and most importantly to reflect the structure of dataset on similarity measurement using Fuzzy modeling based Fuzzy C-means algorithm. The first proposed approach called Fuzzy Grey Relational Analysis method employs combined techniques of Fuzzy set theory and Grey Relational Analysis to improve local and global similarity measure and tolerate imprecision associated with using different data types (Continuous and Categorical). The second proposed approach presents the use of Fuzzy numbers and its concepts to develop a practical yet efficient approach to support analogy-based systems especially at early phase of software development. Specifically, we propose a new similarity measure and adaptation technique based on Fuzzy numbers. We also propose a new attribute subset selection algorithm and attribute weighting technique based on the hypothesis of analogy-based estimation that assumes projects that are similar in terms of attribute value are also similar in terms of effort values, using row-wise Kendall rank correlation between similarity matrix based project effort values and similarity matrix based project attribute values. A literature review of related software engineering studies revealed that the existing attribute selection techniques (such as brute-force, heuristic algorithms) are restricted to the choice of performance indicators such as (Mean of Magnitude Relative Error and Prediction Performance Indicator) and computationally far more intensive. The proposed algorithms provide sound statistical basis and justification for their procedures. The performance figures of the proposed approaches have been evaluated using real industrial datasets. Results and conclusions from a series of comparative studies with conventional estimation by analogy approach using the available datasets are presented. The studies were also carried out to statistically investigate the significant differences between predictions generated by our approaches and those generated by the most popular techniques such as: conventional analogy estimation, neural network and stepwise regression. The results and conclusions indicate that the two proposed approaches have potential to deliver comparable, if not better, accuracy than the compared techniques. The results also found that Grey Relational Analysis tolerates the uncertainty associated with using different data types. As well as the original contributions within the thesis, a number of directions for further research are presented. Most chapters in this thesis have been disseminated in international journals and highly refereed conference proceedings.
APA, Harvard, Vancouver, ISO, and other styles
8

Andersson, Veronika, and Hanna Sjöstedt. "Improved effort estimation of software projects based on metrics." Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5269.

Full text
Abstract:
<p>Saab Ericsson Space AB develops products for space for a predetermined price. Since the price is fixed, it is crucial to have a reliable prediction model to estimate the effort needed to develop the product. In general software effort estimation is difficult, and at the software department this is a problem.</p><p>By analyzing metrics, collected from former projects, different prediction models are developed to estimate the number of person hours a software project will require. Models for predicting the effort before a project begins is first developed. Only a few variables are known at this state of a project. The models developed are compared to a current model used at the company. Linear regression models improve the estimate error with nine percent units and nonlinear regression models improve the result even more. The model used today is also calibrated to improve its predictions. A principal component regression model is developed as well. Also a model to improve the estimate during an ongoing project is developed. This is a new approach, and comparison with the first estimate is the only evaluation.</p><p>The result is an improved prediction model. There are several models that perform better than the one used today. In the discussion, positive and negative aspects of the models are debated, leading to the choice of a model, recommended for future use.</p>
APA, Harvard, Vancouver, ISO, and other styles
9

Schofield, Christopher. "An empirical investigation into software effort estimation by analogy." Thesis, Bournemouth University, 1998. http://eprints.bournemouth.ac.uk/411/.

Full text
Abstract:
Most practitioners recognise the important part accurate estimates of development effort play in the successful management of major software projects. However, it is widely recognised that current estimation techniques are often very inaccurate, while studies (Heemstra 1992; Lederer and Prasad 1993) have shown that effort estimation research is not being effectively transferred from the research domain into practical application. Traditionally, research has been almost exclusively focused on the advancement of algorithmic models (e.g. COCOMO (Boehm 1981) and SLIM (Putnam 1978)), where effort is commonly expressed as a function of system size. However, in recent years there has been a discernible movement away from algorithmic models with non-algorithmic systems (often encompassing machine learning facets) being actively researched. This is potentially a very exciting and important time in this field, with new approaches regularly being proposed. One such technique, estimation by analogy, is the focus of this thesis. The principle behind estimation by analogy is that past experience can often provide insights and solutions to present problems. Software projects are characterised in terms of collectable features (such as the number of screens or the size of the functional requirements) and stored in a historical case base as they are completed. Once a case base of sufficient size has been cultivated, new projects can be estimated by finding similar historical projects and re-using the recorded effort. To make estimation by analogy feasible it became necessary to construct a software tool, dubbed ANGEL, which allowed the collection of historical project data and the generation of estimates for new software projects. A substantial empirical validation of the approach was made encompassing approximately 250 real historical software projects across eight industrial data sets, using stepwise regression as a benchmark. Significance tests on the results accepted the hypothesis (at the 1% confidence level) that estimation by analogy is a superior prediction system to stepwise regression in terms of accuracy. A study was also made of the sensitivity of the analogy approach. By growing project data sets in a pseudo time-series fashion it was possible to answer pertinent questions about the approach, such as, what are the effects of outlying projects and what is the minimum data set size? The main conclusions of this work are that estimation by analogy is a viable estimation technique that would seem to offer some advantages over algorithmic approaches including, improved accuracy, easier use of categorical features and an ability to operate even where no statistical relationships can be found.
APA, Harvard, Vancouver, ISO, and other styles
10

Kanneganti, Alekhya. "Using Ensemble Machine Learning Methods in Estimating Software Development Effort." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20691.

Full text
Abstract:
Background: Software Development Effort Estimation is a process that focuses on estimating the required effort to develop a software project with a minimal budget. Estimating effort includes interpretation of required manpower, resources, time and schedule. Project managers are responsible for estimating the required effort. A model that can predict software development effort efficiently comes in hand and acts as a decision support system for the project managers to enhance the precision in estimating effort. Therefore, the context of this study is to increase the efficiency in estimating software development effort. Objective: The main objective of this thesis is to identify an effective ensemble method to build and implement it, in estimating software development effort. Apart from this, parameter tuning is also implemented to improve the performance of the model. Finally, we compare the results of the developed model with the existing models. Method: In this thesis, we have adopted two research methods. Initially, a Literature Review was conducted to gain knowledge on the existing studies, machine learning techniques, datasets, ensemble methods that were previously used in estimating Software Development Effort. Then a controlled Experiment was conducted in order to build an ensemble model and to evaluate the performance of the ensemble model for determining if the developed model has a better performance when compared to the existing models.   Results: After conducting literature review and collecting evidence, we have decided to build and implement stacked generalization ensemble method in this thesis, with the help of individual machine learning techniques like Support vector regressor (SVR), K-Nearest Neighbors regressor (KNN), Decision Tree Regressor (DTR), Linear Regressor (LR), Multi-Layer Perceptron Regressor (MLP) Random Forest Regressor (RFR), Gradient Boosting Regressor (GBR), AdaBoost Regressor (ABR), XGBoost Regressor (XGB). Likewise, we have decided to implement Randomized Parameter Optimization and SelectKbest function to implement feature section. Datasets like COCOMO81, MAXWELL, ALBERCHT, DESHARNAIS were used. Results of the experiment show that the developed ensemble model performs at its best, for three out of four datasets. Conclusion: After evaluating and analyzing the results obtained, we can conclude that the developed model works well with the datasets that have continuous, numeric type of values. We can also conclude that the developed ensemble model outperforms other existing models when implemented with COCOMO81, MAXWELL, ALBERCHT datasets.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography