Journal articles on the topic 'EGLN3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'EGLN3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lieb, Mark E., Keon Menzies, Maria C. Moschella, Rujing Ni, and Mark B. Taubman. "Mammalian EGLN genes have distinct patterns of mRNA expression and regulation." Biochemistry and Cell Biology 80, no. 4 (2002): 421–26. http://dx.doi.org/10.1139/o02-115.
Full textVillar, Diego, Alicia Vara-Vega, Manuel O. Landázuri, and Luis Del Peso. "Identification of a region on hypoxia-inducible-factor prolyl 4-hydroxylases that determines their specificity for the oxygen degradation domains." Biochemical Journal 408, no. 2 (2007): 231–40. http://dx.doi.org/10.1042/bj20071052.
Full textKornilova, P., L. Potari-Gul, D. Modos, M. Madgwick, W. Haerty, and T. Korcsmaros. "P004 Critical paralog proteins has a cell-type specific rewiring role in Ulcerative Colitis associated signalling processes." Journal of Crohn's and Colitis 15, Supplement_1 (2021): S126—S127. http://dx.doi.org/10.1093/ecco-jcc/jjab076.133.
Full textPescador, Nuria, Yolanda Cuevas, Salvador Naranjo, et al. "Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene." Biochemical Journal 390, no. 1 (2005): 189–97. http://dx.doi.org/10.1042/bj20042121.
Full textMetzen, Eric. "Enzyme substrate recognition in oxygen sensing: how the HIF trap snaps." Biochemical Journal 408, no. 2 (2007): e5-e6. http://dx.doi.org/10.1042/bj20071306.
Full textShah, Reshma, Eleftheria Hatzimichael, Nelofer Syed, Konstantinos L. Bourantas, and Tim Crook. "Epigenetic Profiling Identifies EGLN3 as a Frequent Target for Transcriptional Silencing in Plasma Cell Neoplasias." Blood 110, no. 11 (2007): 2132. http://dx.doi.org/10.1182/blood.v110.11.2132.2132.
Full textTimoshkina, Natalya N., Oleg I. Kit, Anton Pushkin, et al. "Comparative gene expression analysis in gliomas with different IDH1/2 status." Journal of Clinical Oncology 37, no. 15_suppl (2019): e13008-e13008. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e13008.
Full textFan, Sijia, Jing Wang, Guangqing Yu, et al. "TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation." Journal of Biological Chemistry 295, no. 48 (2020): 16299–313. http://dx.doi.org/10.1074/jbc.ra120.014538.
Full textLosman, Julie-Aurore, Sungwoo Lee, Peppi Koivunen, Ryan E. Looper та William G. Kaelin. "Enantiomer-Specific Transformation by 2HG Is Linked to Opposing Effects on α-Ketoglutarate-Dependent Dioxygenases". Blood 118, № 21 (2011): LBA—4—LBA—4. http://dx.doi.org/10.1182/blood.v118.21.lba-4.bld0076_p2_lba-4.
Full textLosman, Julie-Aurore, Sungwoo Lee, Peppi Koivunen, Ryan E. Looper та William G. Kaelin. "Enantiomer-Specific Transformation by 2HG Is Linked to Opposing Effects on α-Ketoglutarate-Dependent Dioxygenases". Blood 118, № 21 (2011): LBA—4—LBA—4. http://dx.doi.org/10.1182/blood.v118.21.lba-4.lba-4.
Full textKelly, Tara, Hanne Johnsen, Erik Burgerhout, et al. "Low Oxygen Stress During Early Development Influences Regulation of Hypoxia-Response Genes in Farmed Atlantic Salmon (Salmo salar)." G3 Genes|Genomes|Genetics 10, no. 9 (2020): 3179–88. http://dx.doi.org/10.1534/g3.120.401459.
Full textGesang, Luobu, Lamu Gusang, Ciren Dawa, Gawa Gesang, and Kang Li. "Whole-Genome Sequencing Identifies the Egl Nine Homologue 3 (egln3/phd3) and Protein Phosphatase 1 Regulatory Inhibitor Subunit 2 (PPP1R2P1) Associated with High-Altitude Polycythemia in Tibetans at High Altitude." Disease Markers 2019 (November 7, 2019): 1–8. http://dx.doi.org/10.1155/2019/5946461.
Full textFong, Louise Y., Cristian Taccioli, Alexey Palamarchuk, et al. "Abrogation of esophageal carcinoma development in miR-31 knockout rats." Proceedings of the National Academy of Sciences 117, no. 11 (2020): 6075–85. http://dx.doi.org/10.1073/pnas.1920333117.
Full textLi, Shuijie, Javier Rodriguez, Wenyu Li, et al. "EglN3 hydroxylase stabilizes BIM-EL linking VHL type 2C mutations to pheochromocytoma pathogenesis and chemotherapy resistance." Proceedings of the National Academy of Sciences 116, no. 34 (2019): 16997–7006. http://dx.doi.org/10.1073/pnas.1900748116.
Full textSciorra, Vicki A., Michael A. Sanchez, Akemi Kunibe, and Andrew E. Wurmser. "Suppression of Glioma Progression by Egln3." PLoS ONE 7, no. 8 (2012): e40053. http://dx.doi.org/10.1371/journal.pone.0040053.
Full textHatzimichael, Eleftheria, Aggeliki Dasoula, Reshma Shah, et al. "The prolyl-hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia." European Journal of Haematology 84, no. 1 (2010): 47–51. http://dx.doi.org/10.1111/j.1600-0609.2009.01344.x.
Full textPushkin, Anton A., Ilya A. Alliluev, Eduard E. Rostorguev, et al. "Differential expression of KDM1A and SMAD7 genes in gliomas depending on the tumor grade." Journal of Clinical Oncology 38, no. 15_suppl (2020): e14549-e14549. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e14549.
Full textApanovich, Natalya, Maria Peters, Pavel Apanovich, et al. "The Genes—Candidates for Prognostic Markers of Metastasis by Expression Level in Clear Cell Renal Cell Cancer." Diagnostics 10, no. 1 (2020): 30. http://dx.doi.org/10.3390/diagnostics10010030.
Full textFu, Jian. "Catalytic-independent inhibition of cIAP1-mediated RIP1 ubiquitination by EGLN3." Cellular Signalling 28, no. 2 (2016): 72–80. http://dx.doi.org/10.1016/j.cellsig.2015.11.011.
Full textFu, Jian, Keon Menzies, Robert S. Freeman, and Mark B. Taubman. "EGLN3 Prolyl Hydroxylase Regulates Skeletal Muscle Differentiation and Myogenin Protein Stability." Journal of Biological Chemistry 282, no. 17 (2007): 12410–18. http://dx.doi.org/10.1074/jbc.m608748200.
Full textXie, L., K. Xiao, E. J. Whalen, et al. "Oxygen-Regulated 2-Adrenergic Receptor Hydroxylation by EGLN3 and Ubiquitylation by pVHL." Science Signaling 2, no. 78 (2009): ra33. http://dx.doi.org/10.1126/scisignal.2000444.
Full textFrank, Derk, Johanne Gantenberg, Inka Boomgaarden, et al. "MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3." Journal of Molecular and Cellular Cardiology 52, no. 3 (2012): 711–17. http://dx.doi.org/10.1016/j.yjmcc.2011.12.001.
Full textFu, Jian, та Mark B. Taubman. "Prolyl Hydroxylase EGLN3 Regulates Skeletal Myoblast Differentiation through an NF-κB-dependent Pathway". Journal of Biological Chemistry 285, № 12 (2010): 8927–35. http://dx.doi.org/10.1074/jbc.m109.078600.
Full textLee, Sungwoo, Eijiro Nakamura, Haifeng Yang, et al. "Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: Developmental culling and cancer." Cancer Cell 8, no. 2 (2005): 155–67. http://dx.doi.org/10.1016/j.ccr.2005.06.015.
Full textYue, Yongjun, Jinsheng Cui, Yu Zhao, Shangying Liu, and Weixing Niu. "Circ_101341 Deteriorates the Progression of Clear Cell Renal Cell Carcinoma Through the miR- 411/EGLN3 Axis." Cancer Management and Research Volume 12 (December 2020): 13513–25. http://dx.doi.org/10.2147/cmar.s272287.
Full textZhang, Gang, Jianqiang Wang, Wei Tan, et al. "Circular RNA EGLN3 silencing represses renal cell carcinoma progression through the miR-1224-3p/HMGXB3 axis." Acta Histochemica 123, no. 6 (2021): 151752. http://dx.doi.org/10.1016/j.acthis.2021.151752.
Full textSchlisio, S., R. S. Kenchappa, L. C. W. Vredeveld, et al. "The kinesin KIF1B acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor." Genes & Development 22, no. 7 (2008): 884–93. http://dx.doi.org/10.1101/gad.1648608.
Full textFu, J., and M. B. Taubman. "EGLN3 Inhibition of NF- B Is Mediated by Prolyl Hydroxylase-Independent Inhibition of I B Kinase Ubiquitination." Molecular and Cellular Biology 33, no. 15 (2013): 3050–61. http://dx.doi.org/10.1128/mcb.00273-13.
Full textLin, Ling, and Jianhua Cai. "Circular RNA circ‐EGLN3 promotes renal cell carcinoma proliferation and aggressiveness via miR‐1299‐mediated IRF7 activation." Journal of Cellular Biochemistry 121, no. 11 (2020): 4377–85. http://dx.doi.org/10.1002/jcb.29620.
Full textPadovano, Valeria, Ivana Y. Kuo, Lindsey K. Stavola, et al. "The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function." Molecular Biology of the Cell 28, no. 2 (2017): 261–69. http://dx.doi.org/10.1091/mbc.e16-08-0597.
Full textKubicka, Stefan, Roger Von Moos, Richard Greil, et al. "Bevacizumab (BEV) continued beyond first progression in patients (pts) with metastatic colorectal cancer (mCRC) previously treated with BEV + chemotherapy (CT): Biomarker findings from ML18147." Journal of Clinical Oncology 31, no. 4_suppl (2013): 452. http://dx.doi.org/10.1200/jco.2013.31.4_suppl.452.
Full textWang, Yicun, Xin Li, Wei Liu, et al. "MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer." Oncogene 38, no. 24 (2019): 4820–34. http://dx.doi.org/10.1038/s41388-019-0760-3.
Full textAuburger, Georg, Suzana Gispert, and Nadine Brehm. "Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis." Parkinson's Disease 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/4686185.
Full textAng, Sonny, Maria Lima Da Silva, Margaret Dawson, et al. "NK Cell Proliferation and Cytolytic Function Are Compromised In the Hypoxic Tumor Microenvironment." Blood 116, no. 21 (2010): 4291. http://dx.doi.org/10.1182/blood.v116.21.4291.4291.
Full textStraub, Isabella R., Woranontee Weraarpachai, and Eric A. Shoubridge. "Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses." Human Molecular Genetics 30, no. 8 (2021): 687–705. http://dx.doi.org/10.1093/hmg/ddab078.
Full textZhong, ChengLin, SiChen Li, JingJing Li та ін. "Polymorphisms in the Egl nine homolog 3 (EGLN3) and Peroxisome proliferator activated receptor-alpha (PPARα) genes and their correlation with hypoxia adaptation in Tibetan chickens". PLOS ONE 13, № 3 (2018): e0194156. http://dx.doi.org/10.1371/journal.pone.0194156.
Full textGavrilovskaya, Irina N., Elena E. Gorbunova, and Erich R. Mackow. "Hypoxia Induces Permeability and Giant Cell Responses of Andes Virus-Infected Pulmonary Endothelial Cells by Activating the mTOR-S6K Signaling Pathway." Journal of Virology 87, no. 23 (2013): 12999–3008. http://dx.doi.org/10.1128/jvi.02103-13.
Full textOrtega, Miguel A., Beatriz Romero, Ángel Asúnsolo, et al. "Behavior of Smooth Muscle Cells under Hypoxic Conditions: Possible Implications on the Varicose Vein Endothelium." BioMed Research International 2018 (October 18, 2018): 1–9. http://dx.doi.org/10.1155/2018/7156150.
Full textBjarnason, Georg A., Zsuzsanna Lichner, Salvador Mejia-Guerrero, et al. "Pleotrophic action of renal cell carcinoma: Dysregulated microRNAs on hypoxia-related signaling pathways." Journal of Clinical Oncology 30, no. 5_suppl (2012): 428. http://dx.doi.org/10.1200/jco.2012.30.5_suppl.428.
Full textSamidurai, Arun, Sean K. Roh, Meeta Prakash, et al. "STAT3-miR-17/20 signalling axis plays a critical role in attenuating myocardial infarction following rapamycin treatment in diabetic mice." Cardiovascular Research 116, no. 13 (2019): 2103–15. http://dx.doi.org/10.1093/cvr/cvz315.
Full textYasukochi, Yoshiki, Takayuki Nishimura, Juan Ugarte, et al. "Effect of EGLN1 Genetic Polymorphisms on Hemoglobin Concentration in Andean Highlanders." BioMed Research International 2020 (November 15, 2020): 1–16. http://dx.doi.org/10.1155/2020/3436581.
Full textMishra, Aastha, Ghulam Mohammad, Tashi Thinlas, and M. A. Qadar Pasha. "EGLN1 variants influence expression and SaO2 levels to associate with high-altitude pulmonary oedema and adaptation." Clinical Science 124, no. 7 (2012): 479–89. http://dx.doi.org/10.1042/cs20120371.
Full textBrutsaert, Tom D., Melisa Kiyamu, Gianpietro Elias Revollendo, et al. "Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude." Proceedings of the National Academy of Sciences 116, no. 48 (2019): 24006–11. http://dx.doi.org/10.1073/pnas.1906171116.
Full textChiang, Han-Lin, Chiung Mei Chen, Yi-Chun Chen, Chih-Ying Chao, Yih-Ru Wu, and Guey-Jen Lee-Chen. "Genetic Analysis of EGLN1 C127S Variant in Taiwanese Parkinson’s Disease." Parkinson's Disease 2020 (April 25, 2020): 1–4. http://dx.doi.org/10.1155/2020/9582317.
Full textOliveira, Jennifer L., Lori A. Frederick, Lea M. Coon, et al. "Spectrum of Mutations Associated with Hereditary Erythrocytosis." Blood 126, no. 23 (2015): 2140. http://dx.doi.org/10.1182/blood.v126.23.2140.2140.
Full textYi, Dan, Bin Liu, Ting Wang, et al. "Endothelial Autocrine Signaling through CXCL12/CXCR4/FoxM1 Axis Contributes to Severe Pulmonary Arterial Hypertension." International Journal of Molecular Sciences 22, no. 6 (2021): 3182. http://dx.doi.org/10.3390/ijms22063182.
Full textZhang, Jing, Xingnan Zheng, and Qing Zhang. "EglN2 positively regulates mitochondrial function in breast cancer." Molecular & Cellular Oncology 3, no. 2 (2015): e1120845. http://dx.doi.org/10.1080/23723556.2015.1120845.
Full textKaelin, William G. "IDH Mutations, 2-Oxoglutarate-dependent Dioxygenases, and Leukemia." Blood 124, no. 21 (2014): SCI—6—SCI—6. http://dx.doi.org/10.1182/blood.v124.21.sci-6.sci-6.
Full textYang, Minghua, Pan Chen, Jiao Liu, et al. "Clockophagy is a novel selective autophagy process favoring ferroptosis." Science Advances 5, no. 7 (2019): eaaw2238. http://dx.doi.org/10.1126/sciadv.aaw2238.
Full textPetousi, Nayia, Quentin P. P. Croft, Gianpiero L. Cavalleri, et al. "Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia." Journal of Applied Physiology 116, no. 7 (2014): 893–904. http://dx.doi.org/10.1152/japplphysiol.00535.2013.
Full text