Dissertations / Theses on the topic 'Einstein metric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 47 dissertations / theses for your research on the topic 'Einstein metric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Harst, Ulrich [Verfasser]. "Investigations on asymptotic safety of metric, tetrad and Einstein-Cartan gravity / Ulrich Harst." Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/1032940662/34.
Full textChampion, Daniel James. "Mobius Structures, Einstein Metrics, and Discrete Conformal Variations on Piecewise Flat Two and Three Dimensional Manifolds." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145313.
Full textWink, Matthias. "Ricci solitons and geometric analysis." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:3aae2c5e-58aa-42da-9a1b-ec15cacafdad.
Full textWelly, Adam. "The Geometry of quasi-Sasaki Manifolds." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20466.
Full textFanaai, Hamidreza. "Flot géodésique, mesures invariantes et métriques d'Einstein." Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10278.
Full textEdmonds, Bartlett Douglas Jr. "Approaching the Singularity in Gowdy Universes." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/1083.
Full textGaset, Rifà Jordi. "A multisymplectic approach to gravitational theories." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/620740.
Full textLes teories de la gravetat són un dels temes més importants en física teòrica i física matemàtica avui en dia. La formulació clàssica de la gravetat utilitza el Lagrangià de Hilbert-Einstein, el qual és un Lagrangià singular de segon ordre; per tant requereix una teoria geomètrica per teories de camp de segon ordre, que comporten diverses dificultats. Una altra formulació estàndard és la d'Einstein-Palatini o Mètrica-Afí, la qual utilitza un Lagrangià singular de primer ordre. S'ha treballat molt per establir les estructures geomètriques adients per descriure teories de camps clàssiques. Particularment, la formulació multisimplèctica és la més general de totes i, recentment alguns treballs han considerat la gravetat des de un punt de vista multisimplèctic. Aquesta formulació ens permet estudiar i entendre millor diverses característiques inherents dels models gravitatoris. L'objectiu d'aquesta tesi és utilitzar la formulació multisimplèctica per a teories de camps de primer i segon ordre per obtenir una descripció covariant completa dels formalismes Lagrangià i Hamiltonià per als models d'Einstein-Hilbert i Mètrica-Afí, i explicar les seves característiques. Concretament: reducció de l'ordre, restriccions, simetries i llibertat gauge. Algunes propietats de les teories de camps multisimplèctiques han estat desenvolupades per estudiar els models. S'han establert les restriccions generades per la projectabilitat de la forma de Poincaré-Cartan. Aquestes restriccions tenen relació amb el fet que les velocitats d'ordre superior són camps vectorials gauge forts. El concepte de llibertat gauge per a teories de camps també ha estat analitzat. Es proposa la utilització del terme "gauge" per fer referència a la no regularitat de les formes de Poincaré-Cartan. Per tant, les múltiples solucions es caracteritzen a partir de dues fonts: la relativa al gauge, que està relacionada amb la no regularitat, i altres fonts no relacionades amb el gauge que són exclusives de teories de camps. S'ha estudiat en detall dos models de gravetat: el model d'Einstein-Hilbert i el de Mètrica-Afí (o Einstein-Palatinti). En ambdós casos s'ha presentat una formulació covariant multisimplèctica Hamiltoniana. En tots els casos trobem la subvarietat final on les solucions existeixen, i escrivim explícitament tots els camps multivectorials sem-holònoms solució de les equacions de camp. També presentem les simetries Lagrangianes naturals. A més emfatitzem aspectes diferents en cada model: El model d'Einstein-Hilbert és una teoria de camp singular de segon ordre, la qual, com a conseqüència de la seva no regularitat, és equivalent a una teoria regular de primer ordre. Per aquest model hem presentat el formalisme unificat Lagrangià-Hamiltonià. També hem considerat la presència de fonts d'energia-matèria i es mostra com algunes característiques físiques i geomètriques rellevants de la teoria depenen del tipus de font. El model Mètrica-Afí és una teoria de camps singular de primer ordre que té una simetria gauge. Es recupera i s'estudia aquesta simetria gauge mostrant que és única. Les lligadures del sistema són presentades i analitzades. Utilitzant la llibertat gauge i les lligadures, s'estableix la relació geomètrica entre els models d'Einstein-Palatini i d'Einstein-Hilbert, inclosa la relació entre les solucions holònomes en ambdós formalismes. També es presenta un model Hamiltonià, que conté únicament la connexió, equivalent al formalisme Mètrica-Afí Hamiltonià
Roth, John Charles. "Perturbations of Kähler-Einstein metrics /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5737.
Full textDesa, Zul Kepli Bin Mohd. "Riemannian manifolds with Einstein-like metrics." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/7571/.
Full textPedersen, H. "Geometry and magnetic monopoles : Constructions of Einstein metrics and Einstein-Weyl geometries." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353118.
Full textLi, Long. "On the Uniqueness of singular Kahler-Einstein metrics." Thesis, State University of New York at Stony Brook, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3632422.
Full textBando and Mabuchi proved the uniqueness of Kaehler-Einstein metrics on Fano manifolds up to a holomorphic automorphism in 1987. Then recently Berndtsson generalized the uniqueness result of Kaehler-Einstein metrics to bounded potentials. We give a new proof of the Bando-Mabuch-Berndtsson uniqueness theorem in a different aspect, based on a new technique developed from Chen's C1,1 geodesic and Futaki's spectral formula. Finally, the uniqueness of the conical Kaehler-Einstein metrics will be discussed under the assumption of properness of twisted Ding-functional.
Santos, Evandro Carlos Ferreira dos. "Metricas de Einstein em variedades bandeira." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306786.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-05T00:38:44Z (GMT). No. of bitstreams: 1 Santos_EvandroCarlosFerreirados_D.pdf: 3261771 bytes, checksum: 1d6efb1b1f03e2549a501877f92a4952 (MD5) Previous issue date: 2005
Resumo: O objetivo deste trabalho é contribuir para o estudo da geometria Hermitiana invariante das variedades bandeira. Estudamos a classe das métricas de Einstein sobre variedades bandeira. Neste trabalho apresentamos novas soluções para a equação de Einstein invariante sobre as variedades bandeira do tipo Az maximais e não-maximais. Considere W um subgrupo do grupo de WeyL Descrevemos uma ação natural de W sobre o conjunto das soluções da equação de Einstein invariante e provamos que esta ação deixa a equação e o conjunto solução invariantes. Determinamos a constante de Einstein de todas as métricas conhecidas e em alguns casos encontramos a métrica de Yamabe. Estudamos o funcional de Einstein- Hilbert e concluímos que toda métrica de Einstein invariante sobre uma variedade flag é estável. Usamos C- fibrações para provar que sobre JF(n), n > 4, uma métrica de Einstein (1,2)- simplética deve ser Kãhler. Fizemos uso da classificação das estruturas quase Hermitianas invariantes de San Martin- Negreiros e provamos que uma métrica de Einstein é Kãhler ou pertence à classe W1 EB W3. Isto implica em uma solução, no caso das variedades bandeira do tipo Az, para uma conjectura formulada por W. Ziller[17]
Abstract: The goal of this work is to contribute the study of invariant Hermitian geometry on flag manifolds. We study the class of Einstein metrics on flag manifolds. In this work we present new solutions for the invariant Einstein equation on flag manifolds, maximals or not, of Ai case. Let W a subgroup of the Weyl group. We described a natural action of W on the solution set of the Einstein equation, and we proved that W lefts the solution set invariant. We obtained the Einstein's constant of all the known metrics and in some cases we found the Yamabe metric. We studied the Einstein-Hilbert functional and we proved that all invariant Einstein metrics on a flag manifold are stable. Using C-fibrations we proved, in the case IF(n), n 2:: 4, if 9 is an invariant Einstein metric, and (1,2)-symplectic then 9 is Kãhler. According to San Martin-Negreiros's classification of all almost Hermitian structures on maximal flag manifolds we proved that an Einstein metric is Kãhler or belongs to W1 $ W3. This implies in a solution, in flag manifolds of Ai case, for a conjecture proposed by W. Ziller[17]
Doutorado
Geometria e Topologia
Doutor em Matemática
Kerr, Gary Drummond. "Algebraically special Einstein spaces : Kerr-Schild metrics and homotheties." Thesis, Queen Mary, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300621.
Full textAraujo, Fatima. "Einstein homogeneous Riemannian fibrations." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/4375.
Full textBorges, Laena Furtado. "Sobre rigidez de métricas quasi-Einstein." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6965.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T13:53:29Z (GMT) No. of bitstreams: 2 Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-20T13:53:29Z (GMT). No. of bitstreams: 2 Dissertação - Laena Furtado Borges - 2017.pdf: 2090414 bytes, checksum: afc3416e502ab5aedc5390b7986a9fcf (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we will present some concepts of quasi-Einstein metrics. From this, we will enunciate and demonstrate rigidity results for quasi-Einstein metrics until we have enough material to demonstrate a stiffness result for quasi-Einstein metrics of dimension two. Finally, we will give some concepts of Kähler metrics, prove a theorem and finally demonstrate a corollary that connects the main theorem of our work with Kähler metrics.
Nesse trabalho, apresentaremos alguns conceitos de métricas quasi-Einstein. A partir disso, enunciaremos e demonstraremos resultados de rigidez para métricas quasi-Einstein, até que tenhamos material suficiente para a demonstração de um resultado de rigidez para métricas quasi-Einstein em dimensão dois. Por fim, daremos alguns conceitos de métricas kähler, provaremos um teorema e por fim demonstraremos um corolário que conecta o teorema principal do nosso trabalho com as métricas Kähler.
Akbaba, Esin. "Einstein Aether Gravity." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610898/index.pdf.
Full textdel type metrics are also exact solutions of this theory. Furthermore, we determine the observational constraints on the dimensionless preferred parameters of this theory using the parametrized post- Newtonian formalism. We stress that none of calculations and discussions are original in this thesis.
Wu, Damin Ph D. Massachusetts Institute of Technology. "Higher canonical asymptotics of Kähler-Einstein metrics on quasi-projective manifolds." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33600.
Full textIncludes bibliographical references (p. 61-64).
In this thesis, we derive the asymptotic expansion of the Kiihler-Einstein metrics on certain quasi-projective varieties, which can be compactified by adding a divisor with simple normal crossings. The weighted Cheng-Yau Hilder spaces and the log-filtrations based on the bounded geometry are introduced to characterize the asymptotics. We first develop the analysis of the Monge-Ampere operators on these weighted spaces. We construct a family of linear elliptic operators which can be viewed as certain conjugacies of the specially linearized Monge-Ampbre operators. We derive a theorem of Fredholm alternative for such elliptic operators by the Schauder theory and Yau's generalized maximum principle. Together these results derive the isomorphism theorems of the Monge-Ampbre operators, which imply that the Monge-Ampere operators preserve the log-filtration of the Cheng-Yau Holder ring. Next, by choosing a canonical metric on the submanifold, we construct an initial Kidhler metric on the quasi-projective manifold such that the unique solution of the Monge-Ampere equation belongs to the weighted -1 Cheng-Yau Hölder ring. Moreover, we generalize the Fefferman's operator to act on the volume forms and obtain an iteration formula.
(cont.) Finally, with the aid of the isomorphism theorems and the iteration formula we derive the desired asymptotics from the initial metric. Furthermore, we prove that the obtained asymptotics is canonical in the sense that it is independent of the extensions of the canonical metric on the submanifold.
by Damin Wu.
Ph.D.
Silva, Neiton Pereira da. "Metricas de Einstein e estruturas Hermitianas invariantes em variedades bandeira." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306785.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-14T14:44:13Z (GMT). No. of bitstreams: 1 Silva_NeitonPereirada_D.pdf: 4231710 bytes, checksum: af4dc57e0a7215547662f87d1744bb27 (MD5) Previous issue date: 2009
Resumo: Neste trabalho encontramos todas as métricas de Einstein invariantes em quatro famílias de variedades bandeira do tipo B1 e C1. Os nossos resultados são consistentes com a conjectura de Wang e Ziller sobre a finitude das métricas de Einstein. O nosso método para resolver as equações de Einstein e baseado nas simetrias do sistema algébrico. Obtemos os sistemas algébricos de Einstein para variedades bandeira generalizadas do tipo B1 C1e G2. Estes sistemas são as condições necessárias e suficientes para métricas invariantes nessas variedades serem Einstein. Os sistemas algébricos que obtivemos generalizam as equações de Einstein obtidas por Sakane nos casos maximais. As equações nos casos Al e Dl foram obtidas por Arvanitoyeorgos. Calculamos o conjunto das trazes para as variedades bandeira generalizadas dos grupos de Lie clássicos. Assim estendemos à essas variedades certos resultados sobre estruturas Hermitianas invariantes obtidos por San Martin, Cohen e Negreiros.
Abstract: In this work we and all the invariant Einstein metrics on four families of ag manifolds of type Bl and Cl. Our results are consistent with the finiteness conjecture of Einstein metrics proposed by Wang and Ziller. Our approach for solving the Einstein equations is based on the symmetries of the algebraic system. We obtain the Einstein algebraic systems for the generalized ag manifolds of type Bl, Cl and G2. These systems are necessary and sufficient conditions for invariant metrics on these manifolds to be Einstein. The algebraic systems that we obtained generalize the Einstein equations obtained by Sakane in the maximal cases. The equations in the cases Al and Dl were obtained by Arvanitoyeorgos. We calculate all the t-roots on the generalized ag manifolds of the classical Lie groups. Thus we extend to these manifolds certain results on invariant structures Hermitian obtained by San Martin, Cohen and Negreiros.
Doutorado
Geometria Diferencial
Doutor em Matemática
Junior, Ernani de Sousa Ribeiro. "A geometria das mÃtricas tipo-Einstein." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6655.
Full textConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
O objetivo deste trabalho à estudar a geometria das mÃtricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e mÃtricas quasi-Einstein). Mais especificamente, vamos obter equaÃÃes de estrutura, exemplos, fÃrmulas integrais e estimativas que permitirÃo caracterizar estas classes de mÃtricas.
The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics.
Griffiths, Hugh Norman. "Self-dual metrics on toric 4-manifolds : extending the Joyce construction." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3969.
Full textPiolanti, Simone. "Il formalismo ADM per la metrica FLRW." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textMartinez, Garcia Jesus. "Dynamic alpha-invariants of del Pezzo surfaces with boundary." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8090.
Full textDelcroix, Thibaut. "Métriques de Kähler-Einstein sur les compactifications de groupes." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM046/document.
Full textThe main result of this work is a necessary and sufficient condition for the existence of a Kähler-Einstein metric on a smooth and Fano bi-equivariant compactification of a complex connected reductive group. Examples of such varieties include wonderful compactifications of adjoint semisimple groups.The tools needed to study the existence of Kähler-Einstein metrics on these varieties are developed in the first part of the work, including a computation of the complex Hessian of a $Ktimes K$-invariant function on the complexification of a compact group $K$. Another step is to associate to any non-negatively curved invariant hermitian metric on an ample linearized line bundle on a group compactification a convex function with prescribed asymptotic behavior. This is used a first time to derive a formula for the alpha invariantof an ample line bundle on a Fano group compactification. This formula is obtained through the computation of the log canonical thresholds of any non-negatively curved invariant hermitian metric, and gives the sameresult, for toric manifolds, as the one we obtained before, in an article that is included in this thesis as an appendix.Then we prove the main result by obtaining $C^0$ estimates along the continuity method, using the tools developed to reduce to a real Monge-Ampère equation on a cone. The condition obtained is that the barycenter of the polytope associated to the group compactification, with respect to the Duistermaat-Heckman measure, lies in a certain zone in the polytope. This condition can be checked on examples, gives new examples of Fano Kähler-Einstein manifolds, and also gives an example that admits no Kähler-Ricci solitons. We also compute the greatest Ricci lower bound when there are no Kähler-Einstein metrics
Filho, JoÃo Francisco da Silva. "Solitons de Ricci e mÃtricas quasi-Einstein em variedades homogÃneas." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11123.
Full textCoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
Este trabalho tem como objetivo principal estudar os solitons de Ricci e as mÃtricas quasi-Einstein em variedades riemannianas homogÃneas e simplesmente conexas, enfatizando problemas em dimensÃes trÃs e quatro, procurando caracterizar e descrever explicitamente tais estruturas, obtendo resultados de existÃncia, unicidade e consequentemente, construir novos exemplos sobre essas classes de variedades. A descriÃÃo mencionada, consiste basicamente em determinar condiÃÃes que garantam existÃncia e explicitar a famÃlia de campos de vetores que geram todas essas possÃveis estruturas, relacionando-os entre si e identificando quais desses campos de vetores sÃo do tipo gradiente. Devemos ressaltar que a parte do trabalho que corresponde Ãs variedades homogÃneas de dimensÃo trÃs considera a classificaÃÃo relativa à dimensÃo do grupo de isometrias, enquanto a parte que corresponde Ãs variedades homogÃneas de dimensÃo quatro, contempla apenas uma subclasse das variedades homogÃneas de dimensÃo quatro que à constituÃda pelas variedades solÃveis tipo-Lie, ou seja, grupos de Lie solÃveis, simplesmente conexos e munidos de mÃtrica invariante à esquerda.
The purpose of this work is study Ricci solitions and quasi-Einstein metrics on simply connected homogeneous Riemannian manifolds, with emphasis in problems in three and four dimensions, trying to characterize and to describe explicitly such structures, getting results of existence, uniqueness and consequently, build new examples on these class of manifolds. The quoted description consists basically in to obtain conditions that ensure the existence and show explicitly the family of vector fields that generate each of these structures, relating them identifying what of these vector fields are gradient. We should highlight that in the part of this work that corresponds to homogeneous three manifolds, we will consider the classification relative to dimension of isometry group, while in the part that corresponds to homogeneous four manifolds, we treat only the solvable geometry Lie type, namely, the simply connected solvable Lie group with left invariants metrics.
Carlos, Elaine Sampaio de Sousa. "A geometria dos sÃlitons de Ricci compactos." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11129.
Full textConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
O objetivo deste trabalho à estudar a geometria dos sÃlitons de Ricci compactos, os quais correspondem as soluÃÃes auto-similires do fluxo de Ricci. AlÃm disso, essas variedades podem ser vistas como uma generalizaÃÃo das mÃtricas de Einstein. Neste trabalho, mostraremos que todo sÃliton de Ricci compacto tem curvatura escalar positiva. Alem disso, mostraremos que o seu grupo fundamental à sempre finito. Em particular, apresentaremos uma prova feita por Perelman [19] que todo sÃliton de Ricci compacto à do tipo gradiente
The aim of this work is to study the geometry of the compact Ricci soliton, which correspond to self-similar solution of the Ricci flow. These manifolds are natural generalization to Einstein metrics. Here we shall prove that every compact Ricci soliton has positive scalar curvature. Moreover, we show that its fundamental group is finite. Finally, we prove that every compact Ricci soliton must be gradient.
Silva, Carlos Antonio Freitas da. "Construção explícita de métricas de Einstein-Finsler com curvatura flag não constante." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4520.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-14T14:53:28Z (GMT) No. of bitstreams: 2 Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-05-14T14:53:28Z (GMT). No. of bitstreams: 2 Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-02-20
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this dissertation we will study Finsler Geometry. In particular, we will study Randers Geometry that which can be viewed as Riemannian Geometry with a pertubation. Furthermore Randers metrics are also obtained as solution to Zermelo’s Navigation Problem. We will also use classification theorems of Randers metrics of constant flag curvature and Einstein Randers metrics in terms of Zermelo’s Navigation Problem. Using Randers metrics we are going to construct a 3-parameter family of Einstein-Finsler metrics with non-constant flag curvature and to get such family we use a Killing vector field and a Riemannian metric which is the Hawking Taub-NUT metric.
Neste trabalho estudaremos a Geometria de Finsler. Em particular, estudaremos a Geometria de Randers que pode ser visto como a mais simples perturbação da Geometria Riemanniana. Além disso, veremos também que métricas de Randers podem ser obtidas como soluções do Problema Navegacional de Zermelo. Utilizaremos também resultados que caracterizam métricas de Randers com curvatura flag constante e métricas de Randers do tipo Einstein em termos do Problema Navegacional de Zermelo. Usando métricas de Randers vamos construir uma família a 3 parâmetros de métricas de Einstein-Finsler com curvatura flag não constante e para obter tal família utilizaremos um campo de Killing e uma métrica Riemanniana que é a métrica de Hawking Taub-NUT.
Bezerra, Kelton Silva. "Rigidity and unstability of hypersurfaces and an unicity theorem on semi-Rieamannian manifolds." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16530.
Full textOur aim in this work is threefold. First, we get an extension, to the spherical case, of a theorem due to J. Simons, which concerns unstability of minimal cones constructed over a certain class of minimal submanifolds of the Euclidean sphere. Second, we classify the quasi-Einstein structures of the Riemannian product Hn x R. Third, we get a rigidity theorem for complete hypersurfaces into the De Sitter space, under certain conditions on the mean and scalar curvatures.
Este trabalho aborda trÃs problemas em Geometria Diferencial. Primeiro, obtemos uma extensÃo, para o caso esfÃrico, de um teorema devido a J. Simons sobre instabilidade de cones mÃnimos construÃdos sobre uma certa classe de subvariedades mÃnimas da esfera Euclidiana. Depois, classificamos as estruturas quasi-Einstein existentes sobre o produto Riemanniano Hn X R. Por fim, obtemos um teorema de rigidez para hipersuperfÃcies tipo-espaÃo completas do espaÃo de De Sitter, sob certas condiÃÃes sobre as curvaturas mÃdia e escalar, alÃm de uma condiÃÃo de integrabilidade.
Silva, Antonio Kelson Vieira da. "Estimativas gradiente para autofunções do V-Laplaciano e métricas m-quasi-Einstein generalizadas compactas com bordo." reponame:Repositório Institucional da UFC, 2015. http://www.repositorio.ufc.br/handle/riufc/22559.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-18T14:49:03Z No. of bitstreams: 1 2015_tese_akvsilva.pdf: 322426 bytes, checksum: d6abc5541598409191f635ad25e1f501 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia Andrea, Por favor repasse esse e-mail para o aluno. Estou devolvendo o trabalho pois tem alguns itens que não estão normalizados. O ano que deve constar na capa, folha de rosto e ficha catalográfica é o da entrega. E na ficha catalográfica o nome do autor e o título do trabalho não é em caixa alta. Somente as iniciais e quando necessário. Atenciosamente, Rocilda Sales on 2017-04-19T11:01:58Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T13:11:59Z No. of bitstreams: 1 2015_tese_akvsilva.pdf: 322367 bytes, checksum: c9bd22b4cb5917adacde8be99093e8d8 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Alterar o ano. on 2017-04-19T14:52:13Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T16:22:45Z No. of bitstreams: 1 2015_tese_akvsilva.pdf: 322367 bytes, checksum: 1523e0c8bd0590358cda3a542819aa62 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Correção na folha de aprovação. on 2017-04-19T16:39:17Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T17:04:43Z No. of bitstreams: 1 2015_tese_akvsilva.pdf: 322112 bytes, checksum: e3087741f0e7bb8b966418fb10253c7b (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-04-24T11:14:14Z (GMT) No. of bitstreams: 1 2015_tese_akvsilva.pdf: 322112 bytes, checksum: e3087741f0e7bb8b966418fb10253c7b (MD5)
Made available in DSpace on 2017-04-24T11:14:14Z (GMT). No. of bitstreams: 1 2015_tese_akvsilva.pdf: 322112 bytes, checksum: e3087741f0e7bb8b966418fb10253c7b (MD5) Previous issue date: 2015-08-17
The main of this work was to study properties of Riemannian when subjected to conditions on Bakry-Émery-Ricci tensor. Essentially we study two cases. In the first case, motivated by the work of Barros and Ribeiro Jr. (2014), He, Petersen and Wylie (2012) and Miao and Tam (2011), was introduced generalized m-quasi-Einstein metrics compact with boundary, where we get a result that classify these metrics; more specifically, assuming that gradient field of the exponential of potential function is a conformal vector field, we obtain that this must be a geodesic ball in a simply connected space form. That we get some results that implies when these are trivial metrics. In the second case, we work the Bakry-Émery-Ricci tensor bounded bellow, initially in a compact Riemannian, with or without boundary, and later on balls in complete Riemannian. With this study, we obtain gradient estimates for eigenfunctions of V-Laplacian operator, that generalize results of (Li, 2005) and (Li, 2015). Finally, as consequence theses results, we show an Harnack’s inequality.
Este trabalho tem como principal objetivo estudar propriedades de variedades Riemannianas quando submetidas a condições sobre tensores de Ricci-Bakry-Émery. Essencialmente estudamos dois casos. No primeiro caso, motivados pelos trabalhos de Barros e Ribeiro Jr (2014), He, Petersen e Wylie (2012) e por Miao e Tam (2011), introduzimos métricas m-quasi-Einstein generalizadas compactas com bordo, donde obtemos um resultado que garante uma classificação para estas métricas; mais precisamente, assumindo que o gradiente da exponencial da função potencial é um campo conforme, obtemos que aquela deve ser uma bola geodésica de uma forma espacial simplesmente conexa. Disso, obtemos alguns resultados em que garantimos quando estas métricas são triviais. No segundo caso, trabalhos o tensor de Ricci-Bakry-Émery limitado por baixo, inicialmente, em variedades Riemannianas compactas, com bordo ou sem bordo, e posteriormente, sobre bolas em variedades Riemannianas completas. Com esse estudo, obtivemos estimativas do gradiente para autofunções do operador V-Laplaciano, generalizando resultados de (Li, 2005) e (Li, 2015). Finalmente, como consequências desses resultados, exibimos uma desigualdade de Harnack.
Montcouquiol, Grégoire. "Déformations de métriques Einstein sur des variétés à singularités coniques." Toulouse 3, 2005. http://www.theses.fr/2005TOU30205.
Full textStarting with a compact hyperbolic cone-manifold of dimension n>2, we study the deformations of the metric in order to get Einstein cone-manifolds. If the singular locus is a closed codimension 2 submanifold and all cone angles are smaller than 2pi, we show that there is no non-trivial infinitesimal Einstein deformations preserving the cone angles. This result can be interpreted as a higher-dimensional case of the celebrated Hodgson and Kerckhoff's theorem on deformations of hyperbolic 3-cone-manifolds. If all cone angles are smaller than pi, we also give a construction which associates to any variation of the angles a corresponding infinitesimal Einstein deformation
Evangelista, Israel de Sousa. "Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/23920.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)
Made available in DSpace on 2017-07-10T14:06:18Z (GMT). No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) Previous issue date: 2017-07-04
The present thesis is divided in three different parts. The aim of the first part is to prove that a compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided one of the following conditions associated to the Schouten tensor holds: the second symmetric function is constant and positive; two consecutive symmetric functions are non null multiple or some symmetric function is constant and the quoted tensor is positive. The aim of the second part is to study the critical metrics of the total scalar curvature funcional on compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics. It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is true for CPE metrics under a suitable integral condition and we also prove that it suffices the metric to be conformal to an Einstein metric. In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the second fundamental form. Finally, we study transversely oriented codimension one C 2-foliations of open subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone of Ω.
A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida: a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo. O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade, métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se prova que é suficiente que a métrica seja conforme a uma métrica Einstein. Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda forma fundamental. Por fim, estudam-se folheações de classe C 2 transversalmente orientadas de codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.
Silva, Adam Oliveira da. "Rigidez de métricas críticas para funcionais riemannianos." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25969.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T19:08:04Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 481005 bytes, checksum: 2bdfc6ab68b042a5cfd4f67caf1e21e4 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia, Estou devolvendo a Tese de ADAM OLIVEIRA DA SILVA, para que o arquivo seja substituído, pois o aluno já veio na BCM e orientei quais eram as correções a serem feitas. Atenciosamente, on 2017-09-20T14:03:26Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-20T16:47:21Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:26:34Z (GMT) No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5)
Made available in DSpace on 2017-09-21T12:26:35Z (GMT). No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) Previous issue date: 2017-09-15
The aim of this work is to study metrics that are critical points for some Riemannian functionals. In the first part, we investigate critical metrics for functionals which are quadratic in the curvature on closed Riemannian manifolds. It is known that space form metrics are critical points for these functionals, denoted by F t,s (g). Moreover, when s = 0, always Einstein metrics are critical to F t (g). We proved that under some conditions the converse is true. For instance, among others results, we prove that if n ≥ 5 and g is a Bach-flat critical metric to F −n/4(n−1) , with second elementary symmetric function of the Schouten tensor σ 2 (A) > 0, then g should be Einstein. Furthermore, we show that a locally conformally flat critical metric with some additional conditions are space form metrics. In the second part, we study the critical metrics to volume functional on compact Riemannian manifolds with connected smooth boundary. We call such critical points of Miao-Tam critical metrics due to the variational study making by Miao and Tam (2009). In this work, we show that the geodesics balls in space forms Rn , Sn and Hn have the maximum possible boundary volume among Miao-Tam critical metrics with connected boundary provided that the boundary be an Einstein manifold. In the same spirit, we also extend a rigidity theorem due to Boucher et al. (1984) and Shen (1997) to n-dimensional static metrics with positive constant scalar curvature, which give us another way to get a partial answer to the Cosmic no-hair conjecture already obtained by Chrusciel (2003).
Este trabalho tem como principal objetivo estudar métricas que são pontos críticos de alguns funcionais Riemannianos. Na primeira parte, investigaremos métricas críticas de funcionais que são quadráticos na curvatura sobre variedades Riemannianas fechadas. É de conhecimento que métricas tipo formas espaciais são pontos críticos para tais funcionais, denotados aqui por F t,s (g). Além disso, no caso s = 0, métricas de Einstein são sempre críticas para F t (g). Provamos que sob algumas condições, a recíproca destes fatos são verdadeiras. Por exemplo, dentre outros resultados, provamos que se n ≥ 5 e g é uma métrica Bach-flat crìtica para F−n/4(n−1) com segunda função simétrica elementar do tensor de Schouten σ 2 (A) > 0, então g tem que ser métrica de Einstein. Ademais, mostramos que uma métrica crítica localmente conformemente plana, com algumas hipóteses adicionais, tem que ser tipo forma espacial. Na segunda parte, estudamos as métricas críticas do funcional volume sobre variedades Riemannianas compactas com bordo suave conexo. Chamamos tais pontos críticos de métricas críticas de Miao-Tam, devido ao estudo variacional feito por Miao e Tam (2009). Neste trabalho provamos que as bolas geodésicas das formas espaciais Rn , S n e H n possuem o valor máximo para o volume do bordo dentre todas as métricas críticas de Miao-Tam com bordo conexo, desde que o bordo seja uma variedade de Einstein. No mesmo sentido, também estendemos um teorema de rigidez devido à Boucher et al. (1984) e Shen (1997) para métricas estáticas de dimensão n e com curvatura escalar constante positiva, o qual nos fornece outra maneira para obter uma resposta parcial para a Cosmic no-hair conjecture já obtida por Chrusciel (2003).
Delgove, François. "Sur la géométrie des solitons de Kähler-Ricci dans les variétés toriques et horosphériques." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS084/document.
Full textThis thesis deal with Kähler-Ricci solitons which are natural generalizations of Kähler-Einstein metrics. It is divided into two parts. The first one studies the solitonic decomposition of the space of holomorphic vector spaces in the case of toric manifold. The second one studies is an analytic way the existence of horospherical Kähler-Ricci solitons on those manifolds and then computes the greatest Ricci lower bound
Ozgoren, Kivanc. "Godel'." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606497/index.pdf.
Full textdel'
s metric is examined in detail. Then a more general class of Gö
del-type metrics is introduced. It is shown that they are the solutions of Einstein field equations with a physically acceptable matter distribution provided that some conditions are satisfied. Lastly, some examples of the Gö
del-type metrics are given.
Santos, Alex Sandro Lopes. "Problema de Yamabe modificado em variedades compactas de dimensão quatro e métricas críticas do funcional curvatura escalar." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/22885.
Full textSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-25T19:34:47Z No. of bitstreams: 1 2017_tese_aslsantos.pdf: 535461 bytes, checksum: 8c3ddbdd33d74c4eb7b265354b3bafb3 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Eu revisei a Tese de ALEX SANDRO LOPES SANTOS, e encontrei um pequeno erro na capa, ele colocou os seguintes elementos: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA DOUTORADO EM MATEMÁTICA Mas deve ser alterado para: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA Com os demais elementos da Tese, não há nenhum problema de formatação. Atenciosamente, on 2017-05-26T15:06:03Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-29T13:47:44Z No. of bitstreams: 1 2017_tese_aslsantos.pdf: 536279 bytes, checksum: f37ece7d8035a2d9c788c45d2e7807ae (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-05-29T14:08:17Z (GMT) No. of bitstreams: 1 2017_tese_aslsantos.pdf: 536279 bytes, checksum: f37ece7d8035a2d9c788c45d2e7807ae (MD5)
Made available in DSpace on 2017-05-29T14:08:17Z (GMT). No. of bitstreams: 1 2017_tese_aslsantos.pdf: 536279 bytes, checksum: f37ece7d8035a2d9c788c45d2e7807ae (MD5) Previous issue date: 2017-05-19
In the fisrt part of this work we investigate the modified Yamabe problem on four-dimensional manifolds whose the modifiers invariants depending on the eigenvalues of the Weyl curvature tensor and they are described in terms of maximum and minimum of the biorthogonal (sectional) curvature. We provide some geometrical and topological properties on four-dimensional manifolds in terms of these invariants. In the second part we investigate the critical points of the total scalar curvature functional restricted to space of metrics with constant scalar curvature of unitary volume, for simplicity CPE metrics. It was conjectured in the 1980’s that every CPE metric must be Einstein. We prove that such a conjecture is true under a second-order vanishing condition on the Weyl tensor.
Na primeira parte deste trabalho investigamos o problema de Yamabe modificado em variedades de dimensão quatro cujos invariantes modificadores dependem dos autovalores do tensor de Weyl e são descritos em termos do máximo e mínimo da curvatura biortogonal (seccional). Fornecemos algumas propriedades geométricas e topológicas para tais variedades em termos destes invariantes. Na segunda parte investigamos os pontos críticos do funcional curvatura escalar total restrito ao espaço de métricas com curvatura escalar constante e volume unitário, abreviadamente chamamos de métricas CPE. Conjecturou-se na década de 1980 que toda métrica CPE deve ser Einstein. Provamos que tal conjectura é verdadeira sob uma condição de nulidade sobre o divergente de segunda ordem do tensor de Weyl.
Da, Silva Caroline Dos Santos. "Cosmic strings and scalar tensor gravity." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4577/.
Full textMontefiori, Samuele. "Onde gravitazionali - teoria e rivelazione." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10334/.
Full textSebastianutti, Marco. "Geodesic motion and Raychaudhuri equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18755/.
Full textRAFFERO, ALBERTO. "Non-integrable special geometric structures in dimensions six and seven." Doctoral thesis, 2016. http://hdl.handle.net/2318/1557510.
Full textRobles, Colleen. "Einstein metrics of Randers type." Thesis, 2003. http://hdl.handle.net/2429/14764.
Full textSun, Jian. "Kähler-Einstein metrics and Sobolev inequality /." 2000. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9965165.
Full textPešta, Milan. "Prostoročasy prstencových zdrojů." Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-393751.
Full text"Metricas de Einstein em variedades bandeira." Tese, Biblioteca Digital da Unicamp, 2005. http://libdigi.unicamp.br/document/?code=vtls000366713.
Full textΧρυσικός, Ιωάννης. "Ομογενείς μετρικές Einstein σε γενικευμένες πολλαπλότητες σημαιών." Thesis, 2011. http://nemertes.lis.upatras.gr/jspui/handle/10889/4418.
Full textA Riemannian manifold (M, g) is called Einstein, if it has constant Ricci curvature. It is well known that if (M=G/K, g) is a compact homogeneous Riemannian manifold, then the G-invariant \tl{Einstein} metrics of unit volume, are the critical points of the scalar curvature function restricted to the space of all G-invariant metrics with volume 1. For a G-invariant Riemannian metric the Einstein equation reduces to a system of algebraic equations. The positive real solutions of this system are the $G$-invariant Einstein metrics on M. An important family of compact homogeneous spaces consists of the generalized flag manifolds. These are adjoint orbits of a compact semisimple Lie group. Flag manifolds of a compact connected semisimple Lie group exhaust all compact and simply connected homogeneous Kahler manifolds and are of the form G/C(S), where C(S) is the centralizer (in G) of a torus S in G. Such homogeneous spaces admit a finite number of G-invariant complex structures, and for any such complex structure there is a unique compatible G-invariant Kahler-Einstein metric. In this thesis we classify all flag manifolds M=G/K of a compact simple Lie group G, whose isotropy representation decomposes into 2 or 4, isotropy summands. For these spaces we solve the (homogeneous) Einstein equation, and we obtain the explicit form of new G-invariant Einstein metrics. For most cases we give the classification of homogeneous Einstein metrics. We also examine the isometric problem. For the construction of the Einstein equation on certain flag manifolds with four isotropy summands, we apply for first time the twistor fibration of a flag manifold over an isotropy irreducible symmetric space of compact type. This method is new and it can be used also for other flag manifolds. For flag manifolds with two isotropy summands, we use the restricted Hessian and we characterize the new Einstein metrics as local minimum points of the scalar curvature function restricted to the space of G-invariant Riemannian metrics of volume 1. We mention that the classification of flag manifolds with two isotropy summands gives us new examples of homogeneous spaces, for which the motion of a charged particle under the electromagnetic field, and the geodesics curves, are completely determined.
Stemmler, Matthias [Verfasser]. "Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds / vorgelegt von Matthias Stemmler." 2009. http://d-nb.info/1003965474/34.
Full textΣταθά, Μαρίνα. "Μελέτη γεωμετρίας σφαιρών και πολλαπλοτήτων Stiefel." Thesis, 2013. http://hdl.handle.net/10889/7985.
Full textThe purpose of our work is to study homogeneous spaces that present interesting geometry. These include the geometry of the sphere S^n diffeomorphic to a quotient space G/K and the geometry of Stiefel manifolds SO(n)/SO(n-k) (the set of all k-planes in R^n). A homogeneous space is a smooth manifold M in which a Lie group acts transitively. Any such space is given as M = G/K where K = {g\in G : gp = p} (p\in M). The basic geometric property of homogeneous space is that if we know the value of a geometrical object at a point of the space, then we can estimate the value of thiw quantity at any other point. The special feature of reductive homogeneous space G/K is that there exists an Ad(K)-invariant subspace of the Lie algebra Lie(G). The description of all transitive actions of a Lie group into a manifold M is a difficult problem. In the case of spheres such actions have been described in 1953 by the Montgomery, Samelson and Borel. In our work we study the geometry (curvature, Einstein metrics) of the sphere S^3 = SO(4)/SO(3) = SU(2), S^5 = SO(6)/SO(5) = SU(3)/SU(2). Similar problems are examined for the Stiefel manifolds SO(n)/SO(n-k). The description of all SO(n)-invariant metrics presents serious difficulties because the isotropy representation contains equivalent submodules. We study for which of the manifolds SO(n)/SO(n-k) the metric induced by the Killing form is an Einstein metric and we describe in detail the diagonal SO(n)-invariant Einstein metrics on the Stiefel manifolds SO(n)/SO(n-2). In addition, we give the new result that for the Stiefel manifold SO(5)/SO(2) the unique SO(5)-invariant Einstein metrics are the metrics found by Jensen in 1973.
Mujtaba, Abid Hasan. "Homogeneous Einstein Metrics on SU(n) Manifolds, Hoop Conjecture for Black Rings, and Ergoregions in Magnetised Black Hole Spacetimes." Thesis, 2013. http://hdl.handle.net/1969.1/149262.
Full textKubeka, Amos Soweto. "Linear perturbations of a Schwarzschild black hole." Thesis, 2009. http://hdl.handle.net/10500/1667.
Full textMathematical Sciences
M. Sc. (Applied Mathematics)