To see the other types of publications on this topic, follow the link: Einstein-Podolsky-Rosen paradox.

Journal articles on the topic 'Einstein-Podolsky-Rosen paradox'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Einstein-Podolsky-Rosen paradox.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Carbó-Dorca, Ramon. "On Einstein–Podolsky–Rosen Paradox." Journal of Mathematical Chemistry 41, no. 3 (2006): 209–15. http://dx.doi.org/10.1007/s10910-006-9054-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Horodecki, Ryszard, Michał Horodecki, and Paweł Horodecki. "Einstein-Podolsky-Rosen paradox without entanglement." Physical Review A 60, no. 5 (1999): 4144–45. http://dx.doi.org/10.1103/physreva.60.4144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stávek, Jiří. "ChatGPT on the Einstein-Podolsky-Rosen Paradox." European Journal of Applied Physics 5, no. 6 (2023): 1–9. http://dx.doi.org/10.24018/ejphysics.2023.5.6.284.

Full text
Abstract:
This is my first attempt to communicate with the ChatGPT on the Einstein-Podolsky-Rosen paradox. ChatGPT reacted promptly with a good overview of this very wide topic. ChatGPT during our half hour conversation concluded that there is still room for the further development of the EPR paradox because this research field is far from the final theory. However, ChatGPT was skeptical to search for the missing element of the physical reality in papers of Old Masters working between 17th and 19th centuries. (One potential candidate for a more general physical theory of the EPR paradox can be found in
APA, Harvard, Vancouver, ISO, and other styles
4

Zorich, V. A. "Bell’s Inequality, Its Physical Origins, and Generalization." Proceedings of the Steklov Institute of Mathematics 324, no. 1 (2024): 91–99. http://dx.doi.org/10.1134/s0081543824010103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giovannetti, V., S. Mancini, and P. Tombesi. "Radiation pressure induced Einstein-Podolsky-Rosen paradox." Europhysics Letters (EPL) 54, no. 5 (2001): 559–65. http://dx.doi.org/10.1209/epl/i2001-00284-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tommasini, D. "Photon uncertainty solves the Einstein-Podolsky-Rosen paradox." Optics and Spectroscopy 94, no. 5 (2003): 741–45. http://dx.doi.org/10.1134/1.1576845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feldmann, Michel. "New loophole for the Einstein-Podolsky-Rosen paradox." Foundations of Physics Letters 8, no. 1 (1995): 41–53. http://dx.doi.org/10.1007/bf02187530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basini, Giuseppe, Salvatore Capozziello, and Giuseppe Longo. "The Einstein–Podolsky–Rosen Effect: Paradox or Gate?" General Relativity and Gravitation 35, no. 2 (2003): 189–200. http://dx.doi.org/10.1023/a:1022384808713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parnovsky, S. L. "THE EINSTEIN-PODOLSKY-ROSEN PARADOX: FALSE SUPERLUMINAL INFORMATION TRANSFER." Odessa Astronomical Publications 37 (November 27, 2024): 20–23. https://doi.org/10.18524/1810-4215.2024.37.311727.

Full text
Abstract:
The paradox about the supposedly instantaneous transfer of information associated with the determination of the parameters of one of the particles included in a quantum entangled pair is considered. It is shown that this conclusion is drawn on the basis of not quite correctly formulated conditions of the thought experiment underlying the imaginary paradox.
APA, Harvard, Vancouver, ISO, and other styles
10

OPATRNÝ, TOMÁŠ, MICHAL KOLÁŘ, GERSHON KURIZKI, and BIMALENDU DEB. "POSITION AND MOMENTUM ENTANGLEMENT OF DIPOLE–DIPOLE INTERACTING ATOMS IN OPTICAL LATTICES: THE EINSTEIN–PODOLSKY–ROSEN PARADOX ON A LATTICE." International Journal of Quantum Information 02, no. 03 (2004): 305–21. http://dx.doi.org/10.1142/s021974990400033x.

Full text
Abstract:
We study a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole–dipole interactions. The Einstein–Podolsky–Rosen (EPR) "paradox"1 with translational variables is then modified by lattice-diffraction effects. This "paradox" can be verified to a high degree of accuracy in this scheme.
APA, Harvard, Vancouver, ISO, and other styles
11

Klyshko, D. N. "The Einstein-Podolsky-Rosen paradox for energy-time variables." Uspekhi Fizicheskih Nauk 158, no. 6 (1989): 327. http://dx.doi.org/10.3367/ufnr.0158.198906g.0327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

O’Hara, Paul. "The Einstein-Podolsky-Rosen paradox and SU(2) relativity." Journal of Physics: Conference Series 1239 (May 2019): 012021. http://dx.doi.org/10.1088/1742-6596/1239/1/012021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lantz, Eric, Séverine Denis, Paul-Antoine Moreau, and Fabrice Devaux. "Einstein-Podolsky-Rosen paradox in single pairs of images." Optics Express 23, no. 20 (2015): 26472. http://dx.doi.org/10.1364/oe.23.026472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Klyshko, D. N. "The Einstein-Podolsky-Rosen paradox for energy-time variables." Soviet Physics Uspekhi 32, no. 6 (1989): 555–63. http://dx.doi.org/10.1070/pu1989v032n06abeh002730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dąbrowski, Michał, Michał Parniak, and Wojciech Wasilewski. "Einstein–Podolsky–Rosen paradox in a hybrid bipartite system." Optica 4, no. 2 (2017): 272. http://dx.doi.org/10.1364/optica.4.000272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kaufherr, Tirzah. "A new approach to the Einstein-Podolsky-Rosen paradox." Foundations of Physics 15, no. 10 (1985): 1043–51. http://dx.doi.org/10.1007/bf00732846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Smith, Gerrit J., and Robert Weingard. "A relativistic formulation of the Einstein-Podolsky-Rosen paradox." Foundations of Physics 17, no. 2 (1987): 149–71. http://dx.doi.org/10.1007/bf00733205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Guang-Jiong, Ni, Guan Hong, Zhou Wei-Min, and Yan Jun. "Antiparticle in the Light of Einstein-Podolsky-Rosen Paradox and Klein Paradox." Chinese Physics Letters 17, no. 6 (2000): 393–95. http://dx.doi.org/10.1088/0256-307x/17/6/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

van Wijngaarden, W. A. "A second century of Einstein?Bose–Einstein condensation and quantum information." Canadian Journal of Physics 83, no. 7 (2005): 671–85. http://dx.doi.org/10.1139/p05-042.

Full text
Abstract:
A century ago Albert Einstein transformed classical physics with his seminal papers on Brownian motion, the Photoelectric effect, and, of course, special and later general relativity. Lesser well-known are his contributions to Bose–Einstein Condensation and the Einstein–Podolsky–Rosen paradox, the latter being a criticism of Quantum Mechanics. These later works were regarded even by physicists for decades as mere Gedanken or thought experiments. In recent years, not only have they been verified experimentally but revolutionary technological applications are emerging including quantum cryptogra
APA, Harvard, Vancouver, ISO, and other styles
20

Polchinski, Joseph. "Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox." Physical Review Letters 66, no. 4 (1991): 397–400. http://dx.doi.org/10.1103/physrevlett.66.397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ou, Z. Y., S. F. Pereira, H. J. Kimble, and K. C. Peng. "Realization of the Einstein-Podolsky-Rosen paradox for continuous variables." Physical Review Letters 68, no. 25 (1992): 3663–66. http://dx.doi.org/10.1103/physrevlett.68.3663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Reid, M. D. "Macroscopic elements of reality and the Einstein - Podolsky - Rosen paradox." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 9, no. 3 (1997): 489–99. http://dx.doi.org/10.1088/1355-5111/9/3/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lando, A., and E. Bringuier. "On the classical roots of the Einstein–Podolsky–Rosen paradox." European Journal of Physics 29, no. 2 (2008): 313–18. http://dx.doi.org/10.1088/0143-0807/29/2/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Riek, Roland. "On the Einstein-Podolsky-Rosen paradox using discrete time physics." Journal of Physics: Conference Series 880 (August 2017): 012029. http://dx.doi.org/10.1088/1742-6596/880/1/012029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Reid, M. D., P. D. Drummond, W. P. Bowen, et al. "Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications." Reviews of Modern Physics 81, no. 4 (2009): 1727–51. http://dx.doi.org/10.1103/revmodphys.81.1727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Paul, H. "Einstein–Podolsky–Rosen paradox and reality of individual physical properties." American Journal of Physics 53, no. 4 (1985): 318–19. http://dx.doi.org/10.1119/1.14157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Khrennikov, Andrei. "Einstein-Podolsky-Rosen paradox, Bell's inequality, and the projection postulate." Journal of Russian Laser Research 29, no. 2 (2008): 101–13. http://dx.doi.org/10.1007/s10946-008-9003-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

O'HARA, PAUL. "The Einstein-Podolsky-Rosen Paradox and the Pauli Exclusion Principle." Annals of the New York Academy of Sciences 755, no. 1 (1995): 880–81. http://dx.doi.org/10.1111/j.1749-6632.1995.tb39038.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bhave, S. V. "Separable Hidden Variables Theory to Explain Einstein-Podolsky-Rosen Paradox." British Journal for the Philosophy of Science 37, no. 4 (1986): 467–75. http://dx.doi.org/10.1093/bjps/37.4.467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kozlov, V. V., and A. B. Matsko. "Einstein-Podolsky-Rosen paradox with quantum solitons in optical fibers." Europhysics Letters (EPL) 54, no. 5 (2001): 592–98. http://dx.doi.org/10.1209/epl/i2001-00334-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jakumeit, Jürgen, and Karl Hess. "Breaking a Combinatorial Symmetry Resolves the Paradox of Einstein-Podolsky-Rosen and Bell." Symmetry 16, no. 3 (2024): 255. http://dx.doi.org/10.3390/sym16030255.

Full text
Abstract:
We present a Monte Carlo model of Einstein–Podolsky–Rosen experiments that may be implemented on two independent computers and resembles the measurements of the Clauser–Aspect–Zeilinger-type which are performed in two distant stations SA and SB. Our computer model is local deterministic because we show that a theorist in station SB is able to conceive the products of the measurement outcomes of both stations, conditional to any possible equipment configuration in station SA. We show that the Monte Carlo model violates Bell-type inequalities and approaches the results of quantum theory for cert
APA, Harvard, Vancouver, ISO, and other styles
32

Feng, Tianfeng, Changliang Ren, Qin Feng, et al. "Steering paradox for Einstein–Podolsky–Rosen argument and its extended inequality." Photonics Research 9, no. 6 (2021): 992. http://dx.doi.org/10.1364/prj.411033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kumar, Ashok, Gaurav Nirala, and Alberto M. Marino. "Einstein–Podolsky–Rosen paradox with position–momentum entangled macroscopic twin beams." Quantum Science and Technology 6, no. 4 (2021): 045016. http://dx.doi.org/10.1088/2058-9565/ac1b69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Grinberg‐Zylberbaum, J., M. Delaflor, L. Attie, and A. Goswami. "The Einstein‐Podolsky‐Rosen Paradox in the Brain: The Transferred Potential." Physics Essays 7, no. 4 (1994): 422–28. http://dx.doi.org/10.4006/1.3029159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gamba, A. "Einstein–Podolsky–Rosen paradox, hidden variables, Bell’s inequalities, and all that." American Journal of Physics 55, no. 4 (1987): 295–96. http://dx.doi.org/10.1119/1.15188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Andreev, V. A., and V. I. Man'ko. "Quantum tomography of spin states and the Einstein-Podolsky-Rosen paradox." Journal of Optics B: Quantum and Semiclassical Optics 2, no. 2 (2000): 122–25. http://dx.doi.org/10.1088/1464-4266/2/2/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Reid, M. D. "Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification." Physical Review A 40, no. 2 (1989): 913–23. http://dx.doi.org/10.1103/physreva.40.913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cavalcanti, Eric G., Curtis J. Broadbent, Stephen P. Walborn, and Howard M. Wiseman. "80 years of steering and the Einstein–Podolsky–Rosen paradox: introduction." Journal of the Optical Society of America B 32, no. 4 (2015): EPR1. http://dx.doi.org/10.1364/josab.32.00epr1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fuchs, Klaus. "Reflections Concerning Niels Bohr's Refutation of the Einstein-Podolsky-Rosen-Paradox." Annalen der Physik 497, no. 1 (1985): 73–81. http://dx.doi.org/10.1002/andp.19854970112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kalaga, Joanna K., Wiesław Leoński, and Radosław Szczęśniak. "Quantum steering in an asymmetric chain of nonlinear oscillators." Photonics Letters of Poland 9, no. 3 (2017): 97. http://dx.doi.org/10.4302/plp.v9i3.759.

Full text
Abstract:
We discuss here a possibility of generation of steerable states in asymmetric chains comprising three Kerr-like nonlinear oscillators. We show that steering between modes can be generated in the system and it strongly depends on the asymmetry of internal couplings in our model. We can lead to the appearance of new steering effects, which were not present in symmetric models already studied in the literature. Full Text: PDF ReferencesE. Schrödinger, "Discussion of Probability Relations between Separated Systems", Math. Proc. Camb. Phil. Soc. 31, 555 (1935). CrossRef M.D. Reid, "Demonstration of
APA, Harvard, Vancouver, ISO, and other styles
41

Shegelski, Mark R. A. "Triplet versus singlet entangled states in teaching the Einstein–Podolsky–Rosen paradox." European Journal of Physics 34, no. 3 (2013): 773–76. http://dx.doi.org/10.1088/0143-0807/34/3/773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Olivier, N., and M. K. Olsen. "Bright entanglement and the Einstein–Podolsky–Rosen paradox with coupled parametric oscillators." Optics Communications 259, no. 2 (2006): 781–88. http://dx.doi.org/10.1016/j.optcom.2005.09.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Reid, M. D. "Implications of the recent experimental realisation of the Einstein-Podolsky-Rosen paradox." Europhysics Letters (EPL) 36, no. 1 (1996): 1–6. http://dx.doi.org/10.1209/epl/i1996-00178-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Davis, Lloyd M. "Einstein-Podolsky-Rosen paradox and Bell's inequality experiments using time and frequency." Physics Letters A 140, no. 6 (1989): 275–79. http://dx.doi.org/10.1016/0375-9601(89)90618-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Biswas, S. N., S. R. Choudhury, and K. Datta. "Einstein-Podolsky-Rosen paradox, statistical locality and the time-energy uncertainty relation." Physics Letters A 153, no. 6-7 (1991): 279–84. http://dx.doi.org/10.1016/0375-9601(91)90943-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tamm, Martin. "Is Causality a Necessary Tool for Understanding Our Universe, or Is It a Part of the Problem?" Entropy 23, no. 7 (2021): 886. http://dx.doi.org/10.3390/e23070886.

Full text
Abstract:
In this paper, the concept of causality in physics is discussed. Causality is a necessary tool for the understanding of almost all physical phenomena. However, taking it as a fundamental principle may lead us to wrong conclusions, particularly in cosmology. Here, three very well-known problems—the Einstein–Podolsky–Rosen paradox, the accelerating expansion and the asymmetry of time—are discussed from this perspective. In particular, the implications of causality are compared to those of an alternative approach, where we instead take the probability space of all possible developments as the sta
APA, Harvard, Vancouver, ISO, and other styles
47

Tao, Yunpeng. "Quantum entanglement: Principles and research progress in quantum information processing." Theoretical and Natural Science 30, no. 1 (2024): 263–74. http://dx.doi.org/10.54254/2753-8818/30/20241130.

Full text
Abstract:
Quantum entanglement is a peculiar phenomenon in quantum information science, characterized by nonclassical correlations between quantum states of subsystems in a quantum system. Since the proposal of the Einstein-Podolsky-Rosen (EPR) paradox by Einstein, Podolsky, and Rosen, quantum entanglement has sparked intense debates on local realism. Bells inequality experiment established the nonlocality of quantum mechanics. Currently, high-dimensional quantum entanglement of both deterministic and random states can be realized in systems such as photons and cold atoms. Technologies such as quantum t
APA, Harvard, Vancouver, ISO, and other styles
48

PAPPAS, NIKOLAOS D. "ON THE PRESERVATION OF UNITARITY DURING BLACK HOLE EVOLUTION AND INFORMATION EXTRACTION FROM ITS INTERIOR." Modern Physics Letters A 27, no. 19 (2012): 1250109. http://dx.doi.org/10.1142/s021773231250109x.

Full text
Abstract:
For more than 30 years the discovery that black holes radiate like black bodies of specific temperature has triggered a multitude of puzzling questions concerning their nature and the fate of information that goes down the black hole during its lifetime. The most tricky issue in what is known as information loss paradox is the apparent violation of unitarity during the formation/evaporation process of black holes. A new idea is proposed based on the combination of our knowledge on Hawking radiation as well as the Einstein–Podolsky–Rosen phenomenon, that could resolve the paradox and spare phys
APA, Harvard, Vancouver, ISO, and other styles
49

Datta, Amitava, Dipankar Home, and Amitava Raychaudhuri. "A curious gedanken example of the Einstein-Podolsky-Rosen paradox using CP nonconservation." Physics Letters A 123, no. 1 (1987): 4–8. http://dx.doi.org/10.1016/0375-9601(87)90749-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cufaro-Petroni, N., C. Dewdney, P. R. Holland, A. Kyprianidis, and J. P. Vigier. "Einstein-Podolsky-Rosen constraints on quantum action at a distance: The Sutherland paradox." Foundations of Physics 17, no. 8 (1987): 759–73. http://dx.doi.org/10.1007/bf00733265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!