Academic literature on the topic 'Einstein-Relation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Einstein-Relation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Einstein-Relation"

1

Azbel’, M. Ya. "Nonlocal Einstein relation." Physical Review B 46, no. 23 (1992): 15004–7. http://dx.doi.org/10.1103/physrevb.46.15004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balucani, U., R. Vallauri, and T. Gaskell. "Generalized Stokes-Einstein Relation." Berichte der Bunsengesellschaft für physikalische Chemie 94, no. 3 (1990): 261–64. http://dx.doi.org/10.1002/bbpc.19900940313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nyberg, Svein Olav. "The discrete Einstein relation." Circuits Systems and Signal Processing 16, no. 5 (1997): 547–57. http://dx.doi.org/10.1007/bf01185004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Renata Freiberg, Uta. "Einstein relation on fractal objects." Discrete & Continuous Dynamical Systems - B 17, no. 2 (2012): 509–25. http://dx.doi.org/10.3934/dcdsb.2012.17.509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gradenigo, G., A. Sarracino, D. Villamaina, and A. Vulpiani. "Einstein relation in superdiffusive systems." Journal of Statistical Mechanics: Theory and Experiment 2012, no. 06 (2012): L06001. http://dx.doi.org/10.1088/1742-5468/2012/06/l06001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaganov, M. I., and V. B. Fiks. "Einstein relation for quantum systems." Journal of Statistical Physics 38, no. 1-2 (1985): 329–45. http://dx.doi.org/10.1007/bf01017865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hilfer, R., and A. Blumen. "Probabilistic interpretation of the Einstein relation." Physical Review A 37, no. 2 (1988): 578–81. http://dx.doi.org/10.1103/physreva.37.578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gradenigo, G., A. Sarracino, D. Villamaina, and A. Vulpiani. "Einstein Relation in Systems with Anomalous Diffusion." Acta Physica Polonica B 44, no. 5 (2013): 899. http://dx.doi.org/10.5506/aphyspolb.44.899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baranovskii, S. D., T. Faber, F. Hensel, and P. Thomas. "On the Einstein relation for hopping electrons." Journal of Non-Crystalline Solids 227-230 (May 1998): 158–61. http://dx.doi.org/10.1016/s0022-3093(98)00031-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tian, Yong, and Chung-Ming Ko. "Mass discrepancy–acceleration relation in Einstein rings." Monthly Notices of the Royal Astronomical Society 472, no. 1 (2017): 765–71. http://dx.doi.org/10.1093/mnras/stx2056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Einstein-Relation"

1

Berthelard, Romain. "Viscosité, auto-diffusion et leur découplage dans des solutions aqueuses de glycérol ainsi que dans l’eau pure surfondue sous pression." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1182.

Full text
Abstract:
L’eau est le liquide le plus commun qui soit mais l’ensemble de ses propriétés ne sont toujours pas élucidées. En particulier, l’eau présente un grand nombre d’anomalies par rapport aux autres liquides, certaines se trouvant particulièrement exacerbées dans l’état surfondu (liquide à une température inférieure à celle de fusion). Au cours de ce travail, on introduit du glycérol dans l’eau en faible quantité (entre 10% et 50% en masse), ce qui a pour conséquence de repousser le point de fusion et celui de nucléation homogène. On mesure deux propriétés de ces solutions : la viscosité et l’auto-d
APA, Harvard, Vancouver, ISO, and other styles
2

Kidd, Bryce Edwin. "Cation and Anion Transport in a Dicationic Imidazolium-Based Plastic Crystal Ion Conductor." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23300.

Full text
Abstract:
Here we investigate the organic ionic plastic crystal (OIPC) 1,2-bis[N-(N\'-hexylimidazolium-d2(4,5))]C2H4 2PF6- in one of its solid plastic crystal phases by means of multi-nuclear solid-state (SS) NMR and pulsed-field-gradient (PFG) NMR. We quantify distinct cation and anion diffusion coefficients as well as the diffusion activation energies (Ea) in this dicationic imidazolium-based OIPC. Our studies suggest a change in transport mechanism for the cation upon varying thermal and magnetic treatment (9.4 T), evidenced by changes in cation and anion Ea. Moreover, variable temperature 2H SSNMR l
APA, Harvard, Vancouver, ISO, and other styles
3

WANG, ZHENG. "HIERARCHICAL APPROACH TO PREDICTING TRANSPORT PROPERTIES OF A GRAMICIDIN ION CHANNEL WITHIN A LIPID BILAYER." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069794237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rings, Daniel. "Hot Brownian Motion." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102186.

Full text
Abstract:
The theory of Brownian motion is a cornerstone of modern physics. In this thesis, we introduce a nonequilibrium extension to this theory, namely an effective Markovian theory of the Brownian motion of a heated nanoparticle. This phenomenon belongs to the class of nonequilibrium steady states (NESS) and is characterized by spatially inhomogeneous temperature and viscosity fields extending in the solvent surrounding the nanoparticle. The first chapter provides a pedagogic introduction to the subject and a concise summary of our main results and summarizes their implications for future developmen
APA, Harvard, Vancouver, ISO, and other styles
5

Kidd, Bryce Edwin. "Multiscale Transport and Dynamics in Ion-Dense Organic Electrolytes and Copolymer Micelles." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82525.

Full text
Abstract:
Understanding molecular and ion dynamics in soft materials used for fuel cell, battery, and drug delivery vehicle applications on multiple time and length scales provides critical information for the development of next generation materials. In this dissertation, new insights into transport and kinetic processes such as diffusion coefficients, translational activation energies (Ea), and rate constants for molecular exchange, as well as how these processes depend on material chemistry and morphology are shown. This dissertation also aims to serve as a guide for material scientists wanting to ex
APA, Harvard, Vancouver, ISO, and other styles
6

Scipioni, Roberto. "Non-Reimannian gravitation and its relation with Levi-Civita theories." Thesis, Lancaster University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goetz, Andrew Stewart. "The Einstein-Klein-Gordon Equations, Wave Dark Matter, and the Tully-Fisher Relation." Diss., 2015. http://hdl.handle.net/10161/9927.

Full text
Abstract:
<p>We examine the Einstein equation coupled to the Klein-Gordon equation for a complex-valued scalar field. These two equations together are known as the Einstein-Klein-Gordon system. In the low-field, non-relativistic limit, the Einstein-Klein-Gordon system reduces to the Poisson-Schrödinger system. We describe the simplest solutions of these systems in spherical symmetry, the spherically symmetric static states, and some scaling properties they obey. We also describe some approximate analytic solutions for these states.</p><p>The EKG system underlies a theory of wave dark matter, also known
APA, Harvard, Vancouver, ISO, and other styles
8

Rings, Daniel. "Hot Brownian Motion." Doctoral thesis, 2012. https://ul.qucosa.de/id/qucosa%3A11815.

Full text
Abstract:
The theory of Brownian motion is a cornerstone of modern physics. In this thesis, we introduce a nonequilibrium extension to this theory, namely an effective Markovian theory of the Brownian motion of a heated nanoparticle. This phenomenon belongs to the class of nonequilibrium steady states (NESS) and is characterized by spatially inhomogeneous temperature and viscosity fields extending in the solvent surrounding the nanoparticle. The first chapter provides a pedagogic introduction to the subject and a concise summary of our main results and summarizes their implications for future developmen
APA, Harvard, Vancouver, ISO, and other styles
9

Guerdane, Mohammed. "Structure and Dynamics of Molecular-Dynamics Simulated Undercooled Ni-Zr-Al Melts." Doctoral thesis, 2000. http://hdl.handle.net/11858/00-1735-0000-000D-F106-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Jun 1977. "A computational model for the diffusion coefficients of DNA with applications." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-05-1098.

Full text
Abstract:
The sequence-dependent curvature and flexibility of DNA is critical for many biochemically important processes. However, few experimental methods are available for directly probing these properties at the base-pair level. One promising way to predict these properties as a function of sequence is to model DNA with a set of base-pair parameters that describe the local stacking of the different possible base-pair step combinations. In this dissertation research, we develop and study a computational model for predicting the diffusion coefficients of short, relatively rigid DNA fragments from th
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Einstein-Relation"

1

Ghatak, Kamakhya Prasad, Sitangshu Bhattacharya, and Debashis De. Einstein Relation in Compound Semiconductors and their Nanostructures. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79557-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sitangshu, Bhattacharya, De Debashis, Hull R, et al., eds. Einstein Relation in Compound Semiconductors and their Nanostructures. Springer Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghatak, Kamakhya P., and Sitangshu Bhattacharya. Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08380-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhattacharya, Sitangshu, Debashis De, and Kamakhya Prasad Prasad Ghatak. Einstein Relation in Compound Semiconductors and Their Nanostructures. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhattacharya, Sitangshu, and Kamakhya P. Ghatak. Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Furst, Eric M., and Todd M. Squires. Passive microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0003.

Full text
Abstract:
The underlying theory of passive microrheology is introduced as an in-depth examination of the Generalized Stokes-Einstein Relation (GSER) from the starting point of the Langevin equation. The chapter includes a careful treatment of the assumptions that must be made for the technique to work, and what happens when these assumptions are violated. Methods of interpreting passive microrheology experiments and the general limits of operation are highlighted. The Generalized Stokes-Einstein Relation (GSER) is the principal defining equation of passive microrheology. It is a physical relation betwee
APA, Harvard, Vancouver, ISO, and other styles
7

Kachelriess, Michael. Gravity as a gauge theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0019.

Full text
Abstract:
The vielbein formalism is developed as a tool to determine the coupling of matter to gravity. After determining the relation to the standard formalism, the action and the field equations of gravity are introduced. The linearised Einstein equations which describe the weak-field limit of gravity are derived.
APA, Harvard, Vancouver, ISO, and other styles
8

Furst, Eric M., and Todd M. Squires. Interferometric tracking. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0006.

Full text
Abstract:
The purpose of this chapter is to present a survey of passive microrheology techniques that are important complements to more widely used particle tracking and light scattering methods. Such methods include back focal plane interferometry and extensions of particle tracking to measure the rotation of colloidal particles. Methods of passive microrheology using back focal plane interferometry are presented, including the experimental design and detector sensitivity and limits in frequency bandwidth and spatial resolution. The Generalized Stokes Einstein relation is derived from linear response t
APA, Harvard, Vancouver, ISO, and other styles
9

Allen, Michael P., and Dominic J. Tildesley. How to analyse the results. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0008.

Full text
Abstract:
In this chapter, practical guidance is given on the calculation of thermodynamic, structural, and dynamical quantities from simulation trajectories. Program examples are provided to illustrate the calculation of the radial distribution function and a time correlation function using the direct and fast Fourier transform methods. There is a detailed discussion of the calculation of statistical errors through the statistical inefficiency. The estimation of the error in equilibrium averages, fluctuations and in time correlation functions is discussed. The correction of thermodynamic averages to ne
APA, Harvard, Vancouver, ISO, and other styles
10

Healey, Richard. Entanglement. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198714057.003.0003.

Full text
Abstract:
Often a pair of quantum systems may be represented mathematically (by a vector) in a way each system alone cannot: the mathematical representation of the pair is said to be non-separable: Schrödinger called this feature of quantum theory entanglement. It would reflect a physical relation between a pair of systems only if a system’s mathematical representation were to describe its physical condition. Einstein and colleagues used an entangled state to argue that its quantum state does not completely describe the physical condition of a system to which it is assigned. A single physical system may
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Einstein-Relation"

1

Ferrari, Pablo A., Sheldon Goldstein, and Joel L. Lebowitz. "Diffusion, Mobility and the Einstein Relation." In Statistical Physics and Dynamical Systems. Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4899-6653-7_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "The ER in Quantum Wells of HD Non-parabolic Semiconductors." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "Appendix E: The ER for HD III-V, Ternary and Quaternary Semiconductors Under External Photo-Excitation." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "The ER in Doping Super Lattices of HD Non-parabolic Semiconductors." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "The ER in Accumulation and Inversion Layers of Non-parabolic Semiconductors." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "Suggestion for Experimental Determinations of 2D and 3D ERs and Few Related Applications." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "Conclusion and Scope for Future Research." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "Appendix A: The ER in HDS Under Magnetic Quantization." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "Appendix B: The ER in Superlattices of HD Non-parabolic Semiconductors Under Magnetic Quantization." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghatak, Kamakhya Prasad, and Sitangshu Bhattacharya. "Appendix C: The ER in HDS and Their Nano-Structures Under Cross-Fields Configuration." In Heavily-Doped 2D-Quantized Structures and the Einstein Relation. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08380-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Einstein-Relation"

1

Bufler, F. M., A. Erlebach, and A. Wettstein. "Drift-diffusion simulation without Einstein relation." In 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2015. http://dx.doi.org/10.1109/ulis.2015.7063785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Singha Roy, Subhamoy. "On the Einstein relation under size quantization in heterostructures semiconductor." In SPIE OPTO, edited by Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2249554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haridasan, Navaneeth, Sridhar Kumar Kannam, Santosh Mogurampelly, and Sarith P. Sathian. "Stokes-EInstein-Debye Relation: A Check of Validity for Proteins in Nanoconfinements." In The 5th World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2019. http://dx.doi.org/10.11159/htff19.177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baldassarri, A., A. Puglisi, A. Vulpiani, et al. "Fluctuations and Response in Granular Gases: Validity and Failure of Einstein Relation." In THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ren, Fu-Yao, Jin-Rong Liang, Wei-Yuan Qiu, and Yun Xu. "Fractional Giona-Roman Equation on Heterogeneous Fractal Structures in External Force Fields and Its Solutions." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48401.

Full text
Abstract:
We introduce a heterogeneous fractional Giona-Roman equation (HFGRE) on heterogeneous fractal structure media describing systems involving external force fields. The HFGRE is shown to obey generalized Einstein relation, and its stationary solution is the Boltzmann distribution. It is proved that the asyrnptotic shape of its solution is a stretched Gaussian and that its solution can be expressed in the form of a function of a dimensionless similarity variable for the case of constant potentials, linear potentials, harmonic potentials, analytic potentials, logarithm potentials and generic potent
APA, Harvard, Vancouver, ISO, and other styles
6

Habasaki, J., F. Affouard, M. Descamps, et al. "Molecular Dynamics of Generalized Binary Lennard-Jones Systems: Effects of Anharmonicity and Breakdown of the Stokes-Einstein Relation." In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Biswas, S. N., and K. P. Ghatak. "On The Einstein relation In Superlattices Of Kane - Type Semiconductors In The Presence Of A Quantizing Magnetic Field." In Semiconductor Conferences, edited by Gottfried H. Doehler and Joel N. Schulman. SPIE, 1987. http://dx.doi.org/10.1117/12.940846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghatak, Kamakhya P., Manabendra Mondal, and Sankar Bhattacharyya. "Einstein relation in quantum wires of small-gap materials in the presence of crossed electric and magnetic fields." In Semi - DL tentative, edited by Harold G. Craighead and J. M. Gibson. SPIE, 1990. http://dx.doi.org/10.1117/12.20780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singha Roy, Subhamoy. "A simple theoretical analysis of the Einstein relation for the DMR (diffusivity-mobility ratio) in Nono compounds on the basis of k.p formalism." In SPIE NanoScience + Engineering, edited by Allan D. Boardman, Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2011. http://dx.doi.org/10.1117/12.892524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Рысин, Андрей Владимирович, and Игорь Кронидович Никифоров. "IMPROVEMENT OF MAXWELL'S EQUATIONS IN ORDER TO OBTAIN THE RELATION OF ELECTROMAGNETIC AND GRAVITATIONAL FORCES IN ACCORDANCE WITH THE SRT AND GRT OF EINSTEIN." In Наука. Исследования. Практика: сборник избранных статей по материалам Международной научной конференции (Санкт-Петербург, Октябрь 2020). Crossref, 2020. http://dx.doi.org/10.37539/srp293.2020.45.35.009.

Full text
Abstract:
Необходимость появления усовершенствованных уравнений Максвелла связано с имеющими место алогизмами и парадоксами вывода ряда уравнений и утверждений в ныне принятой электродинамике и квантовой механике. Основой предложенного авторами подхода является пространственно-временной континуум по преобразованиям Лоренца-Минковского вкупе с электромагнитным континуумом на основе классических уравнений Максвелла. The need for the appearance of improved Maxwell's equations is related to the existing alogisms and paradoxes of the derivation of a number of equations and statements in the currently accepte
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!