Academic literature on the topic 'El-Niño-Phänomen'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'El-Niño-Phänomen.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "El-Niño-Phänomen"

1

Gámez, López Antonio Juan. "Application of nonlinear dimensionality reduction to climate data for prediction." Phd thesis, Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2006/1095/.

Full text
Abstract:
This Thesis was devoted to the study of the coupled system composed by El Niño/Southern Oscillation and the Annual Cycle. More precisely, the work was focused on two main problems: 1. How to separate both oscillations into an affordable model for understanding the behaviour of the whole system. 2. How to model the system in order to achieve a better understanding of the interaction, as well as to predict future states of the system. We focused our efforts in the Sea Surface Temperature equations, considering that atmospheric effects were secondary to the ocean dynamics. The results found may be summarised as follows: 1. Linear methods are not suitable for characterising the dimensionality of the sea surface temperature in the tropical Pacific Ocean. Therefore they do not help to separate the oscillations by themselves. Instead, nonlinear methods of dimensionality reduction are proven to be better in defining a lower limit for the dimensionality of the system as well as in explaining the statistical results in a more physical way [1]. In particular, Isomap, a nonlinear modification of Multidimensional Scaling methods, provides a physically appealing method of decomposing the data, as it substitutes the euclidean distances in the manifold by an approximation of the geodesic distances. We expect that this method could be successfully applied to other oscillatory extended systems and, in particular, to meteorological systems. 2. A three dimensional dynamical system could be modeled, using a backfitting algorithm, for describing the dynamics of the sea surface temperature in the tropical Pacific Ocean. We observed that, although there were few data points available, we could predict future behaviours of the coupled ENSO-Annual Cycle system with an accuracy of less than six months, although the constructed system presented several drawbacks: few data points to input in the backfitting algorithm, untrained model, lack of forcing with external data and simplification using a close system. Anyway, ensemble prediction techniques showed that the prediction skills of the three dimensional time series were as good as those found in much more complex models. This suggests that the climatological system in the tropics is mainly explained by ocean dynamics, while the atmosphere plays a secondary role in the physics of the process. Relevant predictions for short lead times can be made using a low dimensional system, despite its simplicity. The analysis of the SST data suggests that nonlinear interaction between the oscillations is small, and that noise plays a secondary role in the fundamental dynamics of the oscillations [2]. A global view of the work shows a general procedure to face modeling of climatological systems. First, we should find a suitable method of either linear or nonlinear dimensionality reduction. Then, low dimensional time series could be extracted out of the method applied. Finally, a low dimensional model could be found using a backfitting algorithm in order to predict future states of the system.
Das Ziel dieser Arbeit ist es das Verhalten der Temperatur des Meers im tropischen Pazifischen Ozean vorherzusagen. In diesem Gebiet der Welt finden zwei wichtige Phänomene gleichzeitig statt: der jährliche Zyklus und El Niño. Der jährliche Zyklus kann als Oszillation physikalischer Variablen (z.B. Temperatur, Windgeschwindigkeit, Höhe des Meeresspiegels), welche eine Periode von einem Jahr zeigen, definiert werden. Das bedeutet, dass das Verhalten des Meers und der Atmosphäre alle zwölf Monate ähnlich sind (alle Sommer sind ähnlicher jedes Jahr als Sommer und Winter des selben Jahres). El Niño ist eine irreguläre Oszillation weil sie abwechselnd hohe und tiefe Werte erreicht, aber nicht zu einer festen Zeit, wie der jährliche Zyklus. Stattdessen, kann el Niño in einem Jahr hohe Werte erreichen und dann vier, fünf oder gar sieben Jahre benötigen, um wieder aufzutreten. Es ist dabei zu beachten, dass zwei Phänomene, die im selben Raum stattfinden, sich gegenseitig beeinflussen. Dennoch weiß man sehr wenig darüber, wie genau el Niño den jährlichen Zyklus beeinflusst, und umgekehrt. Das Ziel dieser Arbeit ist es, erstens, sich auf die Temperatur des Meers zu fokussieren, um das gesamte System zu analysieren; zweitens, alle Temperaturzeitreihen im tropischen Pazifischen Ozean auf die geringst mögliche Anzahl zu reduzieren, um das System einerseits zu vereinfachen, ohne aber andererseits wesentliche Information zu verlieren. Dieses Vorgehen ähnelt der Analyse einer langen schwingenden Feder, die sich leicht um die Ruhelage bewegt. Obwohl die Feder lang ist, können wir näherungsweise die ganze Feder zeichnen wenn wir die höchsten Punkte zur einen bestimmten Zeitpunkt kennen. Daher, brauchen wir nur einige Punkte der Feder um ihren Zustand zu charakterisieren. Das Hauptproblem in unserem Fall ist die Mindestanzahl von Punkten zu finden, die ausreicht, um beide Phänomene zu beschreiben. Man hat gefunden, dass diese Anzahl drei ist. Nach diesem Teil, war das Ziel vorherzusagen, wie die Temperaturen sich in der Zeit entwickeln werden, wenn man die aktuellen und vergangenen Temperaturen kennt. Man hat beobachtet, dass eine genaue Vorhersage bis zu sechs oder weniger Monate gemacht werden kann, und dass die Temperatur für ein Jahr nicht vorhersagbar ist. Ein wichtiges Resultat ist, dass die Vorhersagen auf kurzen Zeitskalen genauso gut sind, wie die Vorhersagen, welche andere Autoren mit deutlich komplizierteren Methoden erhalten haben. Deswegen ist meine Aussage, dass das gesamte System von jährlichem Zyklus und El Niño mittels einfacherer Methoden als der heute angewandten vorhergesagt werden kann.
APA, Harvard, Vancouver, ISO, and other styles
2

Selz, Tobias [Verfasser]. "Der Dynamische Zustandsindex : Berechnung aus Reanalysedaten und Anwendung auf das El Niño-Phänomen / Tobias Selz." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1025355156/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maraun, Douglas. "What can we learn from climate data? : Methods for fluctuation, time/scale and phase analysis." Phd thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981698980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pollinger, Felix. "Bewertung und Auswirkungen der Simulationsgüte führender Klimamoden in einem Multi-Modell Ensemble." Doctoral thesis, 2013. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-97982.

Full text
Abstract:
Der rezente und zukünftige Anstieg der atmosphärischen Treibhausgaskonzentration bedeutet für das terrestrische Klimasystem einen grundlegenden Wandel, der für die globale Gesellschaft schwer zu bewältigende Aufgaben und Herausforderungen bereit hält. Eine effektive, rühzeitige Anpassung an diesen Klimawandel profitiert dabei enorm von möglichst genauen Abschätzungen künftiger Klimaänderungen. Das geeignete Werkzeug hierfür sind Gekoppelte Atmosphäre Ozean Modelle (AOGCMs). Für solche Fragestellungen müssen allerdings weitreichende Annahmen über die zukünftigen klimarelevanten Randbedingungen getroffen werden. Individuelle Fehler dieser Klimamodelle, die aus der nicht perfekten Abbildung der realen Verhältnisse und Prozesse resultieren, erhöhen die Unsicherheit langfristiger Klimaprojektionen. So unterscheiden sich die Aussagen verschiedener AOGCMs im Hinblick auf den zukünftigen Klimawandel insbesondere bei regionaler Betrachtung, deutlich. Als Absicherung gegen Modellfehler werden üblicherweise die Ergebnisse mehrerer AOGCMs, eines Ensembles an Modellen, kombiniert. Um die Abschätzung des Klimawandels zu präzisieren, wird in der vorliegenden Arbeit der Versuch unternommen, eine Bewertung der Modellperformance der 24 AOGCMs, die an der dritten Phase des Vergleichsprojekts für gekoppelte Modelle (CMIP3) teilgenommen haben, zu erstellen. Auf dieser Basis wird dann eine nummerische Gewichtung für die Kombination des Ensembles erstellt. Zunächst werden die von den AOGCMs simulierten Klimatologien für einige grundlegende Klimaelemente mit den betreffenden klimatologien verschiedener Beobachtungsdatensätze quantitativ abgeglichen. Ein wichtiger methodischer Aspekt hierbei ist, dass auch die Unsicherheit der Beobachtungen, konkret Unterschiede zwischen verschiedenen Datensätzen, berücksichtigt werden. So zeigt sich, dass die Aussagen, die aus solchen Ansätzen resultieren, von zu vielen Unsicherheiten in den Referenzdaten beeinträchtigt werden, um generelle Aussagen zur Qualität von AOGCMs zu treffen. Die Nutzung der Köppen-Geiger Klassifikation offenbart jedoch, dass die prinzipielle Verteilung der bekannten Klimatypen im kompletten CMIP3 in vergleichbar guter Qualität reproduziert wird. Als Bewertungskriterium wird daher hier die Fähigkeit der AOGCMs die großskalige natürliche Klimavariabilität, konkret die hochkomplexe gekoppelte El Niño-Southern Oscillation (ENSO), realistisch abzubilden herangezogen. Es kann anhand verschiedener Aspekte des ENSO-Phänomens gezeigt werden, dass nicht alle AOGCMs hierzu mit gleicher Realitätsnähe in der Lage sind. Dies steht im Gegensatz zu den dominierenden Klimamoden der Außertropen, die modellübergreifend überzeugend repräsentiert werden. Die wichtigsten Moden werden, in globaler Betrachtung, in verschiedenen Beobachtungsdaten über einen neuen Ansatz identifiziert. So können für einige bekannte Zirkulationsmuster neue Indexdefinitionen gewonnen werden, die sich sowohl als äquivalent zu den Standardverfahren erweisen und im Vergleich zu diesen zudem eine deutliche Reduzierung des Rechenaufwandes bedeuten. Andere bekannte Moden werden dagegen als weniger bedeutsame, regionale Zirkulationsmuster eingestuft. Die hier vorgestellte Methode zur Beurteilung der Simulation von ENSO ist in guter Übereinstimmung mit anderen Ansätzen, ebenso die daraus folgende Bewertung der gesamten Performance der AOGCMs. Das Spektrum des Southern Oscillation-Index (SOI) stellt somit eine aussagekräftige Kenngröße der Modellqualität dar. Die Unterschiede in der Fähigkeit, das ENSO-System abzubilden, erweisen sich als signifikante Unsicherheitsquelle im Hinblick auf die zukünftige Entwicklung einiger fundamentaler und bedeutsamer Klimagrößen, konkret der globalen Mitteltemperatur, des SOIs selbst, sowie des indischen Monsuns. Ebenso zeigen sich signifikante Unterschiede für regionale Klimaänderungen zwischen zwei Teilensembles des CMIP3, die auf Grundlage der entwickelten Bewertungsfunktion eingeteilt werden. Jedoch sind diese Effekte im Allgemeinen nicht mit den Auswirkungen der anthropogenen Klimaänderungssignale im Multi-Modell Ensemble vergleichbar, die für die meisten Klimagrößen in einem robusten multivariaten Ansatz detektiert und quantifiziert werden können. Entsprechend sind die effektiven Klimaänderungen, die sich bei der Kombination aller Simulationen als grundlegende Aussage des CMIP3 unter den speziellen Randbedingungen ergeben nahezu unabhängig davon, ob alle Läufe mit dem gleichen Einfluss berücksichtigt werden, oder ob die erstellte nummerische Gewichtung verwendet wird. Als eine wesentliche Begründung hierfür kann die Spannbreite der Entwicklung des ENSO-Systems identifiziert werden. Dies bedeutet größere Schwankungen in den Ergebnissen der Modelle mit funktionierendem ENSO, was den Stellenwert der natürlichen Variabilität als Unsicherheitsquelle in Fragen des Klimawandels unterstreicht. Sowohl bei Betrachtung der Teilensembles als auch der Gewichtung wirken sich dadurch gegenläufige Trends im SOI ausgleichend auf die Entwicklung anderer Klimagrößen aus, was insbesondere bei letzterem Vorgehen signifikante mittlere Effekte des Ansatzes, verglichen mit der Verwendung des üblichen arithmetischen Multi-Modell Mittelwert, verhindert
The recent and future increase in atmospheric greenhouse gases will cause fundamental change in the terrestrial climate system, which will lead to enormous tasks and challenges for the global society. Effective and early adaptation to this climate change will benefit hugley from optimal possible estimates of future climate change. Coupled atmosphere-ocean models (AOGCMs) are the appropriate tool for this. However, to tackle these questions, it is necessary to make far reaching assumptions about the future climate-relevant boundary conditions. Furthermore there are individual errors in each climate model. These originate from flaws in reproducing the real climate system and result in a further increase of uncertainty with regards to long-range climate projections. Hence, concering future climate change, there are pronounced differences between the results of different AOGCMs, especially under a regional point of view. It is the usual approach to use a number of AOGCMs and combine their results as a safety measure against the influence of such model errors. In this thesis, an attempt is made to develop a valuation scheme and based on that a weighting scheme, for AOGCMs in order to narrow the range of climate change projections. The 24 models that were included in the third phase of the coupled model intercomparsion project (CMIP3) are used for this purpose. First some fundamental climatologies simulated by the AOGCMs are quantitatively compared to a number of observational data. An important methodological aspect of this approach is to explicitly address the uncertainty associated with the observational data. It is revealed that statements concerning the quality of climate models based on such hindcastig approaches might be flawed due to uncertainties about observational data. However, the application of the Köppen-Geiger classification reveales that all considered AOGCMs are capable of reproducing the fundamental distribution of observed types of climate. Thus, to evaluate the models, their ability to reproduce large-scale climate variability is chosen as the criterion. The focus is on one highly complex feature, the coupled El Niño-Southern Oscillation. Addressing several aspects of this climate mode, it is demonstrated that there are AOGCMs that are less successful in doing so than others. In contrast, all models reproduce the most dominant extratropical climate modes in a satisfying manner. The decision which modes are the most important is made using a distinct approach considering several global sets of observational data. This way, it is possible to add new definitions for the time series of some well-known climate patterns, which proof to be equivalent to the standard definitions. Along with this, other popular modes are identified as less important regional patterns. The presented approach to assess the simulation of ENSO is in good agreement with other approaches, as well as the resulting rating of the overall model performance. The spectrum of the timeseries of the Southern Oscillation Index (SOI) can thus be regarded as a sound parameter of the quality of AOGCMs. Differences in the ability to simulate a realistic ENSO-system prove to be a significant source of uncertainty with respect to the future development of some fundamental and important climate parameters, namely the global near-surface air mean temperature, the SOI itself and the Indian monsoon. In addition, there are significant differences in the patterns of regional climate change as simulated by two ensembles, which are constituted according to the evaluation function previously developed. However, these effects are overall not comparable to the multi-model ensembles’ anthropogenic induced climate change signals which can be detected and quantified using a robust multi-variate approach. If all individual simulations following a specific emission scenario are combined, the resulting climate change signals can be thought of as the fundamental message of CMIP3. It appears to be quite a stable one, more or less unaffected by the use of the derived weighting scheme instead of the common approach to use equal weights for all simulations. It is reasoned that this originates mainly from the range of trends in the SOI. Apparently, the group of models that seems to have a realistic ENSO-system also shows greater variations in terms of effective climate change. This underlines the importance of natural climate variability as a major source of uncertainty concerning climate change. For the SOI there are negative Trends in the multi-model ensemble as well as positive ones. Overall, these trends tend to stabilize the development of other climate parameters when various AOGCMs are combined, whether the two distinguished parts of CMIP3 are analyzed or the weighting scheme is applied. Especially in case of the latter method, this prevents significant effects on the mean change compared to the arithmetic multi-model mean
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "El-Niño-Phänomen"

1

El Niño: Unlocking the secrets of the master weather-maker. New York: Warner Books, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Allan, Rob. El Niño Southern Oscillation and climatic variability. Collingwood, Vict: CSIRO PUblishing, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nash, J. Madeleine. El Niño: Unlocking the Secrets of the Master Weather-Maker. Warner Books, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography