Academic literature on the topic 'Elastic materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elastic materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Elastic materials"

1

Zuev, Yu S. "Inorganic Elastic Materials." International Polymer Science and Technology 33, no. 3 (March 2006): 5–6. http://dx.doi.org/10.1177/0307174x0603300302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suvorov, S. A. "Elastic refractory materials." Refractories and Industrial Ceramics 48, no. 3 (May 2007): 202–7. http://dx.doi.org/10.1007/s11148-007-0060-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ikram, Fahd S., Jawad M. Mikaeel, and Ranj A. Omer. "Accuracy of some Elastic Impression Materials Used in Prosthetic Dentistry." Sulaimani dental journal 6, no. 2 (December 26, 2019): 1–7. http://dx.doi.org/10.17656/sdj.10090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adibhatla, Sridhar. "Buckling Behavior of Human Femur with Different Hyper Elastic Materials." Journal of Advanced Research in Dynamical and Control Systems 12, no. 3 (March 20, 2020): 554–59. http://dx.doi.org/10.5373/jardcs/v12i3/20201223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Setiyana, Budi, Imam Syafaat, Jamari Jamari, and DikJoe Schipper. "FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS." Reaktor 14, no. 3 (February 3, 2013): 199. http://dx.doi.org/10.14710/reaktor.14.3.199-203.

Full text
Abstract:
Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone).In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone), friction for the cutting deformation mode (scratching with a sharp cone) is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan yang menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan. Paper ini menyajikan analisis friksi dari beberapa bentuk deformasi permukaan dari material visko-elastik-plastik, khususnya pada PEEK (poly ether ether ketone). Secara umum dinyatakan bahwa friksi terdiri dari komponen adhesi dan deformasi yang diasumsikan tidak bergantung satu sama lain. Selama uji gores, koefisien friksi dipengaruhi oleh beberapa parameter, seperti ketajaman indenter, bentuk deformasi dan pemulihan elastik. Hasil menunjukkan bahwa komponen adhesi sangat berpengaruh pada deformasi elastic dan penyetrikaan (uji gores dengan indenter tumpul), sedang untuk pemotongan (uji gores dengan indenter tajam) sangat dipengaruhi oleh komponen deformasi. Dari analisis dapat disimpulkan bahwa model friksi adhesi cocok untuk deformasi elastic dan penyetrikaan, sedang model friksi deformasi dengan pemulihan elastic, cocok untuk pemotongan. Selain itu, plowing merupakan kombinasi dari model friksi adhesi dan deformasi.
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, H. C., and P. M. Naghdi. "Constrained Elastic-Plastic Materials." Journal of Applied Mechanics 61, no. 3 (September 1, 1994): 511–18. http://dx.doi.org/10.1115/1.2901489.

Full text
Abstract:
The main purpose of this paper is to present a general (purely mechanical) constrained theory of finitely deforming elastic-plastic materials. Our development is based on a strain-space formulation of plasticity and requires a detailed examination of the effect of constraint on various constitutive ingredients in the unconstrained theory, including the yield functions (in both the stress and strain spaces), the loading criteria, and various response functions. Also examined is the effect of constraint on the restrictions arising from the work inequality of Naghdi and Trapp (1975b).
APA, Harvard, Vancouver, ISO, and other styles
7

Martin, Sebastian, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. "Example-based elastic materials." ACM Transactions on Graphics 30, no. 4 (July 2011): 1–8. http://dx.doi.org/10.1145/2010324.1964967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lushcheikin, G. A. "Elastic composite piezoelectric materials." Ferroelectrics 157, no. 1 (July 1994): 415–20. http://dx.doi.org/10.1080/00150199408229542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Wen, Tao Ruan Wan, and Donjing Huang. "Interactive thin elastic materials." Computer Animation and Virtual Worlds 27, no. 2 (June 5, 2015): 141–50. http://dx.doi.org/10.1002/cav.1666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curnier, Alain, Qi-Chang He, and Philippe Zysset. "Conewise linear elastic materials." Journal of Elasticity 37, no. 1 (1995): 1–38. http://dx.doi.org/10.1007/bf00043417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Elastic materials"

1

Paine, A. C. "Elastic properties of granular materials." Thesis, University of Bath, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schenck, David Robert. "Some Formation Problems for Linear Elastic Materials." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/28608.

Full text
Abstract:
Some equations of linear elasticity are developed, including those specific to certain actuator structures considered in formation theory. The invariance of the strain-energy under the transformation from rectangular to spherical coordinates is then established for use in two specific formation problems. The first problem, involving an elastic structure with a cylindrical equilibrium configuration, is formulated in two dimensions using polar coordinates. It is shown that $L^2$ controls suffice to obtain boundary displacements in $H^{1/2}$. The second problem has a spherical equilibrium configuration and utilizes the elastic equations in spherical coordinates. Results similar to those obtained in the two dimensional case are indicated for the three dimensional problem.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Rodrigues, Ferreira Elizabete. "Finite-amplitude waves in deformed elastic materials." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210464.

Full text
Abstract:
Le contexte de cette thèse est la théorie de l'élasticité non linéaire, appelée également "élasticité finie". On y présente des résultats concernant la propagation d'ondes d'amplitude finie dans des matériaux élastiques non linéaires soumis à une grande déformation statique homogène. Bien que les matériaux considérés soient isotropes, lors de la propagation d'ondes un comportement anisotrope dû à la déformation statique se manifeste.

Après un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie.

Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen.

En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie.

Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche.

The context of this thesis is the non linear elasticity theory, also called "finite elasticity".

Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation.

After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.

In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model.

In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux.

Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
4

Muscat-Fenech, Claire. "Tearing of sheet materials." Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Si, Xiuhua. "Applications of the thermodynamics of elastic, crystalline materials." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4177.

Full text
Abstract:
The thermodynamic behaviors of multicomponent, elastic, crystalline solids under stress and electro-magnetic fields are developed, including the extension of Euler’s equation, Gibbs equation, Gibbs-Duhem equation, the conditions to be expected at equilibrium, and an extension of the Gibbs phase rule. The predictions of this new phase rule are compared with experimental observations. The stress deformation behaviors of the single martensitic crystal with and without magnetic fields were studied with the stress deformation equation derived by Slattery and Si (2005). One coherent interfacial condition between two martensitic variants was developed and used as one boundary condition of the problem. The dynamic magnetic actuation process of the single crystal actuator was analyzed. The extension velocity and the actuation time of the single crystal actuator are predicted. The relationship between the external stress and the extension velocity and the actuation time with the presence of a large external magnetic field was studied. The extended Gibbs-Duhem equation and Slattery-Lagoudas stress-deformation expression for crystalline solids was used. Interfacial constraints on the elastic portion of stress for crystalline-crystalline interfaces and crystalline-fluids or crystallineamorphous solids interfaces were derived and tested by the oxidation on the exterior of a circular cylinder, one-sided and two-sided oxidation of a plate. An experiment for measuring solid-solid interface surface energies was designed and the silicon-silicon dioxide surface energy was estimated. A new generalized Clausius-Clapeyron equation has been derived for elastic crystalline solids as well as fluids and amorphous solids. Special cases are pertinent to coherent interfaces as well as the latent heat of transformation.
APA, Harvard, Vancouver, ISO, and other styles
6

Guastavino, Rémi. "Elastic and acoustic characterisation of anisotropic porous materials." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4782.

Full text
Abstract:
For an accurate prediction of the low and medium frequency surface vibration and sound radiation behaviour of porous materials, there is a need to improve the means of estimating their elastic and acoustic properties. The underlying reasons for this are many and of varying origin, one prominent being a poor knowledge of the geometric anisotropy of the cell microstructure in the manufactured porous materials. Another one being, the characteristic feature of such materials i.e. that their density, elasticity and dissipative properties are highly dependent upon the manufacturing process techniques and settings used. In the case of free form moulding, the geometry of the cells and the dimensions of the struts are influenced by the rise and injection flow directions and also by the effect of gravity, elongating the cells. In addition the influence of the boundaries of the mould also introduces variations in the properties of the foam block produced. Despite these complications, the need to predict and, in the end, optimise the acoustic performance of these materials, either as isolated components or as part of a multi-layer arrangement, is growing. It is driven by the increasing demands for an acoustic performance in balance with the costs, a focus which serves to increase the need for modelling their behaviour in general and the above mentioned, inherent, anisotropy in particular. The current work is focussing on the experimental part of the characterisation of the material properties which is needed in order to correctly represent the anisotropy in numerical simulation models. Then an hybrid approach based on a combination of experimental deformation, strain field mapping, flow resistivity measurement and physically based porous material acoustic Finite Element (FE) simulation modelling is described. This inverse estimation linked with high quality measurements is crucial for the determination of the anisotropic coefficients of the porous materials is illustrated here for soft foam and fibrous wool materials.
QC 20100729
APA, Harvard, Vancouver, ISO, and other styles
7

Ragauskas, Paulius. "Identification Of Elastic Properties Of Layered Composite Materials." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101119_134738-62490.

Full text
Abstract:
In this thesis the problems of identification accuracy of elastic properties of materials are examined. The main object of study is samples of various materials and their elastic properties. This is an important subject of theoretical studies of various materials. The main thesis objective is to create an effective technology for precise identification of all the elastic characteristics of the sample. The de-veloped algorithms are to be applied in the material manufacturing industry. Thesis also aims at exploring accuracy and sensitivity of the identification of elastic properties of materials. The paper deals with a number of objectives: 1) to optimize the geometric parameters of the sample striving for more accurate identification results of elas-tic properties; 2) to identify mode shapes of sample and regulate their place in spectrum of eigenvalues in order to minimize the distortion of the objective function; 3) to create the implementation algorithms of proposed technologies and verify their capabilities experimentally. The first task is formulated taking into account the relatively high level of identification error of elastic properties of composite materials. The second objective relates to distortion of the objec-tive function in the process of updating the mathematical model with the pre-sumed elastic characteristics of material. The thesis is composed of four chapters, the summary of results, the list of literature and the list of author’s publications on the topic... [to full text]
Disertacijoje nagrinėjamos medžiagų tamprumo rodiklių identifikavimo tikslumo problemos. Pagrindinis tyrimo objektas yra įvairių medžiagų bandiniai, jų tamprumo rodikliai. Šis objektas yra svarbus įvairių medžiagų teoriniams tyrimams. Pagrindinis disertacijos tikslas yra sukurti efektyvią technologiją, leidžiančią pakankamu tikslumu surasti visus bandinio tamprumo rodiklius. Sukurtų algoritmų taikymo sritis yra medžiagų gamybos pramonė. Disertacijoje tiriamas siūlomos technologijos tikslumas ieškant įvairių medžiagų tamprumo rodiklių. Darbe sprendžiami keli pagrindiniai uždaviniai: optimizuojami bandinio geometriniai parametrai siekiant tikslesnių tamprumo rodiklių identifikavimo rezultatų; atpažįstamos bandinio modų formos ir reguliuojama jų vieta tikrinių reikšmių spektre siekiant sumažinti tikslo funkcijos iškraipymus; sukuriami pasiūlytų technologijų įgyvendinimo algoritmai ir bandymais patikrinamos jų galimybės. Pirmasis uždavinys suformuluotas atsižvelgiant į palyginti didelę kompozitinių medžiagų tamprumo rodiklių identifikavimo paklaidą. Antrasis siejasi su tikslo funkcijos iškraipymu atnaujinant matematinį medžiagos modelį spėjamais tamprumo rodikliais. Disertaciją sudaro keturi skyriai, rezultatų apibendrinimas, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai. Įvadiniame skyriuje aptariamas problemos aktualumas, tyrimo objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų... [toliau žr. visą tekstą]
APA, Harvard, Vancouver, ISO, and other styles
8

Guastavino, Rémi. "Elastic and acoustic characterisation of anisotropic porous materials /." Stockholm : Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, G. W. "Static Elastic Properties of Composite Materials Containing Microspheres." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487266.

Full text
Abstract:
This thesis aims to model the uniaxial deformation of a class of materials consisting of microscopic spherical shells embedded in a rubber matrix. These shells are assumed to buckle as the stress on the material increases. To motivate the analysis we consider the paradigm problem of the debonding of a distribution of cylindrical inclusions in an elastic material undergoing antiplane shear, with bonded and debonded inclusions playing the role of unbuckled and buckled shells respectively. We begin the modelling of the microsphere-containing material by considering the buckling of an isolated embedded shell inclusion with a uniaxial stress field at infinity, using Koiter's theory of shallow shells. The resulting energy functional is solved as an eigenvalue problem by the Rayleigh-Ritz method. Subsequently, we analyse the buckling criterion asymptotically in the limit as the thickness ratio tends to zero by analogy with the WKB analysis of a beam on a variable-stiffness substrate. To model the shell after buckling we consider the simplified case of an embedded shell with a crack around its equator. The system is solved by expressing the displacements in the shell and matrix as series of Love stress functions, with the resulting infinite system of equations solved numerically with the aid of a convergence acceleration method. Finally we consider a composite material consisting of a homogenised dilute distribution of buckled and unbuckled shells, with the proportion of each type of shell dependent on the stress applied to the material, according to an asymptotic formula relating the size of the inclusions and the critical buckling stress that was obtained previously.
APA, Harvard, Vancouver, ISO, and other styles
10

Gregory, P. W. "Finite elastic-plastic deformations of highly anisotropic materials." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Elastic materials"

1

Rushchitsky, Jeremiah J. Nonlinear Elastic Waves in Materials. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00464-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alfutov, N. A. Stability of Elastic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wolfenden, A., ed. Dynamic Elastic Modulus Measurements in Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1990. http://dx.doi.org/10.1520/stp1045-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eduard-Marius, Cracium, and Soós E, eds. Mechanics of elastic composites. Boca Raton, Fla: Chapman & Hall/CRC, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hwu, Chyanbin. Anisotropic elastic plates. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

C, Xi Z., ed. Elastic waves in anisotropic laminates. Boca Raton, USA: CRC Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reddy, J. N. Geometrically nonlinear analysis laminated elastic structures. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yuan, Huang. Numerical Assessments of Cracks in Elastic-Plastic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-45882-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kallio, Marke. The elastic and damping properties of magnetorheological elastomers. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steigmann, David J., and R. W. Ogden. Mechanics and electrodynamics of magneto-and electro-elastic materials. Wien: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Elastic materials"

1

Rushchitsky, Jeremiah J. "Elastic Materials." In Foundations of Engineering Mechanics, 45–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00464-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kružík, Martin, and Tomáš Roubíček. "Elastic Materials." In Interaction of Mechanics and Mathematics, 25–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02065-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hwu, Chyanbin. "Piezoelectric Materials." In Anisotropic Elastic Plates, 369–410. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5915-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hwu, Chyanbin. "Linear Anisotropic Elastic Materials." In Anisotropic Elastic Plates, 1–27. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5915-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

François, Dominique, André Pineau, and André Zaoui. "Elastic Behaviour." In Mechanical Behaviour of Materials, 61–122. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5246-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barber, J. R. "Elastic Stability." In Intermediate Mechanics of Materials, 511–57. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0295-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

François, Dominique, André Pineau, and André Zaoui. "Elastic Behaviour." In Mechanical Behaviour of Materials, 83–154. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2546-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

John, Vernon. "Elastic Behaviour." In Introduction to Engineering Materials, 79–90. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-21976-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Betounes, David. "Waves in Elastic Materials." In Partial Differential Equations for Computational Science, 299–356. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gaul, Lothar, Martin Kögl, and Marcus Wagner. "Properties of Elastic Materials." In Boundary Element Methods for Engineers and Scientists, 431. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05136-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Elastic materials"

1

Martin, Sebastian, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. "Example-based elastic materials." In ACM SIGGRAPH 2011 papers. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1964921.1964967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brecht, J., A. Elvenkemper, J. Betten, U. Navrath, and J. B. Multhoff. "Elastic Properties of Friction Materials." In 21st Annual Brake Colloquium & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-3333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Z. G., Y. Liu, G. Wang, L. Z. Sun, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave, and Linfeng Chen. "Elasto-Mammography: Elastic Property Reconstruction in Breast Tissues." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Musfeldt, Janice, Jinbo Cao, Luciana Vergara, Alexander Litvinchuk, Yongjie Wang, S. Park, and Sang Cheong. "Magneto-Elastic Interactions in Complex Materials." In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1148-pp04-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kharevych, Lily, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. "Numerical coarsening of inhomogeneous elastic materials." In ACM SIGGRAPH 2009 papers. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1576246.1531357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mattsson, Lars. "Elastic light scattering in materials research." In 16th Congress of the International Commission for Optics: Optics as a Key to High Technology. SPIE, 1993. http://dx.doi.org/10.1117/12.2308821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Zhangli, Adrien Hilaire, Mateusz Wyrzykowski, Karen Scrivener, and Pietro Lura. "Elastic and Visco-Elastic Behavior of Cementitious Materials at Early Ages." In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, H. Alicia, James A. Tencate, and Robert A. Guyer. "Hysteretic Elastic Systems." In XV International Conference on Nonlinear Elasticity in Materials. ASA, 2010. http://dx.doi.org/10.1121/1.3533838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sorazu, Borja, Brian Culshaw, and Gareth Pierce. "Optical technique for examining materials' elastic properties." In Smart Structures and Materials, edited by Eric Udd and Daniele Inaudi. SPIE, 2005. http://dx.doi.org/10.1117/12.600999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elangovan, Shreehari, Burhanettin Altan, and Gregory Odegard. "An Elastic Micropolar Mixture Theory for Predicting Elastic Properties of Cellular Materials." In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1789.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Elastic materials"

1

Abeyaratne, Rohan, and Guo-Hua Jiang. Dilatationally Nonlinear Elastic Materials: (1) Some Theory. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada202824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mehrabadi, M. M., S. C. Cowin, and C. O. Horgan. Strain Energy Density Bounds for Linear Anisotropic Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada271050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Castaneda, Pedro P. The Overall Response of Composite Materials Undergoing Large Elastic Deformations. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada231637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Castaneda, Pedro P. The Overall Response of Composite Materials Undergoing Large Elastic Deformations. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada224509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Varley, E. Interaction of Large Amplitude Stress Waves in Layered Elastic-Plastic Materials. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada153519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spoor, Philip S. Elastic Properties of Novel Materials Using PVDF Film and Resonance Ultrasound Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada328037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, J. A., J. Lubliner, and P. J. M. Monteiro. A modified direct method for the calculation of elastic moduli of composite materials. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/201789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knowles, James K. Investigations of Non-Elliptic Elastic Materials and the Modeling of Phase Transformations in Solids. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada358648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Doyle, Barney L., Caitlin Anne Taylor, Khalid Mikhiel Hattar, and Brittany R. Muntifering. Development of Elastic Recoil Detection Technique for Quantifying Light Isotope Concentrations in Irradiated TPBAR Materials. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1481590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Billingsley, James P., and James M. Oliver. The Relevance of the De Broglie Relation to the Hugoniot Elastic Limit (HEL) of Shock Loaded Solid Materials. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada225786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography