Academic literature on the topic 'Elastic materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Elastic materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Elastic materials"
Zuev, Yu S. "Inorganic Elastic Materials." International Polymer Science and Technology 33, no. 3 (March 2006): 5–6. http://dx.doi.org/10.1177/0307174x0603300302.
Full textSuvorov, S. A. "Elastic refractory materials." Refractories and Industrial Ceramics 48, no. 3 (May 2007): 202–7. http://dx.doi.org/10.1007/s11148-007-0060-2.
Full textIkram, Fahd S., Jawad M. Mikaeel, and Ranj A. Omer. "Accuracy of some Elastic Impression Materials Used in Prosthetic Dentistry." Sulaimani dental journal 6, no. 2 (December 26, 2019): 1–7. http://dx.doi.org/10.17656/sdj.10090.
Full textAdibhatla, Sridhar. "Buckling Behavior of Human Femur with Different Hyper Elastic Materials." Journal of Advanced Research in Dynamical and Control Systems 12, no. 3 (March 20, 2020): 554–59. http://dx.doi.org/10.5373/jardcs/v12i3/20201223.
Full textSetiyana, Budi, Imam Syafaat, Jamari Jamari, and DikJoe Schipper. "FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS." Reaktor 14, no. 3 (February 3, 2013): 199. http://dx.doi.org/10.14710/reaktor.14.3.199-203.
Full textLin, H. C., and P. M. Naghdi. "Constrained Elastic-Plastic Materials." Journal of Applied Mechanics 61, no. 3 (September 1, 1994): 511–18. http://dx.doi.org/10.1115/1.2901489.
Full textMartin, Sebastian, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. "Example-based elastic materials." ACM Transactions on Graphics 30, no. 4 (July 2011): 1–8. http://dx.doi.org/10.1145/2010324.1964967.
Full textLushcheikin, G. A. "Elastic composite piezoelectric materials." Ferroelectrics 157, no. 1 (July 1994): 415–20. http://dx.doi.org/10.1080/00150199408229542.
Full textTang, Wen, Tao Ruan Wan, and Donjing Huang. "Interactive thin elastic materials." Computer Animation and Virtual Worlds 27, no. 2 (June 5, 2015): 141–50. http://dx.doi.org/10.1002/cav.1666.
Full textCurnier, Alain, Qi-Chang He, and Philippe Zysset. "Conewise linear elastic materials." Journal of Elasticity 37, no. 1 (1995): 1–38. http://dx.doi.org/10.1007/bf00043417.
Full textDissertations / Theses on the topic "Elastic materials"
Paine, A. C. "Elastic properties of granular materials." Thesis, University of Bath, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245957.
Full textSchenck, David Robert. "Some Formation Problems for Linear Elastic Materials." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/28608.
Full textPh. D.
Rodrigues, Ferreira Elizabete. "Finite-amplitude waves in deformed elastic materials." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210464.
Full textAprès un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie.
Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen.
En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie.
Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche.
The context of this thesis is the non linear elasticity theory, also called "finite elasticity".
Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation.
After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.
In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model.
In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux.
Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Muscat-Fenech, Claire. "Tearing of sheet materials." Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317039.
Full textSi, Xiuhua. "Applications of the thermodynamics of elastic, crystalline materials." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4177.
Full textGuastavino, Rémi. "Elastic and acoustic characterisation of anisotropic porous materials." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4782.
Full textQC 20100729
Ragauskas, Paulius. "Identification Of Elastic Properties Of Layered Composite Materials." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20101119_134738-62490.
Full textDisertacijoje nagrinėjamos medžiagų tamprumo rodiklių identifikavimo tikslumo problemos. Pagrindinis tyrimo objektas yra įvairių medžiagų bandiniai, jų tamprumo rodikliai. Šis objektas yra svarbus įvairių medžiagų teoriniams tyrimams. Pagrindinis disertacijos tikslas yra sukurti efektyvią technologiją, leidžiančią pakankamu tikslumu surasti visus bandinio tamprumo rodiklius. Sukurtų algoritmų taikymo sritis yra medžiagų gamybos pramonė. Disertacijoje tiriamas siūlomos technologijos tikslumas ieškant įvairių medžiagų tamprumo rodiklių. Darbe sprendžiami keli pagrindiniai uždaviniai: optimizuojami bandinio geometriniai parametrai siekiant tikslesnių tamprumo rodiklių identifikavimo rezultatų; atpažįstamos bandinio modų formos ir reguliuojama jų vieta tikrinių reikšmių spektre siekiant sumažinti tikslo funkcijos iškraipymus; sukuriami pasiūlytų technologijų įgyvendinimo algoritmai ir bandymais patikrinamos jų galimybės. Pirmasis uždavinys suformuluotas atsižvelgiant į palyginti didelę kompozitinių medžiagų tamprumo rodiklių identifikavimo paklaidą. Antrasis siejasi su tikslo funkcijos iškraipymu atnaujinant matematinį medžiagos modelį spėjamais tamprumo rodikliais. Disertaciją sudaro keturi skyriai, rezultatų apibendrinimas, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai. Įvadiniame skyriuje aptariamas problemos aktualumas, tyrimo objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų... [toliau žr. visą tekstą]
Guastavino, Rémi. "Elastic and acoustic characterisation of anisotropic porous materials /." Stockholm : Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4782.
Full textJones, G. W. "Static Elastic Properties of Composite Materials Containing Microspheres." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487266.
Full textGregory, P. W. "Finite elastic-plastic deformations of highly anisotropic materials." Thesis, University of Nottingham, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282601.
Full textBooks on the topic "Elastic materials"
Rushchitsky, Jeremiah J. Nonlinear Elastic Waves in Materials. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00464-8.
Full textAlfutov, N. A. Stability of Elastic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Find full textWolfenden, A., ed. Dynamic Elastic Modulus Measurements in Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1990. http://dx.doi.org/10.1520/stp1045-eb.
Full textEduard-Marius, Cracium, and Soós E, eds. Mechanics of elastic composites. Boca Raton, Fla: Chapman & Hall/CRC, 2004.
Find full textC, Xi Z., ed. Elastic waves in anisotropic laminates. Boca Raton, USA: CRC Press, 2001.
Find full textReddy, J. N. Geometrically nonlinear analysis laminated elastic structures. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Find full textYuan, Huang. Numerical Assessments of Cracks in Elastic-Plastic Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-45882-1.
Full textKallio, Marke. The elastic and damping properties of magnetorheological elastomers. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2005.
Find full textSteigmann, David J., and R. W. Ogden. Mechanics and electrodynamics of magneto-and electro-elastic materials. Wien: Springer, 2011.
Find full textBook chapters on the topic "Elastic materials"
Rushchitsky, Jeremiah J. "Elastic Materials." In Foundations of Engineering Mechanics, 45–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00464-8_3.
Full textKružík, Martin, and Tomáš Roubíček. "Elastic Materials." In Interaction of Mechanics and Mathematics, 25–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02065-1_2.
Full textHwu, Chyanbin. "Piezoelectric Materials." In Anisotropic Elastic Plates, 369–410. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5915-7_11.
Full textHwu, Chyanbin. "Linear Anisotropic Elastic Materials." In Anisotropic Elastic Plates, 1–27. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5915-7_1.
Full textFrançois, Dominique, André Pineau, and André Zaoui. "Elastic Behaviour." In Mechanical Behaviour of Materials, 61–122. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5246-4_2.
Full textBarber, J. R. "Elastic Stability." In Intermediate Mechanics of Materials, 511–57. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0295-0_12.
Full textFrançois, Dominique, André Pineau, and André Zaoui. "Elastic Behaviour." In Mechanical Behaviour of Materials, 83–154. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2546-1_2.
Full textJohn, Vernon. "Elastic Behaviour." In Introduction to Engineering Materials, 79–90. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-21976-6_7.
Full textBetounes, David. "Waves in Elastic Materials." In Partial Differential Equations for Computational Science, 299–356. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_11.
Full textGaul, Lothar, Martin Kögl, and Marcus Wagner. "Properties of Elastic Materials." In Boundary Element Methods for Engineers and Scientists, 431. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05136-8_15.
Full textConference papers on the topic "Elastic materials"
Martin, Sebastian, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. "Example-based elastic materials." In ACM SIGGRAPH 2011 papers. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1964921.1964967.
Full textBrecht, J., A. Elvenkemper, J. Betten, U. Navrath, and J. B. Multhoff. "Elastic Properties of Friction Materials." In 21st Annual Brake Colloquium & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-3333.
Full textWang, Z. G., Y. Liu, G. Wang, L. Z. Sun, Glaucio H. Paulino, Marek-Jerzy Pindera, Robert H. Dodds, Fernando A. Rochinha, Eshan Dave, and Linfeng Chen. "Elasto-Mammography: Elastic Property Reconstruction in Breast Tissues." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896778.
Full textMusfeldt, Janice, Jinbo Cao, Luciana Vergara, Alexander Litvinchuk, Yongjie Wang, S. Park, and Sang Cheong. "Magneto-Elastic Interactions in Complex Materials." In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1148-pp04-06.
Full textKharevych, Lily, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. "Numerical coarsening of inhomogeneous elastic materials." In ACM SIGGRAPH 2009 papers. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1576246.1531357.
Full textMattsson, Lars. "Elastic light scattering in materials research." In 16th Congress of the International Commission for Optics: Optics as a Key to High Technology. SPIE, 1993. http://dx.doi.org/10.1117/12.2308821.
Full textHu, Zhangli, Adrien Hilaire, Mateusz Wyrzykowski, Karen Scrivener, and Pietro Lura. "Elastic and Visco-Elastic Behavior of Cementitious Materials at Early Ages." In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.126.
Full textKim, H. Alicia, James A. Tencate, and Robert A. Guyer. "Hysteretic Elastic Systems." In XV International Conference on Nonlinear Elasticity in Materials. ASA, 2010. http://dx.doi.org/10.1121/1.3533838.
Full textSorazu, Borja, Brian Culshaw, and Gareth Pierce. "Optical technique for examining materials' elastic properties." In Smart Structures and Materials, edited by Eric Udd and Daniele Inaudi. SPIE, 2005. http://dx.doi.org/10.1117/12.600999.
Full textElangovan, Shreehari, Burhanettin Altan, and Gregory Odegard. "An Elastic Micropolar Mixture Theory for Predicting Elastic Properties of Cellular Materials." In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1789.
Reports on the topic "Elastic materials"
Abeyaratne, Rohan, and Guo-Hua Jiang. Dilatationally Nonlinear Elastic Materials: (1) Some Theory. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada202824.
Full textMehrabadi, M. M., S. C. Cowin, and C. O. Horgan. Strain Energy Density Bounds for Linear Anisotropic Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada271050.
Full textCastaneda, Pedro P. The Overall Response of Composite Materials Undergoing Large Elastic Deformations. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada231637.
Full textCastaneda, Pedro P. The Overall Response of Composite Materials Undergoing Large Elastic Deformations. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada224509.
Full textVarley, E. Interaction of Large Amplitude Stress Waves in Layered Elastic-Plastic Materials. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada153519.
Full textSpoor, Philip S. Elastic Properties of Novel Materials Using PVDF Film and Resonance Ultrasound Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada328037.
Full textWang, J. A., J. Lubliner, and P. J. M. Monteiro. A modified direct method for the calculation of elastic moduli of composite materials. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/201789.
Full textKnowles, James K. Investigations of Non-Elliptic Elastic Materials and the Modeling of Phase Transformations in Solids. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada358648.
Full textDoyle, Barney L., Caitlin Anne Taylor, Khalid Mikhiel Hattar, and Brittany R. Muntifering. Development of Elastic Recoil Detection Technique for Quantifying Light Isotope Concentrations in Irradiated TPBAR Materials. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1481590.
Full textBillingsley, James P., and James M. Oliver. The Relevance of the De Broglie Relation to the Hugoniot Elastic Limit (HEL) of Shock Loaded Solid Materials. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada225786.
Full text