To see the other types of publications on this topic, follow the link: Elastic materials.

Journal articles on the topic 'Elastic materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Elastic materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zuev, Yu S. "Inorganic Elastic Materials." International Polymer Science and Technology 33, no. 3 (March 2006): 5–6. http://dx.doi.org/10.1177/0307174x0603300302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suvorov, S. A. "Elastic refractory materials." Refractories and Industrial Ceramics 48, no. 3 (May 2007): 202–7. http://dx.doi.org/10.1007/s11148-007-0060-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ikram, Fahd S., Jawad M. Mikaeel, and Ranj A. Omer. "Accuracy of some Elastic Impression Materials Used in Prosthetic Dentistry." Sulaimani dental journal 6, no. 2 (December 26, 2019): 1–7. http://dx.doi.org/10.17656/sdj.10090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adibhatla, Sridhar. "Buckling Behavior of Human Femur with Different Hyper Elastic Materials." Journal of Advanced Research in Dynamical and Control Systems 12, no. 3 (March 20, 2020): 554–59. http://dx.doi.org/10.5373/jardcs/v12i3/20201223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Setiyana, Budi, Imam Syafaat, Jamari Jamari, and DikJoe Schipper. "FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS." Reaktor 14, no. 3 (February 3, 2013): 199. http://dx.doi.org/10.14710/reaktor.14.3.199-203.

Full text
Abstract:
Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone).In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone), friction for the cutting deformation mode (scratching with a sharp cone) is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan yang menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan. Paper ini menyajikan analisis friksi dari beberapa bentuk deformasi permukaan dari material visko-elastik-plastik, khususnya pada PEEK (poly ether ether ketone). Secara umum dinyatakan bahwa friksi terdiri dari komponen adhesi dan deformasi yang diasumsikan tidak bergantung satu sama lain. Selama uji gores, koefisien friksi dipengaruhi oleh beberapa parameter, seperti ketajaman indenter, bentuk deformasi dan pemulihan elastik. Hasil menunjukkan bahwa komponen adhesi sangat berpengaruh pada deformasi elastic dan penyetrikaan (uji gores dengan indenter tumpul), sedang untuk pemotongan (uji gores dengan indenter tajam) sangat dipengaruhi oleh komponen deformasi. Dari analisis dapat disimpulkan bahwa model friksi adhesi cocok untuk deformasi elastic dan penyetrikaan, sedang model friksi deformasi dengan pemulihan elastic, cocok untuk pemotongan. Selain itu, plowing merupakan kombinasi dari model friksi adhesi dan deformasi.
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, H. C., and P. M. Naghdi. "Constrained Elastic-Plastic Materials." Journal of Applied Mechanics 61, no. 3 (September 1, 1994): 511–18. http://dx.doi.org/10.1115/1.2901489.

Full text
Abstract:
The main purpose of this paper is to present a general (purely mechanical) constrained theory of finitely deforming elastic-plastic materials. Our development is based on a strain-space formulation of plasticity and requires a detailed examination of the effect of constraint on various constitutive ingredients in the unconstrained theory, including the yield functions (in both the stress and strain spaces), the loading criteria, and various response functions. Also examined is the effect of constraint on the restrictions arising from the work inequality of Naghdi and Trapp (1975b).
APA, Harvard, Vancouver, ISO, and other styles
7

Martin, Sebastian, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. "Example-based elastic materials." ACM Transactions on Graphics 30, no. 4 (July 2011): 1–8. http://dx.doi.org/10.1145/2010324.1964967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lushcheikin, G. A. "Elastic composite piezoelectric materials." Ferroelectrics 157, no. 1 (July 1994): 415–20. http://dx.doi.org/10.1080/00150199408229542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Wen, Tao Ruan Wan, and Donjing Huang. "Interactive thin elastic materials." Computer Animation and Virtual Worlds 27, no. 2 (June 5, 2015): 141–50. http://dx.doi.org/10.1002/cav.1666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curnier, Alain, Qi-Chang He, and Philippe Zysset. "Conewise linear elastic materials." Journal of Elasticity 37, no. 1 (1995): 1–38. http://dx.doi.org/10.1007/bf00043417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gogotsi, George A. "Elastic-inelastic and inelastic-elastic transitions in ZrO2 materials." Journal of the European Ceramic Society 17, no. 10 (January 1997): 1213–15. http://dx.doi.org/10.1016/s0955-2219(96)00223-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Finger, W., and M. Komatsu. "Elastic and plastic properties of elastic dental impression materials." Dental Materials 1, no. 4 (August 1985): 129–34. http://dx.doi.org/10.1016/s0109-5641(85)80004-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rushchitsky, Jeremiah J. "Auxetic linearly elastic isotropic materials: restrictions on elastic moduli." Archive of Applied Mechanics 85, no. 4 (October 12, 2014): 517–22. http://dx.doi.org/10.1007/s00419-014-0926-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Beale, Paul D., and David J. Srolovitz. "Elastic fracture in random materials." Physical Review B 37, no. 10 (April 1, 1988): 5500–5507. http://dx.doi.org/10.1103/physrevb.37.5500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dimitrienko, Y. I., and A. P. Sokolov. "Elastic properties of composite materials." Mathematical Models and Computer Simulations 2, no. 1 (January 21, 2010): 116–30. http://dx.doi.org/10.1134/s2070048210010126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Venegas, Rodolfo, and Claude Boutin. "Acoustics of permeo-elastic materials." Journal of Fluid Mechanics 828 (August 31, 2017): 135–74. http://dx.doi.org/10.1017/jfm.2017.505.

Full text
Abstract:
In the dynamics of Biot poroelastic materials, the fluid flow is not affected by the deformation of the solid elastic frame. In contrast, in permeable materials whose solid stiff frames have flexible thin flat films attached, i.e. permeo-elastic materials, the fluid flow can be significantly modified by the presence of the films. As a consequence of the local fluid–film interaction, and in particular of the local resonances, the classical local physics is changed and departs from that leading to the Biot description. In this paper, the two-scale asymptotic homogenisation method is used to derive the macroscopic description of sound propagation in air-saturated permeo-elastic materials. This description is asymptotically analysed to determine the conditions for which the geometrical and mechanical properties of the films strongly affect the effective properties of the material. The developed theory is illustrated numerically and validated experimentally for a prototype material, evidencing the atypical acoustic behaviour.
APA, Harvard, Vancouver, ISO, and other styles
17

HAYASHI, TOSHIO. "Elastic Materials for Biomedical Uses." NIPPON GOMU KYOKAISHI 71, no. 5 (1998): 243–50. http://dx.doi.org/10.2324/gomu.71.243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ericksen, J. L. "Magnetizable and Polarizable Elastic Materials." Mathematics and Mechanics of Solids 13, no. 1 (May 14, 2007): 38–54. http://dx.doi.org/10.1177/1081286506069847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Carroll, M. M. "Must Elastic Materials be Hyperelastic?" Mathematics and Mechanics of Solids 14, no. 4 (March 11, 2009): 369–76. http://dx.doi.org/10.1177/1081286508099385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Coux, Martin, Christophe Clanet, and David Quéré. "Soft, elastic, water-repellent materials." Applied Physics Letters 110, no. 25 (June 19, 2017): 251605. http://dx.doi.org/10.1063/1.4985011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Suzumori, Koichi. "Elastic materials producing compliant robots." Robotics and Autonomous Systems 18, no. 1-2 (July 1996): 135–40. http://dx.doi.org/10.1016/0921-8890(95)00078-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Neilsen, M. K., and H. L. Schreyer. "Bifurcations in elastic-plastic materials." International Journal of Solids and Structures 30, no. 4 (1993): 521–44. http://dx.doi.org/10.1016/0020-7683(93)90185-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Polyakov, V. V., and A. V. Golovin. "Elastic characteristics of porous materials." Journal of Applied Mechanics and Technical Physics 34, no. 5 (1994): 625–28. http://dx.doi.org/10.1007/bf00859826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xu, Xiao-Jian, and Jun-Miao Meng. "A size-dependent elastic theory for magneto-electro-elastic materials." European Journal of Mechanics - A/Solids 86 (March 2021): 104198. http://dx.doi.org/10.1016/j.euromechsol.2020.104198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kuang, Zhen-Bang. "Some variational principles in elastic dielectric and elastic magnetic materials." European Journal of Mechanics - A/Solids 27, no. 3 (May 2008): 504–14. http://dx.doi.org/10.1016/j.euromechsol.2007.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Peigney, Michaël. "Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli." Journal of the Mechanics and Physics of Solids 71 (November 2014): 112–31. http://dx.doi.org/10.1016/j.jmps.2014.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Neimitz,, Andrzej. "On the Fast Crack Motion in Elastic and Elastic-Plastic Materials." Journal of the Mechanical Behavior of Materials 4, no. 4 (September 1993): 365–74. http://dx.doi.org/10.1515/jmbm.1993.4.4.365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Darnbrough, J. E., S. Mahalingam, and Peter E. J. Flewitt. "Micro-Scale Cantilever Testing of Linear Elastic and Elastic-Plastic Materials." Key Engineering Materials 525-526 (November 2012): 57–60. http://dx.doi.org/10.4028/www.scientific.net/kem.525-526.57.

Full text
Abstract:
t is increasingly a requirement to be able to determine the mechanical properties of materials: (i) at the micro-scale, (ii) that are in the form of surface coatings and (iii) that have nanoscale microstructures. As a consequence micro-scale testing is an important tool that has been developed to aid the evaluation of the mechanical properties of such materials. In this work cantilever beam specimens (typically 2μm by 2μm by 10μm in size) have been prepared by gallium ion milling and then deformed in-situ within a FEI Helios Dual Beam workstation. The latter is achieved using a force probe with a geometry suitable for loading the micro-scale test specimens. Thus force and displacement can be measured together with observing the deformation and fracture of the individual specimens. This paper considers the evaluation of the mechanical properties in particular elastic modulus, yield strength and fracture strength of materials that result in relatively large deflections to the micro-scale cantilever beams. Two materials are considered the first is linear elastic single crystal silicon and the other elastic-plastic nanocrystalline (nc) nickel. The results are discussed with respect to the reproducibility of this method of mechanical testing and the evaluated properties are compared with those derived by alternative procedures.
APA, Harvard, Vancouver, ISO, and other styles
29

Srinivasan, S. R., and R. B. Schwarz. "Elastic moduli of MoSi2-based materials." Journal of Materials Research 7, no. 7 (July 1992): 1610–13. http://dx.doi.org/10.1557/jmr.1992.1610.

Full text
Abstract:
We prepared MoSi2, two-phase MoSi2/Mo5Si3, and (Mo, W)Si2 solid-solution alloy powders by mechanically alloying mixtures of elemental molybdenum, silicon, and tungsten. These powders were consolidated by hot-pressing them at 1500 °C in graphite dies. We measured the elastic moduli of these alloys by a recently developed technique for non-contact ultrasonic spectroscopy. Second-phase Mo5Si3 additions to MoSi2 result in decreased values for G and E, whereas alloying MoSi2 with WSi2 results in increased values for G and E. An analysis of these Young's moduli and of data from the literature for various intermetallic alloys suggests that for any given alloy system, the Young's moduli for its various intermetallics as a function of density fall on a straight line. Further, the lines for the different alloy systems are approximately parallel.
APA, Harvard, Vancouver, ISO, and other styles
30

Saxena, A., Y. Wu, T. Lookman, S. R. Shenoy, and A. R. Bishop. "Hierarchical pattern formation in elastic materials." Physica A: Statistical Mechanics and its Applications 239, no. 1-3 (May 1997): 18–34. http://dx.doi.org/10.1016/s0378-4371(96)00469-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

HORI, Muneo, and Takashi MIURA. "overall moduli of heterogeneous elastic materials." Doboku Gakkai Ronbunshu, no. 428 (1991): 19–27. http://dx.doi.org/10.2208/jscej.1991.428_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Greenberg, J. M. "Models of elastic–perfectly plastic materials." European Journal of Applied Mathematics 1, no. 2 (June 1990): 131–50. http://dx.doi.org/10.1017/s0956792500000127.

Full text
Abstract:
This note deals with a new model of elastic–perfectly plastic materials in which the yield stress is regarded as a threshold above which plastic flow occurs rather than a constraint which cannot be violated. This modelling change allows us to treat a number of signalling and impact problems not solvable within the classic framework of elastic–perfectly plastic materials.
APA, Harvard, Vancouver, ISO, and other styles
33

Greenberg, J. M. "Models of elastic–perfectly plastic materials." European Journal of Applied Mathematics 1, no. 3 (September 1990): 225–44. http://dx.doi.org/10.1017/s095679250000019x.

Full text
Abstract:
This note deals with a new model of elastic–perfectly plastic materials in which the yield stress is regarded as a threshold above which plastic flow occurs rather than a constraint which cannot be violated. This modelling change allows us to treat a number of signalling and impact problems not solvable within the classic framework of elastic–perfectly plastic materials.
APA, Harvard, Vancouver, ISO, and other styles
34

Chang, Ta-Peng, and Born-Horn Chen. "Orthotropic elastic response of granular materials." Computers & Structures 64, no. 1-4 (July 1997): 667–75. http://dx.doi.org/10.1016/s0045-7949(96)00417-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Alshits, V. I., and H. O. K. Kirchner. "Cylindrically anisotropic, radially inhomogeneous elastic materials." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, no. 2007 (March 8, 2001): 671–93. http://dx.doi.org/10.1098/rspa.2000.0687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yosibash, Zohar, Arie Bussiba, and Ilan Gilad. "Failure criteria for brittle elastic materials." International Journal of Fracture 125, no. 3/4 (February 2004): 307–33. http://dx.doi.org/10.1023/b:frac.0000022244.31825.3b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Desmorat, B., and G. Duvaut. "Compliance optimization with nonlinear elastic materials." European Journal of Mechanics - A/Solids 22, no. 2 (March 2003): 179–92. http://dx.doi.org/10.1016/s0997-7538(03)00013-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

HARADA, Shusaku, Shu TAKAGI, and Yoichiro MATSUMOTO. "Wave Propagation in Elastic Granular Materials." Proceedings of the Fluids engineering conference 2003 (2003): 186. http://dx.doi.org/10.1299/jsmefed.2003.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Silling, S. A. "Creasing Singularities in Compressible Elastic Materials." Journal of Applied Mechanics 58, no. 1 (March 1, 1991): 70–74. http://dx.doi.org/10.1115/1.2897181.

Full text
Abstract:
The deformation and stress fields near a crease in the surface of an isotropic, compressible elastic body in equilibrium are in general singular. The order of the singularity depends on the constitutive behavior in the limit of zero volume. In this paper the problem of the creasing of a semicircular cylinder folded about its axis is solved exactly for a family of materials that includes the Blatz-Ko material (a foam rubber). Conditions under which strong ellipticity is lost are derived.
APA, Harvard, Vancouver, ISO, and other styles
40

Ting, T. C. T. "Transverse waves in anisotropic elastic materials." Wave Motion 44, no. 2 (December 2006): 107–19. http://dx.doi.org/10.1016/j.wavemoti.2006.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

MEHRABADI, MORTEZA M., and STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 43, no. 1 (1990): 15–41. http://dx.doi.org/10.1093/qjmam/43.1.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

PIPKIN, ALLEN C. "ELASTIC MATERIALS WITH TWO PREFERRED STATES." Quarterly Journal of Mechanics and Applied Mathematics 44, no. 1 (1991): 1–15. http://dx.doi.org/10.1093/qjmam/44.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

MEHRABADI, MORTEZA M., and STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 44, no. 2 (1991): 331. http://dx.doi.org/10.1093/qjmam/44.2.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

PIPKIN, A. C. "SHOCK FORMATION IN NEARLY ELASTIC MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 46, no. 4 (1993): 583–99. http://dx.doi.org/10.1093/qjmam/46.4.583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wielgosz, C., and G. Marckmann. "Dynamic analysis of nonlinear elastic materials." Computational Materials Science 7, no. 1-2 (December 1996): 1–4. http://dx.doi.org/10.1016/s0927-0256(96)00051-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chang, Zheng, Jin Hu, Gengkai Hu, Ran Tao, and Yue Wang. "Controlling elastic waves with isotropic materials." Applied Physics Letters 98, no. 12 (March 21, 2011): 121904. http://dx.doi.org/10.1063/1.3569598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yang, Wei, Guoyang Fu, and Chun-Qing Li. "Elastic Fracture Toughness of Ductile Materials." Journal of Engineering Mechanics 143, no. 9 (September 2017): 04017111. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hom, C. L., and R. M. McMeeking. "Void Growth in Elastic-Plastic Materials." Journal of Applied Mechanics 56, no. 2 (June 1, 1989): 309–17. http://dx.doi.org/10.1115/1.3176085.

Full text
Abstract:
Three-dimensional finite element computations have been done to study the growth of initially spherical voids in periodic cubic arrays. The numerical method is based on finite strain theory and the computations account for the interaction between neighboring voids. The void arrays are subjected to macroscopically uniform fields of uniaxial tension, pure shear, and high triaxial stress. The macroscopic stress-strain behavior and the change in void volume were obtained for two initial void volume fractions. The calculations show that void shape, void interaction, and loss of load carrying capacity depend strongly on the triaxiality of the stress field. The results of the finite element computation were compared with several dilatant plasticity continuum models for porous materials. None of the models agrees completely with the finite element calculations. Agreement of the finite element results with any particular constitutive model depended on the level of macroscopic strain and the triaxiality of the remote uniform stress field.
APA, Harvard, Vancouver, ISO, and other styles
49

Miller, Baroud, and Nigg. "Elastic behaviour of sport surface materials." Sports Engineering 3, no. 3 (August 2000): 177–84. http://dx.doi.org/10.1046/j.1460-2687.2000.00056.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, J., and M. Ostoja-Starzewski. "Fractals in elastic-hardening plastic materials." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2114 (November 4, 2009): 603–21. http://dx.doi.org/10.1098/rspa.2009.0308.

Full text
Abstract:
Plastic grains are found to form fractal patterns in elastic-hardening plastic materials in two dimensions, made of locally isotropic grains with random fluctuations in plastic limits or elastic/plastic moduli. The spatial assignment of randomness follows a strict-white-noise random field on a square lattice aggregate of square-shaped grains, whereby the flow rule of each grain follows associated plasticity. Square-shaped domains (comprising 256×256 grains) are loaded through either one of three macroscopically uniform boundary conditions admitted by the Hill–Mandel condition. Following an evolution of a set of grains that have become plastic, we find that it is monotonically plane filling with an increasing macroscopic load. The set’s fractal dimension increases from 0 to 2, with the response under kinematic loading being stiffer than that under mixed-orthogonal loading, which, in turn, is stiffer than the traction controlled one. All these responses display smooth transitions but, as the randomness decreases to zero, they turn into the sharp response of an idealized homogeneous material. The randomness in yield limits has a stronger effect than that in elastic/plastic moduli. On the practical side, the curves of fractal dimension versus applied stress—which indeed display a universal character for a range of different materials—offer a simple method of assessing the inelastic state of the material. A qualitative explanation of the morphogenesis of fractal patterns is given from the standpoint of a correlated percolation on a Markov field on a graph network of grains.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography